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Linear mixed-effects model for longitudinal complex data with1

diversified characteristics2

Abstract3

The increasing richness of data encourages a comprehensive understanding of economic and fi-4

nancial activities, where variables of interest may include not only scalar (point-like) indicators, but5

also functional (curve-like) and compositional (pie-like) ones. In many research topics, variables are6

also chronologically collected across individuals, which falls into the paradigm of longitudinal anal-7

ysis. The complicated nature of data, however, increases the difficulty of modeling these variables8

under a traditional longitudinal framework. In this study, we investigate a linear mixed-effects model9

(LMM) for such complex data. Different types of variables are first consistently represented using the10

corresponding basis expansions so that the LMM can then be conducted on them, which generalizes11

the theoretical framework of the LMM to complex data analysis. A number of numerical experiments12

indicate the feasibility and effectiveness of the proposed model. We further illustrate its practical13

utility in a real data study of China’s stock market and show that the proposed method can enhance14

the performance and interpretability of the regression for complex data with diversified characteristics.15

Key Words: Longitudinal complex data; Linear mixed-effects model; Compositional data analysis;16

Functional data analysis; Stock market; Online investors’ emotions17

1 Introduction18

The development of sensors, information storage, and data mining makes it possible to collect data19

from a large number of sources with different characteristics such as familiar single points, curves,20

and pie charts. Multiple types of data, referred to as complex data, enlarge the traditional category of21

variables and provide researchers with an opportunity to understand the behavior of activities more22

comprehensively than ever before. For example, public online emotion from social media and intraday23

stock returns are improving the accuracy and interpretation of trend predictions in China’s stock24

market (Wang et al., 2019a). In such a case, the return series are processed as continuous functions25

from opening to closing and investors’ emotions are measured as compositions constituted by five26

types of emotions.27

Complex data analysis involves various types of data ranging from classical nominal, ordinal, and28

ratio scalar variables to curve- and pie-like functional and compositional variables and even text data.29
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In this study, we focus on two emerging types, namely functions and compositions. Specifically, in30

functional data analysis (FDA), a data unit is assumed to be a square-integrable function determined31

by its observations at various times (Ramsay, 1982). The internal property of functions (i.e., the32

infinite dimension) causes great difficulty for functional modeling in both theory and practice. To33

describe functions over a bounded closed set (e.g., an interval), some equivalent representations such34

as basis function expansion and the reproducing kernel method are thus necessary (Härdle et al., 2012).35

On the contrary, compositional data analysis (CDA) discusses the intrinsic structure of a whole, such36

as the proportions or percentages that carry only relative information (Aitchison, 1982, 1986). The37

defining features of compositions include the strict positive and constant sum of all the components38

inside (e.g., 1 for proportions and 100 for percentages), which is also problematic for most traditional39

statistical approaches. To eliminate these strong constraints, a family of logratio transformations has40

been proposed such as additive logratio, centered logratio (Aitchison, 1986), and isometric logratio41

(Egozcue et al., 2003), abbreviated to the well-known alr, clr, and ilr transformations, respectively.42

For further details on FDA and CDA, see Ramsay and Silverman (2005) and Pawlowsky-Glahn et al.43

(2015), respectively.44

Numerous works have investigated regression for functional and compositional covariates against45

a scaler response. Ramsay and Silverman (2005, 2007) systematically proposed the theoretical frame-46

work of functional linear regression and Müller and Stadtmüller (2005) then expanded it to the gen-47

eralized linear case. More recent studies of functional regression follow the additive model (Fan et al.,48

2015), mixture of linear models (Wang et al., 2016), and truncated linear model (Hall and Hooker,49

2016). Meanwhile, Aitchison and Bacon-Shone (1984) initially proposed linear regression for composi-50

tional covariates, Marzio et al. (2015) presented the kernel-based compositional regression, and Bruno51

et al. (2014, 2016) investigated the spatiotemporal model and another nonparametric regression with52

Bayesian P-splines, respectively.53

The aforementioned approaches focus on a specific type of complex data, with relatively few54

studies examining the multi-type situation. Wang et al. (2015) preliminarily developed a linear model55

for multiple types of complex data. Wang et al. (2019a) then extended its computational framework to56

generalized linear regression including scalar, functional, and compositional covariates. Their methods57

were performed under the independent and identically distributed (IID) assumption of errors, namely58

that all the samples of complex data are assumed to be independently collected from an identical59

population. However, this IID assumption is problematic in some cases; these complex data may60

also show typical longitudinal features, which we call longitudinal complex data. For example, as61

introduced in Section 5, the closing prices of China’s stock market were collected from hundreds of62

stocks over several months. The price-limiting mechanism of the market results in high correlation63
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among observations of the same stock. In such a case, statistical models of complex data based on the64

IID assumption can be biased and lead to confusing results since such longitudinal features are ignored.65

Similar problems have been discussed separately for FDA (Goldsmith et al., 2012; Gertheiss et al.,66

2013; Chen and Cao, 2017) and CDA (Zhang et al., 2009; Qiu et al., 2010; Wang et al., 2019b), and67

few of the proposed solutions show the potential to integrate multiple types of complex data. Thus,68

developing a unified framework to model longitudinal complex data with diversified characteristics is69

necessary.70

As a fundamental longitudinal technique, the linear mixed-effects model (LMM) proposed by Laird71

and Ware (1982) has been extended to numerous applications (Fitzmaurice et al., 2011; Hsiao, 2014),72

but most studies focus only on scalar variables. In this study, we investigate the LMM for complex data73

with diversified characteristics (CompLMM hereafter) to deal with longitudinal features. Specifically,74

we assume that the data are collected from N individuals along with ni measurements for the i-th75

individual (i = 1, 2, · · · , N); then, CompLMM is formulated as76

yij =

px∑
k=1

xijkαk +

qz∑
k=1

zijkaik +

pµ∑
k=1

∫
µijkβk +

qν∑
k=1

∫
νijkbik +

pc∑
k=1

(cijk,γk)a+

qw∑
k=1

(wijk, rik)a+εij (1)

for the j-th sample (j = 1, 2, · · · , ni). Here, yij denotes the scalar response; xijk (zijk), µijk (νijk),77

and cijk (wijk) are constituted by part of the scalar, functional, and compositional covariates, with78

numbers of px (qz), pµ (qν), and pc (qw), respectively; αk (aik), βk (bik), and γk (rik) denote the79

regression coefficients with the corresponding characteristics; εij is the random scalar error; and (·, ·)a80

denotes the Aitchison inner product in CDA to be introduced in Section 2. In the paradigm of the81

LMM, the terms containing αk, βk, and γk in Model (1) comprise the fixed effects shared by all82

individuals, whereas those containing aik, νik, and rik comprise the random effects unique to the83

specific one.84

In particular, when there are no random effects, Model (1) is categorized as the computational85

framework of complex data in Wang et al. (2019a) and this reduces to the IID-based linear model86

(Wang et al., 2015), say CompLM, as87

yij =

px∑
k=1

xijkαk +

pµ∑
k=1

∫
µijkβk +

pc∑
k=1

(cijk,γk)a + εij .

Compared with CompLM, the introduction of random effects into Model (1) makes it possible to88

capture the subject-specific information of each individual on the basis of the common regression89

characteristics in the population. It also distinguishes the between- and within-subject variability of90

responses, which further improves the performance of linear regression on longitudinal complex data.91

In this study, we estimate the parameters for Model (1). To consistently represent data with92

diversified characteristics, we first transform the functions and compositions inside using related basis93
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expansions such that they are described equivalently to numeric coordinates. These processed data94

are available to conduct the LMM and obtain the intermediate result that can then be reconstructed95

to match the original diversified characteristics. Then, the necessary theoretical properties for the96

proposed longitudinal framework are developed accordingly. To further measure the variability of97

different types of variables across individuals, we adopt the point-wise variance function and total98

variance for a random function and composition, respectively. The proposed CompLMM improves the99

regression of complex data with diversified characteristics and enhances its interpretability, and may100

provide an instructive unified framework for modeling longitudinal complex data.101

The remainder of this paper is organized as follows. In Section 2, we review some fundamental102

knowledge on FDA and CDA. In Section 3, we investigate CompLMM and propose its computational103

algorithm. A series of simulation studies are then conducted to assess the performance of the proposed104

method, with the results presented in Section 4. Section 5 describes a real data study on China’s stock105

market to illustrate the effectiveness of the proposed method. Finally, some discussions and prospects106

are given in Section 6.107

2 Preliminaries108

We briefly introduce the basic ideas and mathematical techniques for FDA and CDA, including basis109

function expansion for functions and ilr transformation for compositions. These provide the theoretical110

and computational foundation for the proposed method. For simplification, we use commas and111

semicolons in the matrix expressions to indicate that the adjacent blocks in a matrix are organized by112

column and row, respectively.113

2.1 FDA114

In FDA, a series of discrete data are considered to be collected from a potential single entity (i.e., the115

function) over time. Basis function expansion is one of the most practical methods of describing the116

continuous characteristics of a function (Ramsay and Silverman, 2005). That is, a function is expressed117

as a linear combination of the given basis functions, which can be realized using ordinary least squares118

