
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Towards bridging the gap between domain and
application design

Mustapha Derras, Laurent Deruelle
Berger Levrault

Boulogne Billancourt, France
{mustapha.derras, laurent.deruelle}@

berger-levrault.com

Nicole Levy
Cedric
CNAM

Paris, France
Nicole.Levy@cnam.fr

Francisca Losavio
Escuela de Computación

Universidad Central de Venezuela
Caracas, Venezuela

francisca.losavio@ciens.ucv.ve

Abstract—The traceability among different abstraction levels in
a software development process is still an unsolved problem. Our
present goal is to reduce the gap between the high level abstract
software product line (SPL) reference architecture (RA) and the
concrete application design, by defining first traceability links
between the RA components and the technological assets used by
the enterprise requiring the SPL, and then study the architectural
components interfaces by adapting the Domain Realization phase
guidelines; they are proposed by Böckle, Pohl, and van der Linden
(2005), and by the ISO/IEC 26550 (2015) reference model for SPL
engineering. This preliminary work establishes links between the
RA and an external configuration system to facilitate the
compliance with laws, which has been found as a major problem
while configuring Human Resources (HR) systems. Our approach
is illustrated with an industrial case study, the Vacation Request
subsystem of the SEDIT HR system of the Berger-Levrault
enterprise, widely used in French and foreign communities.

Keywords—software product line, reference architecture,
domain and realization design, application design

I. INTRODUCTION
The correspondence between two architectural views [1] of

a software system has been widely discussed in the literature,
however it still remains a problem. A Reference Architecture
(RA) for a Software Product Line (SPL) [2], is built in the
Domain Design phase as the main asset of the Domain
Engineering (DE) lifecycle; the SPL Engineering (SPLE)
Model of [3], now incorporated into the new ISO/IEC 26550
[4] is followed, see Fig. 1. The main idea of this work is to
refine the RA variability model before starting the Application
Design, using the Domain Realization phase of DE. The
mapping between the architectural logic view and the physical
or deployment view will be discussed as a first step, by
specifying the technology related to each architectural
component; new components may be introduced at this stage.
Then the architectural component interfaces will be defined.
We will explore if the gap between different architectural
abstraction levels, the Domain Design and the Application
Design, can be reduced. The Domain Realization will be used
as an intermediate abstraction level, to facilitate the
configuration step in the Application Engineering (AE)
lifecycle. Configuration is unavoidable in SPL during the
Application Design phase to produce concrete applications
derived from the RA core assets and the variability model; for

example, the systems migrating to a cloud structure need to be
configured to be used by different clients; the configuration
consists in setting the convenient variants. Note that businesses
are coping with the challenge of upgrading and optimizing
enterprise applications performing configuration using native
tools, without modifying the system code, and avoid a
customization process that requires code manipulation [15].
Vendors are providing more options to configure applications
for particular needs and industries. But in some cases,
configuration options are getting so numerous and layered that
they present challenges of their own. Any way, a convenient
instance of the RA has to be configured to obtain a concrete
software application or product of the SPL family, responding
to client requirements. This step is still on the threshold
between DE and AE. The problem of relating the abstract
components of the SPL RA [2], [3] with the concrete
components of a software product of the SPL family using the
right reusable assets, is not completely solved. The reusable
assets offered by the actual technology (toolkits, APIs, tools,
etc.) used in industrial developments, solve nowadays aspects
that had to be carefully programmed before. Some examples
are the user interface quick development including the MVC
maintainability concern often solved by Angular Js/RESTful,
and the portability of the relational database to objects with the
Hibernate tools. However, it is claimed that the architecture is
still the key to the success of any software project since it is the
first design artefact that begins to place requirements into a
solution space. The quality attributes of a system, such as
performance, modifiability, and availability should be
considered by the architecture; if the architecture is not suitable
from the beginning for these qualities, it is very difficult to
achieve them by some miracle later [6]. The architecture
determines the structure and management of the development
project as well as the resulting system, since teams are formed,
and resources allocated around architectural components. In a
previous work [7], a RA was constructed for the Vacation
Request subsystem of the Berger-Levrault SEDIT Human
Resources (HR) system [8], using a bottom-up strategy with a
single product already built by the enterprise. The RA was
obtained with a variability model containing mostly non-
functional components related to the functional components of
the core asset; these non-functional components represent the
quality properties to be satisfied by each functional component
in order to be compliant with functional suitability [9]. It is
important to notice that these non-functional components were

introduced to assume the responsibility to check that the
quality property