(OLS), penalized OLS, or regularized principal components (Hall and Horowitz, 2007). Without loss119

of generality, we adopt B-spline basis functions and perform the simple OLS-based expansion in this120

study.121

Specifically, given a group of basis functions {φj}∞j=1 over an interval I, any square-integrable122

function, say µ ∈ L2, can be formulated as µ =
∑

j ujφj with an infinite series of expansion coefficients123

uj . When n samples, say oi at time ti ∈ I (i = 1, 2, · · · , n), are observed from µ, they are assumed124

subject to oi = µ(ti) + εi with white noise εi. Then, the expansion of µ leads to o = Φu + ε, where125
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o = (o1, o2, · · · , on)′ and ε = (ε1, ε2, · · · , εn)′ in Rn, Φ =
(
φ(t1),φ(t2), · · · ,φ(tn)

)′ ∈ Rn×K with126

φ(ti) =
(
φ1(ti), φ2(ti), · · · , φK(ti)

)′ ∈ RK , and u = (u1, u2, · · · , uK)′ ∈ RK . In practice, the number127

of basis functions and related expansion coefficients K are limited below n because of the finite size128

of observations. Thus, the OLS estimation results in the truncated expansion coefficients of u:129

u = (Φ′Φ)−1Φ′o. (2)

The expansion coefficients greatly concentrate the features of the original function. Typically, the130

image of µ can be described explicitly in a point-wise manner as131

µ(t) =
K∑
j=1

ujφj(t) = u′φ(t) (t ∈ I), (3)

where µ is determined completely by u along with the known basis functions φ = (φ1, φ2, · · · , φK)′.132

The expectation of µ is also associated with that of u, and the variance function for µ, denoted by133

Kµ, can be formulated as134

Kµ(t) = Var
(
µ(t)

)
= φ′(t)Var(u)φ(t) (t ∈ I), (4)

where Var(·) denotes the covariance matrix of a random vector. Moreover, the integral of the product135

of two functions, say µ and β with its expansion coefficients λ, can be written as136 ∫
µ(t)β(t)dt = u′Wλ with W =

∫
φ(t)φ′(t)dt. (5)

To compute the integral in W numerically, we uniformly sample from I, say {τ1, τ2, · · · , τT } with137

T points and approximate it as W = T−1
∑T

i=1φ(τi)
′φ(τi). W can also be adopted to express the138

overall difference between two functions as139

d2L2(β, β̂) =

∫ (
β(t)− β̂(t)

)2
dt = (λ− λ̂)′W (λ− λ̂) (6)

with β̂ ∈ L2 and its expansion coefficients λ̂. These properties of basis function expansion make it140

possible to equivalently represent infinite-dimensional functions as relatively few numeric variables.141

2.2 CDA142

In CDA, the attraction of a multivariate vector is the relative magnitude, instead of the absolute one,143

among all the components inside. Working with this scale invariance property, any composition with144

D inner parts, say c, can be expressed as c = (c1, c2, · · · , cD)′ subject to ci > 0 (i = 1, 2, · · · , D) and145

c′1D = 1 with 1D constituted by 1 in RD. All such D-part compositions consist of the D-dimensional146

simplex space denoted by SD.147

To remove the constraints of compositions, Egozcue et al. (2003) proposed the ilr transformation148

via the simplicial orthonormal basis. In this study, we follow Egozcue and Pawlowsky-Glahn (2005)149
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and represent any composition as its specified coordinates. Take c, for example, ilr(c) = c∗ =150

(c∗1, c
∗
2, · · · , c∗D−1)′, where151

c∗i =
1√

(D − i+ 1)(D − i)

D−i∑
j=1

log cj −
√

D − i
D − i+ 1

log cD−i+1 (i = 1, 2, · · · , D − 1). (7)

These coordinates contain all the relative information on c; therefore, they can be used to reconstruct152

the original composition. That is, c = ilr−1(c∗) = C
(

exp (ω)
)
, where C(·) denotes the closure operation153

that scales a vector with positive components proportionally such that it conforms to the constraints154

of compositions, and exp (ω) = (expω1, expω2, · · · , expωD)′ with155

ωi =

D−i∑
j=0

c∗j√
(D − j + 1)(D − j)

−
√
i− 1

i
c∗D−i+1 (i = 1, 2, · · · , D) (8)

and c∗0 = c∗D = 0. Using the contrast matrix, denoted by Ψ ∈ R(D−1)×D, the ilr transformation and156

its inverse can be respectively expressed as ilr(c) = Ψ log (c) and ilr−1(c∗) = C
(

exp (Ψ′c∗)
)
, where157

log (c) = (log c1, log c2, · · · , log cD)′. Specifically, Ψ associated with (7) and (8) is constituted by the158

elements ψij as ψij =
√

D−i
D−i+1ρij for i = 1, 2, · · · , N and j = 1, 2, · · · , ni, where ρij = (D− i)−1 when159

j < D − i+ 1, ρij = −1 when j = D − i+ 1, and ρij = 0 otherwise.160

As an isometry between the simplex and Euclidian spaces, the ilr transformation facilitates the161

computation of the Aitchison geometry. For example, the Aitchison inner product, denoted by (·, ·)a,162

can be easily expressed as163

(c,γ)a = ilr(c)′ilr(γ) (γ ∈ SD). (9)

The related norm and distance, denoted by ‖ · ‖a and da(·, ·), then follow respectively as164

‖γ‖2a = (γ∗)′γ∗ and d2a(γ, γ̂) = (γ∗ − γ̂∗)′(γ∗ − γ̂∗)

with γ̂ ∈ SD and its ilr coordinates γ̂∗. Moreover, the total variance of c, denoted by totVar(c), can165

be decomposed as166

totVar(c) =
D−1∑
i=1

Var(c∗i ) (10)

using the ilr coordinates. Since Ψ′Ψ is identically equal to ID − 1D1′D/D, where ID denotes the167

D-dimensional unit matrix (Pawlowsky-Glahn et al., 2015), the specified ilr transformation here does168

not affect those results above. From these properties of the ilr transformation, we can substitute the169

ilr coordinates with no constraints for the compositional covariates in most statistical models.170

3 LMM for complex data171

In this section, we investigate the LMM for longitudinal complex data with diversified characteristics.172

The approach used to aggregate multiple types of complex data along with their properties and some173

issues in practice are also discussed.174
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3.1 Model175

To uniformly represent complex data with different characteristics, we apply the B-spline expansion176

and ilr transformation to Model (1). Thus, the model can be formulated using (5) and (9) as177

yij = x′ijα+ z′ijai +

pµ∑
k=1

u′ijkWλk +

qν∑
k=1

v′ijkWθik +

pc∑
k=1

(c∗ijk)
′γ∗k +

qw∑
k=1

(w∗ijk)
′r∗ik + εij ,

where xij = (xij1, xij2, · · · , xij,px)′ ∈ Rpx with α = (α1, α2, · · · , αpx)′ and zij = (zij1, zij2, · · · , zij,qz)′ ∈178

Rqz with ai = (ai1, ai2, · · · , ai,qz)′; uijk, vijk, λk and θik denote the expansion coefficients of µijk, νijk,179

βk and bik, respectively, with a common dimension K; and c∗ijk, γ
∗
k , w∗ijk and r∗ik denote the ilr180

coordinates of the related compositions. To simplify, we further reformulate it as181

yij = x′ijα+ z′ijai + u′ijWpµλ+ v′ijWqνθi + (c∗ij)
′γ∗ + (w∗ij)

′r∗i + εij , (11)

where uij = (uij1;uij2; · · · ;uij,pµ) ∈ RKpµ and vij = (vij1;vij2; · · · ;vij,qν ) ∈ RKqν , along with λ =182

(λ1;λ2; · · · ;λpµ) and θi = (θi1;θi2; · · · ;θi,qµ), respectively; Wpµ (Wqν ) denotes the blocked diagonal183

matrix consisting of pµ (qν) matrices W ; and c∗ij = (c∗ij1; c
∗
ij2; · · · ; c∗ij,pc) ∈ R(D−1)pc and w∗ij =184

(w∗ij1;w
∗
ij2; · · · ;w∗ij,qw) ∈ R(D−1)qw , along with γ∗ = (γ∗1 ;γ∗2 ; · · · ;γ∗pc) and r∗i = (r∗i1; r

∗
i2; · · · ; r∗i,qw),185

respectively.186

Jointly considering all the samples from the same individual, say the i-th one, we pile up ni samples187

from it by row. Finally, Model (11) can be rewritten as188

yi = xiα+ uiWpµλ+ c∗iγ
∗ + ziai + viWqνθi +w∗i r

∗
i + εi (i = 1, 2, · · · , N), (12)

where yi = (yi1, yi2, · · · , yi,ni)′ and εi = (εi1, εi2, · · · , εi,ni)′ in Rni ; specifically, the fixed effects involve189

xi = (xi1,xi2, · · · ,xi,ni)′ ∈ Rni×px , ui = (ui1,ui2, · · · ,ui,ni)′ ∈ Rni×pν and c∗i = (c∗i1, c
∗
i2, · · · , c∗i,ni)

′ ∈190

Rni×pc , and the random effects involve zi = (zi1, zi2, · · · , zi,ni)′ ∈ Rni×qz , vi = (vi1,vi2, · · · ,vi,ni)′ ∈191

Rni×qν and w∗i = (w∗i1,w
∗
i2, · · · ,w∗i,ni)

′ ∈ Rni×qw . To coincide with the paradigm of the LMM for192

the scalar variables in Model (12), the total coefficients for the fixed and random effects refer to193

$ = (α;λ;γ∗) and πi = (ai;θi; r
∗
i ), with the dimensions of p = px + Kpµ + (D − 1)pc and q =194

qz +Kqν + (D− 1)qw, respectively. Here, $ contains the common characteristics shared by the entire195

population and πi shows the specific ones of the i-th individual. Moreover, εi is assumed to obey the196

normal distribution in Rni , namely εi ∼ N (0ni , σ
2Ini), where 0ni is constituted by 0 in Rni , and πi197

is assumed to be independent of εi and normally distributed in Rq, namely πi ∼ N (0q,G), where198

G is positively defined and constant for all the individuals. Thus, the parameters to be estimated in199

Model (12) include Θ = {$,G, σ2}.200

Under these aforementioned assumptions, the estimate of Θ, denoted by Θ̂ = {$̂, Ĝ, σ̂2}, can be201

derived using the expectation maximum (EM) algorithm. Then, the fitted response, for example, ŷij202
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in Model (11), can be expressed as203

ŷij = x′ijα̂+ z′ijâi + u′ijWpµλ̂+ v′ijWqν θ̂i + (c∗ij)
′γ̂∗ + (w∗ij)

′r̂∗i ,

or ŷij = x′ijα̂+ u′ijWpµλ̂+ (c∗ij)
′γ̂∗ for the reduced CompLM, where $̂ consists of α̂, λ̂ and γ̂∗, and204

âi, θ̂i and r̂∗i can be obtained from Θ̂. Before we develop the estimation procedure, we discuss the205

relationship between the original and reconstructed models (i.e., Models (1) and (12)) in the following206

remarks.207

Remark 1. The assumption of the independence of the random effects coefficients and errors is208

important for the theory of the LMM. We put this assumption on the reconstructed unified numeric209

variables, namely θi and r∗i , in Model (12), which implies the independence of the original coefficients210

with diversified characteristics (e.g., bik and rik) and the scalar errors in Model (1). The covariance211

between bik with functional characteristics and εij is defined as point-wise (Ramsay and Silverman,212

2005), namely Cov(bik(t), εij) for any t ∈ I. Under the given basis functions φ, the expectations of213

the related expansion coefficients are equal to zero; then, we have214

Cov(bik(t), εij) = θ′ikE[φ(t)εij ] = φ′(t)Cov(θik, εij). (13)

From (13), the independence assumption on the expansion coefficients, namely Cov(θik, εij) = 0K , is215

sufficient to that on the original overall function. On the contrary, the covariance between rik with the216

compositional characteristics and εij is directly defined using the ilr coordinates, namely Cov(r∗ik, εij),217

and the independence assumption holds for any specified ilr transformation (Wang et al., 2019b).218

Remark 2. Another issue for the theory of the LMM follows the covariance matrix of the random219

effects coefficients. For functional variables, this refers to the covariance function, say Kbik,bik′ (s, t) for220

bik and bik′ with the expansion coefficients θik′ at times s and t. Similar to (4), it can be formulated221

as222

Kbik,bik′ (s, t) = Cov
(
bik(s), bik′(t)

)
= φ′(s)Cov(θik,θik′)φ(t).

Specifically, it reduces to Kbik(s, t) = φ′(s)Var(θik)φ(t) when k′ = k. For compositional variables,223

say rik and rik′ with the ilr coordinates r∗ik′ , the covariance matrix, as Mateu-Figueras et al. (2013)224

suggested, can be naturally defined as Cov(rik, rik′) = Cov(r∗ik, r
∗
ik′). Then, the covariance matrix for225

the two types of variables can be defined consistently. For example, we express the covariance function226

for bik and rik at time t, denoted by Kbik,rik(t), as227

Kbik,rik(t) = Cov
(
bik(t), r

∗
ik

)
= φ′(t)Cov(θik, r

∗
ik).

In those cases, the different patterns inside the covariance matrix for the original model are described228

by the elements of G, including Cov(θik,θik′), Var(θik), Cov(r∗ik, r
∗
ik′), and Cov(θik, r

∗
ik). Thus, G in229

the reconstructed model concentrates the covariance structure of multiple types of complex data.230
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3.2 Parameter estimation231

When there are no random effects in Model (12), as considered in CompLM (Wang et al., 2015), the232

OLS-based estimates of $ and σ2, denoted by $̂ols and σ̂2ols, have explicit solutions, that is,233

$̂ols = (

N∑
i=1

X′iXi)−1(
N∑
i=1

X′iyi), (14)

σ̂2ols = M−1
N∑
i=1

(yi − Xi$̂ols)
′(yi − Xi$̂ols), (15)

where Xi = (xi,uiWµ, c
∗
i ) ∈ Rni×p for i = 1, 2, · · · , N and M =

∑N
i=1 ni. Here, $̂ols and σ̂2ols also234

indicate the consistent estimates within the computational framework of Wang et al. (2019a) for linear235

regression since both studies imply the same model expression as CompLM.236

In general, the estimation procedure for Model (12) can be implemented using the EM algorithm237

(Laird et al., 1987). Specifically, given a pair of estimates Ĝ(ω) and (σ̂(ω))2, where the superscript ω238

indicates the iteration and ω = 0 denotes the initial values, $̂(ω) is formulated as239

$̂(ω) =
( N∑
i=1

X′i(Σ̂
(ω)
yi )−1Xi

)−1( N∑
i=1

X′i(Σ̂
(ω)
yi )−1yi

)
(16)

with240

Σ̂
(ω)
yi = ZiĜ(ω)Z′i + (σ̂(ω))2Ini (17)

and Zi = (zi,viWqν ,w
∗
i ) ∈ Rni×q for i = 1, 2, · · · , N . On the contrary, when $̂(ω) is available, Ĝ(ω)

241

and the others can be updated from (σ̂(ω))2, that is,242

Ĝ(ω+1) = N−1
N∑
i=1

(
π̂
(ω)
i (π̂

(ω)
i )′ + Ĝ(ω) − Ĝ(ω)Z′i(Σ̂

(ω)
yi )−1ZiĜ(ω)

)
, (18)

(σ̂(ω+1))2 = M−1
N∑
i=1

(
(ê

(ω)
i )′ê

(ω)
i + (σ̂(ω))2tr(Ini − (σ̂(ω))2(Σ̂

(ω)
yi )−1)

)
, (19)

where243

π̂
(ω)
i = Ĝ(ω)Z′i(Σ̂

(ω)
yi )−1(yi − Xi$̂(ω)), (20)

ê
(ω)
i = yi − Xi$̂(ω) − Ziπ̂

(ω)
i (21)

and tr(·) denotes the trace of a matrix. Such Ĝ(ω+1) and (σ̂(ω+1))2 result in the update $̂(ω+1) from244

(16), which finishes an iteration.245

Under the framework of the EM algorithm, the proposed procedure is always convergent since the246

quadratic convex optimization is involved. The convergence criterion is that the maximum difference247

between the present estimated parameters, say $̂(ω) and (σ̂(ω))2, and the previous ones, say $̂(ω−1)
248

and (σ̂(ω−1))2, falls into a given threshold, say δ = 0.01, that is,249

max
{∥∥$̂(ω) − $̂(ω−1)∥∥

∞,
∣∣(σ̂(ω))2 − (σ̂(ω−1))2

∣∣} < δ, (22)
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where ‖ ·‖∞ denotes the maximum norm of a vector. Meanwhile, the algorithm also stops if it exceeds250

the iteration limit, say l = 100. As suggested by Laird et al. (1987), the initial value of $̂, denoted251

by $̂(0), is set to be $̂ols, and those of the other parameters can then be computed from $̂(0) as252

Ĝ(0) = N−1
N∑
i=1

(
π̂
(0)
i (π̂

(0)
i )′ − (σ̂(0))2(Z′iZi)−1

)
, (23)

(σ̂(0))2 = L−1
N∑
i=1

(yi − Ziπ̂
(0)
i )′(yi − Xi$̂(0)), (24)

where L = M − (N − 1)q − p and π̂(0) = (Z′iZi)−1Z′i(yi − Xi$̂(0)). The aforementioned initialization253

for the estimation procedure begins with the reduced OLS-based linear regression (i.e., CompLM) and254

further abstracts the subject-specific information from the covariance structure of errors. Again, it255

verifies that the proposed CompLMM improves the performance of the final regression for longitudinal256

complex data compared with CompLM.257

Remark 3. The proposed parameter estimation for CompLMM using the EM algorithm is consistent258

with the existing solutions for CompLM in (14) and (15) proposed by Wang et al. (2015, 2019a).259

Actually, when there are no random effects, namely no zijk, νijk, and wijk in Model (1), Σ̂
(ω)
yi reduces260

to become proportional to Ini with no Zi involved in (17), implying that $̂(ω) in (16) equals $̂ols261

in (14) for any ω. A similar conclusion on (19) can also be drawn, namely that (σ̂(ω+1))2 ≡ σ̂2ols since262

ê
(ω)
i = yi − Xi$̂(ω) and (σ̂(ω))2(Σ̂

(ω)
yi )−1 = Ini

here. We conclude from these results that CompLM works exactly as the pooled method for longitu-263

dinal complex data.264

In summary, Algorithm 1 presents the computational procedure of the proposed method for lon-265

gitudinal complex data.266
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Algorithm 1 Computational procedure for CompLMM

Input: The data set
{

(yij , xijk, zijk, o
m
µijk

, omνijk , cijk,wijk; t
m
µijk

, tmνijk)
}N,ni,p∗,n
i,j,k,m=1

, with p∗ corresponding

to the related dimension, including the responses {yij}N,nii,j=1, scalar covariates
{

(xijk, zijk)
}N,ni,px/qz
i,j,k=1

,

observations from functional covariates {(omµijk , o
m
νijk

)}N,ni,pµ/pν ,ni,j,k,m=1 at times {(tmµijk , t
m
νijk

)}N,ni,pµ/qν ,ni,j,k,m=1 , and

compositional covariates {(cijk,wijk)}
N,ni,pc/qw
i,j,k=1 ; the given K basis functions {φi}Ki=1; the initial value

of the parameter $̂(0), associated with the intermediate Σ̂
(0)
yi ; the convergence threshold δ; and the

iteration limit l.

Output: Θ̂ = {$̂, Ĝ, σ̂2} and π̂i for i = 1, 2, · · · , N .

1: Compute the expansion coefficients uijk and vijk (i = 1, 2, · · · , N ; j = 1, 2, · · · , ni):

uijk = (Φ′µijkΦµijk)−1Φ′µijkoµijk (k = 1, 2, · · · , pµ),

vijk = (Φ′νijkΦνijk)−1Φ′νijkoνijk (k = 1, 2, · · · , pν),

where the notations coincide with (2) and the subscript indicates the functional covariate;

2: Compute the ilr coordinates c∗ijk and w∗ijk from (7);

3: Construct the data matrices Xi and Zi (i = 1, 2, · · · , N); set ω = 0;

4: repeat

5: Compute the intermediates π̂
(ω+1)
i and ê

(ω+1)
i (i = 1, 2, · · · , N) from (20) and (21), respec-

tively;

6: Update Ĝ(ω+1) and (σ̂(ω+1))2 from (18) and (19), respectively;

7: Update the intermediate Σ̂
(ω+1)
yi (i = 1, 2, · · · , N) from (17);

8: Update $̂(ω+1) from (16);

9: Let ω := ω + 1;

10: until (22) holds or ω > l;

11: return

Θ̂ := {$̂(t), Ĝ(t), (σ̂(t))2} and π̂i := π̂
(t)
i (i = 1, 2, · · · , N).

3.3 Some issues267

In this study, we exemplify the proposed framework for longitudinal complex data using three types268

of covariates: scalar, function, and composition. This framework is actually available for more types269

of variables with diversified characteristics. For example, introducing dummy variables is common270

for processing categorical, nominal, and ordinal variables in longitudinal analysis (Hsiao, 2014). We271

can represent these as groups of dummy variables and conduct CompLMM for these multiple scalar272

covariates, where the order relation is ignored because of the continuous response. For unstructured273
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text data, we can summarize these into a series of compositions associated with the frequencies of274

topics or positions, similar to the measurement of investors’ emotions by Zhou et al. (2017), and275

therefore analyze text data under the proposed framework.276

The key technique for formulating CompLMM is to find a suitable representation of a specific type277

of complex data and related consistent algebraic system, such as the dummy variable expression for278

categorical, nominal, and ordinal covariates, basis function expansion with the l2 norm for the Hilbert279

function space in FDA, and ilr transformation with the Aitchison inner product for the simplex in280

CDA. Following this idea, more diversified types of variables could be combined into the proposed281

framework.282

For example, in symbolic data analysis, an interval-valued variable has special binary representa-283

tions such as “Lower-Upper” and “Center-Radius” (Billard and Diday, 2003; Sun et al., 2018). Linear284

regression can then be conducted on these binary numeric variables (Wei et al., 2017), with the random285

effects incorporated analogously. Similarly, we can also formulate the regressions on other symbolic286

variables in symbolic data analysis, histograms, and distribution functions, with more complicated287

characteristics based on the Wasserstein distance (Irpino and Verde, 2015), and consider the related288

random effects to extend them to the proposed framework. Finally, some theoretical properties for289

the random effects associated with diversified variables, such as Remarks 1–3, remain to be checked,290

which need further research in the future.291

Next, the introduction of random effects promotes the performance of linear regression for longi-292

tudinal complex data, while the complexity of random effects leads to an extra cost of computation293

and a loss of degrees of freedom. Thus, the trade-off between the improvement in fitting accuracy294

and complexity of random effects is worthy of consideration, which falls into the suitable selection of295

random effects. As an important issue for the LMM, many statistical solutions for traditional scalar296

covariates have been proposed, such as the Bayesian information criteria selector (Fitzmaurice et al.,297

2011) and joint selection (Bondell et al., 2010). Furthermore, we can determine the constitution of298

the random effects from the practical and empirical perspectives (e.g., some financial knowledge in299

the real data study). We can also conduct a series of alternative CompLMM associated with all the300

possible constitutions of the random effects, including CompLM, and select the balanced one that301

approximates the best improvement with relatively few random effects.302

4 Numerical experiment303

In this section, we report the simulation results to evaluate the performance of the proposed param-304

eter estimation for CompLMM. Three measures are introduced: the squared ratio error (SRE) for305

scalar responses, integral squared error (ISE) for functions, and absolute percentage error (APE) for306
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compositions. These are respectively defined in Model (1) as307

SRE =
N∑
i=1

ni∑
j=1

(yij − ŷij)2/
N∑
i=1

ni∑
j=1

y2ij ,

ISE(β̂k) = d2L2(βk, β̂k) (k = 1, 2, · · · , pµ),

APE(γ̂k) = da(γk, γ̂k)/‖γk‖a × 100% (k = 1, 2, · · · , pc),

where ŷij , µ̂ijk, and ĉijk denote the related fitted values. Specifically, a lower SRE, ISE, or APE value308

indicates a more accurate fitting for the specific response, function, or composition, respectively.309

We generate the data from Model (1) as310

yij = 2 +α1xij1 +

∫ 1

0
β1µij1 +

∫ 1

0
β2µij2 + (γ1, cij1)a + (γ2, cij2)a +ai0 +

∫ 1

0
bi1νij1 + (ri1,wij1)a + εij ,

where seven three-order B-spline basis functions defined by four equally spaced interior knots over311

[0, 1], say φ = {φ1, φ2, · · · , φ7}, and the ilr coordinates from (7) and (8) are adopted. The detailed312

parameter settings are introduced as follows.313

a) In the fixed effects, xij1 is independently generated from the standard normal distribution, with314

α1 = 5; β1 and β2 are linearly combined by φ, with the symmetric combination coefficients.315

That is, for any t ∈ [0, 1],316

β1(t) =

7∑
j=1

(4− j)φj(t) and β2(t) =

7∑
j=1

(j − 4)φj(t);

respectively; µij1 and µij2 are described as n = 200 samples observed at times {t1, t2, · · · , tn}317

from the linear combinations of φ with measurement errors, that is,318

µijk(tl) = u′ijkφ(tl) + εijkl (k = 1, 2; l = 1, 2, · · · , n),

where the expansion coefficients of both functions are sampled from N (07, I7), and the errors319

are generated from N (0, 0.12); cij1 and cij2 are separately generated from the simplicial normal320

distribution NS(02, I2) (Mateu-Figueras et al., 2013), with the compositional coefficients γ1 =321

(0.8, 0.1, 0.1)′ and γ2 = (0.2, 0.2, 0.6)′ in S3, respectively.322

b) In the random effects, the covariates are constituted by the intercept ai0 and the first function323

and composition, namely νij1 = µij1 and wij1 = cij1; bi1 and ri1 are represented by the ex-324

pansion coefficients under φ and ilr coordinates, say θi1 and r∗i1, respectively. The parameters325

involved, namely πi = (ai0;θi1; r
∗
i1), are then jointly generated from N (010,G), where G is326

blocked diagonal, namely G = diag(9,Gθ∗ , 0.5I4,Gr) with327

Gθ∗ =


9 4.8 0.6

4.8 4 1

0.6 1 1

 and Gr =

 9 4.8

4.8 4

 .
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c) εij is independently generated from N (0, σ2), where σ takes a value of 0.5, 1, 1.5, or 3 to reflect328

the signal-to-noise ratio (SNR) from strong to weak.329

Three combinations of the number of individuals N and sample size for each individual ni are con-330

sidered: (N,ni) = (100, 60), (300, 60), and (300, 90). For each case, we independently replicate the331

simulation 500 times and conduct the proposed CompLMM as well as the baseline CompLM to pro-332

vide a comparison. Table 1 summarizes the general performances of the two models for the SNRs333

across the sample sizes. Table 2 reports the estimated results for the functional and compositional334

coefficients of the two models with (N,ni) = (100, 60), and those with the other settings of (N,ni) are335

reported in the Appendix. Moreover, Fig. 1 visualizes the specific curves of the estimated functional336

coefficients in randomly selected replications.337

As shown in Table 1, the estimated coefficients for the scalar covariates (including the inter-338

cept) obtained from both CompLMM and CompLM on average approximate the related ideal values,339

while those from CompLMM are more stable with lower standard deviations than the baseline: 0.013340

(CompLMM) vs. 0.105 (CompLM) for α̂1 with (N,ni) = (100, 60) and σ = 0.5. For the functions,341

CompLMM sharply improves the estimation efficiency of the function-type coefficients, for which both342

the means and the standard deviations of the ISE are multiple times lower than those from CompLM:343

0.03 and 0.021 (CompLMM) vs. 1.165 and 0.953 (CompLM). Moreover, the two methods perform the344

same for the compositions, where the ISE values for CompLMM are slightly more stable than those345

for CompLM. Finally, CompLMM estimates σ well for the SNRs, whereas the estimates of CompLM346

far exceed the corresponding true values. When noise is extremely large (i.e., σ = 3), the related347

estimate may be biased in a poor sample (e.g., (N,ni) = (100, 60)), whereas such bias is mitigated if348

the sample is sufficiently large. Moreover, CompLM almost fails to fit the responses, since the values349

of the SRE are on average above 0.4 when σ ≤ 1.5; by contrast, for CompLMM, the average values of350

the SRE are significantly low and close to 0.351

The aforementioned conclusions on the estimated parameters for the functional and compositional352

covariates are confirmed by the expansion coefficients for the functions and detailed estimates for the353

compositions, as shown in Table 2. Specifically, the average estimates of the functions and compositions354

using both CompLMM and CompLM approach the related ideal values for the SNRs. However, the355

relatively high standard deviations for the expansion coefficients from CompLM lead to nonsignificant356

regression results. For example, the test statistic for λ̂11 with σ = 0.5, simply measured by 2.946/3.154,357

is less than the threshold value at the significance level of 0.05 (or even larger), which implies that we358

cannot reject the null hypothesis H0 : λ11 = 0. By contrast, the same test statistic from CompLMM,359

similarly measured by 2.962/0.485, is more than the threshold value at the 0.05 level (or even smaller).360

For the compositions, owing to the limited magnitude of the proportions inside, the two methods show361
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Table 1: Means and standard derivations (in brackets) of the three measures and estimated pa-

rameters for the scalar covariates and errors. The ideal values of the intercept and α̂1 are 2 and 5,

respectively and those of σ̂2 coincide with the true setting of σ.

(N,ni) Model
Scalar Functional Compositional

σ̂2 SRE
Intercept α̂1 ISE(β̂1) ISE(β̂2) APE(γ̂1) APE(γ̂2)

σ = 0.5

(100, 60) CompLMM 1.97
(0.292)

5
(0.013)

0.03
(0.021)

0.016
(0.012)

6.185
(0.269)

0.448
(0.026)

0.263
(0.02)

0.016
(0.011)

CompLM 1.971
(0.297)

4.996
(0.105)

1.165
(0.953)

1.194
(0.819)

6.177
(0.287)

0.447
(0.032)

22.314
(2.176)

0.425
(0.032)

(300, 60) CompLMM 2.021
(0.176)

5
(0.007)

0.009
(0.007)

0.005
(0.004)

6.227
(0.164)

0.452
(0.016)

0.25
(0.003)

0.009
(0.003)

CompLM 2.02
(0.177)

4.994
(0.06)

0.416
(0.299)

0.352
(0.244)

6.23
(0.168)

0.454
(0.018)

22.284
(1.178)

0.427
(0.019)

(300, 90) CompLMM 2.007
(0.168)

5
(0.005)

0.007
(0.006)

0.003
(0.002)

6.238
(0.172)

0.453
(0.017)

0.25
(0.002)

0.01
(0.004)

CompLM 2.005
(0.17)

5.002
(0.054)

0.275
(0.217)

0.243
(0.177)

6.24
(0.176)

0.454
(0.019)

22.288
(1.332)

0.427
(0.021)

σ = 1

(100, 60) CompLMM 1.97
(0.293)

4.999
(0.024)

0.078
(0.054)

0.065
(0.049)

6.184
(0.027)

0.448
(0.026)

1.067
(0.08)

0.035
(0.011)

CompLM 1.972
(0.298)

4.996
(0.107)

1.204
(0.977)

1.234
(0.855)

6.177
(0.287)

0.447
(0.032)

23.062
(2.179)

0.417
(0.032)

(300, 60) CompLMM 2.021
(0.176)

5
(0.013)

0.023
(0.016)

0.02
(0.014)

6.227
(0.164)

0.452
(0.016)

0.998
(0.012)

0.027
(0.003)

CompLM 2.02
(0.177)

4.994
(0.061)

0.433
(0.313)

0.364
(0.249)

6.23
(0.168)

0.454
(0.018)

23.033
(1.179)

0.419
(0.018)

(300, 90) CompLMM 2.007
(0.168)

5
(0.011)

0.016
(0.011)

0.013
(0.01)

6.238
(0.172)

0.453
(0.017)

0.999
(0.009)

0.028
(0.004)

CompLM 2.005
(0.17)

5.002
(0.055)

0.281
(0.22)

0.252
(0.183)

6.239
(0.176)

0.454
(0.019)

23.038
(1.332)

0.419
(0.02)

σ = 1.5

(100, 60) CompLMM 1.971
(0.294)

4.998
(0.038)

0.162
(0.112)

0.147
(0.109)

6.183
(0.27)

0.448
(0.027)

2.436
(0.197)

0.066
(0.012)

CompLM 1.972
(0.298)

4.995
(0.11)

1.27
(1.018)

1.3
(0.912)

6.176
(0.287)

0.447
(0.032)

24.309
(2.183)

0.404
(0.031)

(300, 60) CompLMM 2.021
(0.176)

5
(0.02)

0.046
(0.033)

0.044
(0.032)

6.227
(0.164)

0.452
(0.016)

2.251
(0.032)

0.055
(0.003)

CompLM 2.02
(0.177)

4.994
(0.063)

0.459
(0.333)

0.385
(0.261)

6.23
(0.168)

0.454
(0.018)

24.281
(1.18)

0.406
(0.018)

(300, 90) CompLMM 2.007
(0.168)

5.001
(0.016)

0.031
(0.022)

0.029
(0.022)

6.238
(0.172)

0.453
(0.017)

2.249
(0.02)

0.056
(0.004)

CompLM 2.005
(0.17)

5.002
(0.056)

0.292
(0.227)

0.268
(0.194)

6.239
(0.176)

0.454
(0.019)

24.288
(1.333)

0.406
(0.02)

σ = 3

(100, 60) CompLMM 1.973
(0.297)

4.995
(0.076)

0.605
(0.416)

0.579
(0.414)

6.181
(0.273)

0.448
(0.028)

9.882
(0.826)

0.206
(0.022)

CompLM 1.973
(0.302)

4.994
(0.125)

1.629
(1.26)

1.661
(1.195)

6.174
(0.289)

0.447
(0.033)

31.039
(2.212)

0.347
(0.027)

(300, 60) CompLMM 2.021
(0.177)

5
(0.04)

0.169
(0.128)

0.174
(0.126)

6.227
(0.165)

0.452
(0.017)

9.052
(0.159)

0.183
(0.007)

CompLM 2.02
(0.178)

4.994
(0.071)

0.59
(0.427)

0.504
(0.341)

6.23
(0.169)

0.454
(0.019)

31.022
(1.193)

0.348
(0.016)

(300, 90) CompLMM 2.008
(0.169)

5.001
(0.031)

0.111
(0.084)

0.114
(0.087)

6.237
(0.173)

0.453
(0.018)

9.014
(0.097)

0.186
(0.007)

CompLM 2.006
(0.171)

5.002
(0.061)

0.359
(0.271)

0.351
(0.246)

6.238
(0.177)

0.454
(0.019)

31.036
(1.34)

0.349
(0.017)
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Table 2: Means and standard derivations (in brackets) of the estimated expansion coefficients for the

functions and re-transformed coefficients for compositions with (N,ni) = (100, 60). The ideal values

of λ̂k = (λ̂k1, λ̂k2, · · · , λ̂k7)′ (k = 1, 2) are λ̂1 = (3, 2, · · · ,−3)′ and λ̂2 = (−3,−2, · · · , 3)′, and those

of γ̂k are γk (k = 1, 2).

Model
Coefficients Functional Compositional

λk / γk λ̂k1 λ̂k2 λ̂k3 λ̂k4 λ̂k5 λ̂k6 λ̂k7 γ̂k1 γ̂k2 γ̂k3

σ = 0.5

CompLMM k = 1 2.962
(0.485)

1.996
(0.509)

1.003
(0.401)

0.008
(0.419)

−1.026
(0.564)

−1.989
(0.599)

−3.004
(0.472)

0.786
(0.055)

0.101
(0.018)

0.112
(0.041)

k = 2 −2.947
(0.377)

−2.047
(0.468)

−0.966
(0.4)

−0.031
(0.415)

1.05
(0.553)

1.936
(0.581)

3.039
(0.459)

0.2
(0.001)

0.2
(0.001)

0.6
(0.002)

CompLM k = 1 2.946
(3.154)

2.063
(3.848)

0.991
(3.239)

−0.059
(3.412)

−0.841
(4.609)

−2.246
(5.008)

−2.719
(4.059)

0.785
(0.059)

0.103
(0.021)

0.113
(0.043)

k = 2 −2.755
(3.141)

−2.297
(3.892)

−0.806
(3.312)

−0.181
(3.593)

1.272
(4.908)

1.964
(5.147)

2.78
(4.095)

0.2
(0.013)

0.199
(0.012)

0.6
(0.017)

σ = 1

CompLMM k = 1 2.969
(0.804)

1.981
(0.931)

1.011
(0.753)

0.01
(0.806)

−1.029
(1.102)

−2.008
(1.19)

−2.987
(0.934)

0.786
(0.055)

0.102
(0.018)

0.112
(0.041)

k = 2 −2.911
(0.767)

−2.072
(0.961)

−0.953
(0.816)

−0.044
(0.835)

1.09
(1.098)

1.868
(0.159)

3.086
(0.924)

0.2
(0.003)

0.2
(0.003)

0.6
(0.004)

CompLM k = 1 2.927
(3.204)

2.078
(3.926)

0.981
(3.306)

−0.044
(3.473)

−0.864
(4.683)

−2.233
(5.087)

−2.725
(4.146)

0.785
(0.059)

0.103
(0.021)

0.113
(0.043)

k = 2 −2.716
(3.17)

−2.339
(3.938)

−0.775
(3.371)

−0.206
(3.654)

1.306
(4.994)

1.92
(5.249)

2.812
(4.178)

0.2
(0.013)

0.199
(0.012)

0.6
(0.018)

σ = 1.5

CompLMM k = 1 2.988
(1.161)

1.962
(1.379)

1.032
(1.129)

−0.004
(1.216)

−1
(1.673)

−2.058
(1.808)

−2.956
(1.411)

0.786
(0.055)

0.102
(0.018)

0.112
(0.041)

k = 2 −2.889
(1.167)

−2.089
(1.456)

−0.951
(1.233)

−0.049
(1.255)

1.118
(1.644)

1.81
(1.725)

3.128
(1.386)

0.2
(0.005)

0.2
(0.004)

0.6
(0.006)

CompLM k = 1 2.909
(3.288)

2.094
(4.043)

0.97
(3.406)

−0.03
(3.57)

−0.888
(4.807)

−2.22
(5.221)

−2.731
(4.275)

0.784
(0.059)

1.03
(0.021)

0.113
(0.043)

k = 2 −2.676
(3.236)

−2.381
(4.03)

−0.745
(3.466)

−0.231
(3.749)

1.34
(5.126)

1.876
(5.399)

2.845
(4.299)

0.2
(0.013)

0.199
(0.013)

0.6
(0.018)

σ = 3

CompLMM k = 1 3.022
(2.274)

1.952
(2.726)

1.04
(2.252)

0.009
(2.405)

−1.025
(3.346)

−2.076
(3.618)

−2.937
(2.796)

0.785
(0.056)

0.102
(0.019)

0.112
(0.041)

k = 2 −2.803
(2.277)

−2.167
(2.842)

−0.933
(2.411)

−0.031
(2.466)

1.123
(3.25)

1.733
(3.412)

3.197
(2.774)

0.2
(0.009)

0.2
(0.008)

0.6
(0.012)

CompLM k = 1 2.853
(3.716)

2.139
(4.6)

0.937
(3.873)

0.014
(4.053)

−0.96
(5.444)

−2.181
(5.907)

−2.748
(4.867)

0.784
(0.06)

0.103
(0.021)

0.113
(0.043)

k = 2 −2.559
(3.637)

−2.507
(4.544)

−0.653
(3.943)

−0.306
(4.221)

1.443
(5.762)

1.743
(6.103)

2.944
(4.861)

0.2
(0.015)

0.2
(0.014)

0.6
(0.021)

no remarkable difference.362

As exemplified in Fig. 1, the curves (in red) of the estimated functional coefficients from CompLMM363

move closer to the true settings (in gray) than those (in cyan) from CompLM. For both the increasing364

and the decreasing cases, CompLMM fits the functions well across the interval, whereas CompLM,365

despite capturing the general trends of the functions, creates relatively large periodic perturbations.366

Moreover, the biases between the true and fitted curves from the two models are eliminated gradually367

as the sample size increases (e.g., (N,ni) = (300, 90)).368
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(a) (N,ni) = (100, 60).

(b) (N,ni) = (300, 60).

(c) (N,ni) = (300, 90).

Fig. 1: Curves of the estimated functional coefficients. The columns from left to right denote the four

levels of the SNRs from σ = 0.5 to σ = 3. The upper and lower sub-rows indicate the two functional

covariates.

In summary, the proposed CompLMM succeeds in addressing the longitudinal features within369

complex data with diversified characteristics, especially those with functional characteristics.370

5 Application371

In this section, we adopt the proposed CompLMM in a real data study to demonstrate its usefulness.372

The existing approach to complex data modeling, namely CompLM (Wang et al., 2015, 2019a), is also373

used for comparison purposes.374
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Using the case of China’s stock market, we aim to measure the influence of indirect information on375

stock prices as well as the historical price trend. As exemplified by numerous studies, macroeconomic376

indicators (Chen et al., 1986), public online emotion (Ruan et al., 2018; Zhou et al., 2017), and377

analysts’ recommendations (Duan et al., 2013) may improve the interpretability and accuracy of378

models for this problem. In this case, we regress the daily closing price (DCP) of stocks against the379

related daily volume (DV), intraday percentage return (IPR), and online investors’ emotions (OIE)380

in the former session. Data on the constituent stocks in CSI300 from January 8 to April 29, 2016381

(75 trading days) are collected from the Wind service. Stocks that have fewer than 40 active trading382

days are omitted, and finally 271 stocks are left. Specifically, both the DCP and the DV are scalar,383

and the IPR recorded every five minutes is described as a smoothing curve from opening to closing.384

Moreover, the data on the OIE are measured by Zhou et al. (2017), where observations are naturally385

of a compositional structure associated with five types of emotions labeled “Anger,” “Disgust,” “Joy,”386

“Sadness,” and “Fear.” Thus, the regression contains two scalar covariates (including the intercept),387

one functional covariate, and one compositional covariate.388

Then, we conduct CompLMM with all four covariates in the random effects as well as CompLM.389

Specifically, the IPR on each trading day is separately represented by seven expansion coefficients390

under the B-spline basis functions φ described in Section 4 over [0, 1], where 0 and 1 indicate the391

opening (9:30 a.m.) and closing (15:00 p.m.) times, respectively. CompLM shows a poor result in392

this regression, as the variance of the residuals from it reaches an unacceptable level (460.43). By393

contrast, the introduction of the random effects in CompLMM reduces that variance to only 4.02,394

which makes for a reliable interpretation. Table 3 reports the estimated results for the fixed effects395

from the two models and Fig. 2 presents the related curves and pie charts of the estimated functional396

and compositional coefficients, respectively.397

As shown in Table 3, the contribution of the DV to the stock price is contrasting in the two398

models: positive (0.09) in CompLMM and negative (-0.13) in CompLM. However, the absolute values399

of both coefficients are low, implying that the DV may not have a significant influence on the stock400

price. For the IPR, the directions of the estimated expansion coefficients from the two models are401

close in general,with six of the seven components having a consistent sign. As displayed in the left402

column of Fig. 2, the two images of the functional coefficients share a similar shape and the returns403

near 10:30 a.m., 14:00 p.m., and the closing time show relatively high marginal effects on the stock404

price. The difference between the two curves is that the range of values in CompLM is around 10 times405

larger than that in CompLMM, which accounts for the bad performance of CompLM to a great extent.406

Finally, as presented in the right column of Fig. 2, the two models differ in the estimated compositional407

coefficient for the OIE, although they both consider “Joy” and “Fear” to be two important emotions408
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for explaining the DCP. In CompLMM, “Joy” has the largest influence on the stock price (proportion409

of 0.66), with “Fear” second (0.21); however, these two emotions change places in CompLM: 0.21 for410

“Joy” vs. 0.57 for “Fear”. Since the increase in the inner part of a composition implies a general411

decrease in the others, it is hard to measure the influence of a specific part separately (Pawlowsky-412

Glahn et al., 2015). Hence, we only briefly discuss the marginal contribution of each type of emotion413

in the regression.414

Table 3: Estimated coefficients for the fixed effects in the real data study. The estimated functional

coefficient for the IPR is reported by its expansion coefficients, as indicated by the sub-columns φj

(j = 1, 2, · · · , 7).

Model Intercept DV
IPR

Anger Disgust Joy Sadness Fear
φ1 φ2 φ3 φ4 φ5 φ6 φ7

CompLMM 15.81 0.09 -5.58 10.24 -7 1.13 11.11 -15.49 9.58 0.03 0.06 0.66 0.04 0.21

CompLM 21.29 -0.13 -84.56 130.84 -29.2 -74.13 199.59 -233.4 137.69 0.02 0.15 0.21 0.05 0.57

(a) CompLMM.

(b) CompLM.

Fig. 2: Curves and pie charts of the estimated functional and compositional coefficients for the IPR

and OIE, respectively. The vertical dotted line in the curve divides the trading day into morning and

afternoon.

Next, we focus on the estimated results for the random effects for CompLMM, as reported in415

Table 4. The large variance of the intercept (314.3) indicates that the stocks involved have great416
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differences in prices. The variance of the DV is relatively small (i.e., only 0.1), which implies that its417

influence has few changes across stocks; therefore, the DV can be regarded as an inessential factor in418

this case. To describe the overall variation of the functional coefficient, we plot the variance function419

based on the covariance matrix of the seven expansion coefficients, where the point-wise variances420

during all trading hours exceed 50 in general, especially those before 10:00 a.m. and after 14:30 p.m.421

This result verifies that past trends of the return from different stocks have different influences on their422

prices in the future. Finally, we sum the variances of the four ilr coordinates and obtain the related423

total variance of the compositional covariate for the OIE as 36.3. This result verifies that indirect424

information such as the OIE, although shared by all stocks, can also enhance the performance of the425

regression model for the stock price in various ways.426

Table 4: Estimated covariance matrix of the random effects for CompLMM in the real data study.

The sub-columns φj (j = 1, 2, · · · , 7) are the same as in Table 3 and w∗1k (k = 1, 2, · · · , 4) indicate the

ilr coordinates of the compositional coefficient for the OIE. The variances are highlighted in bold. The

variance function and total covariance of the functional and compositional coefficients for the IPR and

OIE are also plotted and reported.

Intercept DV
IPR OIE

φ1 φ2 φ3 φ4 φ5 φ6 φ7 w∗11 w∗12 w∗13 w∗14

Intercept 314.6 2.9 60.8 -73.6 20.8 38.4 -63.4 163.4 40.6 15.3 -1.3 -24.6 1.2

DV 0.1 0.5 -0.8 0.6 -0.2 -0.6 1.3 -1 0.7 0.2 -0.6 0.4

φ1 669.9 -743.6 442.9 -282.7 245.5 -195.4 106.8 3.2 4.3 -8 1.2

φ2 1039.1 -761.5 562.9 -533.9 418.3 -233.6 -6.5 -2.7 12.8 -4.5

φ3 693.1 -608.3 599.1 -444.7 239.2 6.1 1.7 -9.6 8.1

φ4 680.1 -776.4 586.6 -306.5 -3.7 -1.9 4.5 -10.5

φ5 Variance function for IPR 1152.1 -1151.5 727.9 -8.9 -0.4 13.6 -5.3

φ6 1637.4 -1348.7 24.6 7.8 -31.3 30.7

φ7 1362.5 -23.2 -11.8 25 -31.9

w∗11 7.1 2.8 -8.8 7.5

w∗12 5.6 -2.3 2.8

w∗13
Total variance for OIE: 36.3

13.2 -10.1

w∗14 10.4

In conclusion, the real data study illustrates the potential of the proposed CompLMM for lon-427

gitudinal complex data from an application perspective. Introducing random effects containing the428

scalar, functional, and compositional covariates, our method measures the subject-specific character-429

istics of each stock and improves the performance of the regression on diversified types of variables430
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from different sources. However, there remains some problems to be discussed from both theoretical431

and practical perspectives, such as a more exhaustive explanation of the functional or compositional432

coefficients and the choice of direct and indirect indicators for China’s stock market. These issues433

need to be addressed in future work.434

6 Discussion435

This study investigates an LMM technique for longitudinal complex data named CompLMM, involv-436

ing scalar continuous response and complex data covariates with diversified characteristics. Through437

random effects that describe the differences across individuals, CompLMM can extract further in-438

formation from the residuals obtained by the existing linear model for complex data and shows a439

significant improvement in fitting responses. Following the linear framework of complex data model-440

ing, CompLMM first unifies the numeric representation of different types of variables such that the441

traditional LMM can then be conducted to obtain the intermediate results and transform them back442

to have related diversified features. This model also encourages a more comprehensive interpreta-443

tion for regression on complex data. Moreover, some theoretical properties are also presented that444

support the computational procedure of the parameter estimation for CompLMM. As illustrated by445

both the numerical experiment and the real data study, the proposed CompLMM succeeds in dealing446

with longitudinal complex data and efficiently estimating the parameters with more reliable response447

fittings.448

We focus on the parameter estimation and its general interpretation for the proposed CompLMM.449

However, the trade-off between the accuracy and interpretation of the proposed model also needs due450

consideration, to which many solutions for traditional scalar covariates have been proposed. These451

statistical methods provide instructive strategies for selecting random effects with diversified charac-452

teristics, which face great challenges in theory but deserve further research. Meanwhile, practical and453

empirical ways of determining the random effects also demand investigation. Moreover, many types454

of complex data, as discussed in Section 3.3, have the potential to be modeled under the proposed455

framework using related representations. The processing of these variables has been adopted by many456

studies, but some of the theoretical properties for this study need detailed checks in the future.457

Finally, the statistical inferences for multiple types of complex data, with functional, composi-458

tional, and other more complicated features, are also an important and challenging issue in regression.459

Although empirical methods (e.g., the bootstrap) have offered partial solutions to this problem, related460

hypothesis tests for complex data such as the function with an infinite dimension and composition461

involving constraints, should also be developed.462
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Appendix: More results from the numerical experiment463

See Tables 5 and 6.464

Table 5: Means and standard derivations (in brackets) of the estimated expansion coefficients for

the functions and re-transformed coefficients for the compositions with (N,ni) = (300, 60). The ideal

values are the same as in Table 2.

Model
Coefficients Functional Compositional

βk / γk φ1 φ2 φ3 φ4 φ5 φ6 φ7 γk1 γk2 γk3

σ = 0.5

CompLMM k = 1 2.988
(0.257)

2.011
(0.287)

0.983
(0.213)

0.004
(0.226)

−1.003
(0.308)

−2.007
(0.325)

−2.971
(0.25)

0.795
(0.033)

1.01
(0.012)

0.104
(0.023)

k = 2 −3.009
(0.216)

−1.985
(0.269)

−1.015
(0.222)

0.02
(0.231)

0.982
(0.311)

2.018
(0.32)

2.973
(0.248)

0.2
(0.001)

0.2
(0.001)

0.6
(0.001)

CompLM k = 1 3.257
(01.956)

1.675
(2.439)

1.241
(1.984)

−0.257
(2.019)

−0.674
(2.701)

−2.224
(2.942)

−2.861
(2.369)

0.796
(0.034)

0.101
(0.013)

0.103
(0.024)

k = 2 −3.039
(1.751)

−1.895
(2.136)

−1.121
(1.76)

0.172
(1.836)

0.774
(2.506)

2.195
(2.609)

2.885
(2.132)

0.199
(0.007)

0.2
(0.007)

0.6
(0.01)

σ = 1

CompLMM k = 1 2.972
(0.424)

2.024
(0.526)

0.974
(0.417)

0.01
(0.447)

−1.007
(0.608)

−2.019
(0.637)

−2.95
(0.49)

0.795
(0.033)

0.101
(0.012)

0.2
(0.002)

k = 2 −3.02
(0.427)

−1.973
(0.53)

−1.028
(0.436)

0.036
(0.457)

0.969
(0.615)

2.032
(0.634)

2.955
(0.494)

0.2
(0.002)

0.2
(0.001)

0.6
(0.002)

CompLM k = 1 3.24
(2.004)

1.688
(2.499)

1.232
(2.03)

−0.251
(2.065)

−0.679
(2.762)

−2.233
(3.001)

−2.843
(2.421)

0.796
(0.034)

0.101
(0.013)

0.103
(0.024)

k = 2 −3.044
(1.776)

−1.887
(2.17)

−1.131
(1.787)

0.186
(1.866)

0.763
(2.562)

2.209
(2.664)

2.868
(2.161)

0.199
(0.007)

0.2
(0.007)

0.6
(0.01)

σ = 1.5

CompLMM k = 1 2.956
(0.609)

3.224
(2.068)

1.701
(2.581)

1.224
(2.094)

−0.245
(2.133)

−0.684
(2.852)

−2.241
(3.09)

0.796
(0.034)

0.101
(0.013)

0.104
(0.023)

k = 2 −3.029
(0.637)

−1.962
(0.792)

−1.041
(0.652)

0.055
(0.684)

0.951
(0.923)

2.05
(0.95)

2.935
(0.741)

0.2
(0.002)

0.2
(0.002)

0.6
(0.003)

CompLM k = 1 2.956
(0.609)

2.036
(0.771)

0.966
(0.623)

0.017
(0.667)

−1.011
(0.907)

−2.031
(0.948)

−2.93
(0.726)

0.795
(0.033)

0.101
(0.012)

0.104
(0.023)

k = 2 −3.05
(1.825)

−1.88
(2.233)

−1.141
(1.838)

0.201
(1.922)

0.751
(2.65)

2.223
(2.753)

2.851
(2.216)

0.199
(0.007)

0.2
(0.007)

0.6
(0.011)

σ = 3

CompLMM k = 1 2.918
(1.183)

2.064
(1.515)

0.945
(1.241)

0.037
(1.317)

−1.025
(1.789)

−2.065
(1.869)

−2.864
(1.435)

0.795
(0.034)

0.101
(0.012)

0.104
(0.023)

k = 2 −3.061
(1.261)

−1.924
(1.572)

−1.084
(1.297)

0.116
(1.364)

0.889
(1.836)

2.117
(1.879)

2.865
(1.458)

0.2
(0.005)

0.2
(0.004)

0.6
(0.007)

CompLM k = 1 3.176
(2.348)

1.739
(2.938)

1.198
(2.383)

−0.227
(2.446)

−0.698
(3.276)

−2.266
(3.513)

−2.774
(2.822)

0.796
(0.035)

0.101
(0.013)

0.103
(0.024)

k = 2 −3.067
(2.088)

−1.859
(2.572)

−1.172
(2.115)

0.244
(2.217)

0.717
(3.08)

2.264
(3.188)

2.8
(2.515)

0.199
(0.009)

0.2
(0.008)

0.6
(0.012)
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Table 6: Means and standard derivations (in brackets) of the estimated expansion coefficients for

the functions and re-transformed coefficients for the compositions with (N,ni) = (300, 90). The ideal

values are the same as in Table 2.

Model
Coefficients Functional Compositional

βk / γk φ1 φ2 φ3 φ4 φ5 φ6 φ7 γk1 γk2 γk3

σ = 0.5

CompLMM k = 1 3.017
(0.246)

1.985
(0.224)

1.021
(0.179)

−0.021
(0.187)

−0.989
(0.246)

−2.003
(0.248)

−2.999
(0.198)

0.798
(0.035)

0.1
(0.011)

0.102
(0.026)

k = 2 −2.974
(0.163)

−2.031
(0.2)

−0.976
(0.173)

−0.021
(0.188)

1.019
(0.256)

1.991
(0.269)

2.998
(0.209)

0.2
(0.001)

0.2
(0.001)

0.6
(0.001)

CompLM k = 1 3.132
(1.58)

1.834
(1.964)

1.195
(1.675)

−0.211
(1.726)

−0.818
(2.298)

−2.1
(2.364)

−2.987
(1.86)

0.798
(0.036)

0.1
(0.012)

0.102
(0.026)

k = 2 −3.018
(1.497)

−1.916
(1.752)

−1.093
(1.432)

0.077
(1.541)

0.893
(2.112)

2.137
(2.288)

3.022
(1.781)

0.199
(0.006)

0.2
(0.006)

0.6
(0.009)

σ = 1

CompLMM k = 1 3.03
(0.372)

1.967
(0.406)

1.043
(0.339)

−0.042
(0.361)

−0.975
(0.481)

−2.005
(0.484)

−3.002
(0.389)

0.797
(0.035)

0.1
(0.011)

0.102
(0.026)

k = 2 −2.953
(0.324)

−2.062
(0.398)

−0.952
(0.345)

−0.043
(0.374)

1.039
(0.508)

1.98
(0.535)

3.001
(0.417)

0.2
(0.001)

0.2
(0.01)

0.6
(0.001)

CompLM k = 1 3.145
(1.594)

1.817
(1.976)

1.216
(1.682)

−0.231
(1.734)

−0.804
(2.313)

−2.102
(2.377)

−2.989
(1.873)

0.798
(0.036)

0.1
(0.012)

0.102
(0.026)

k = 2 −3.001
(1.518)

−1.942
(1.789)

−1.072
(1.474)

0.058
(1,586)

0.909
(2.16)

2.131
(2.329)

3.019
(1.817)

0.2
(0.006)

0.2
(0.006)

0.6
(0.009)

σ = 1.5

CompLMM k = 1 3.043
(0.513)

1.948
(0.597)

1.067
(0.501)

−0.064
(0.537)

−0.959
(0.717)

−2.009
(0.721)

−3.004
(0.581)

0.797
(0.035)

0.1
(0.011)

0.102
(0.026)

k = 2 −2.931
(0.485)

−2.092
(0.596)

−0.929
(0.517)

−0.065
(0.56)

1.059
(0.759)

1.971
(0.799)

3.004
(0.624)

0.2
(0.002)

0.2
(0.002)

0.6
(0.003)

CompLM k = 1 3.158
(1.621)

1.801
(2.007)

1.237
(1.704)

−0.25
(1.76)

−0.791
(2.35)

−2.104
(2.411)

−2.991
(1.904)

0.798
(0.036)

0.1
(0.012)

0.102
(0.026)

k = 2 −2.984
(1.554)

−1.967
(1.846)

−1.051
(1.532)

0.04
(1.651)

0.926
(2.232)

2.124
(2.396)

3.016
(1.873)

0.2
(0.006)

0.2
(0.006)

0.6
(0.009)

σ = 3

CompLMM k = 1 3.086
(0.953)

1.885
(1.175)

1.142
(0.988)

−0.135
(1.062)

−0.906
(1.419)

−2.023
(1.423)

−3.009
(1.153)

0.797
(0.035)

0.1
(0.011)

0.102
(.026)

k = 2 −2.872
(0.967)

−2.176
(1.191)

−0.863
(1.036)

−0.125
(1.117)

1.113
(1.511)

1.948
(1.586)

3.004
(1.244)

0.2
(0.004)

0.2
(0.004)

0.6
(0.006)

CompLM k = 1 3.197
(1.778)

1.751
(2.198)

1.299
(1.855)

−0.309
(1.931)

−0.752
(2.586)

−2.109
(2.636)

−2.996
(2.099)

0.797
(0.036)

0.1
(0.012)

0.102
(0.026)

k = 2 −2.932
(1.744)

−2.045
(2.112)

−0.989
(1.791)

−0.016
(1.931)

0.975
(2.577)

2.104
(2.731)

3.007
(2.143)

0.2
(0.004)

0.2
(0.004)

0.6
(0.006)
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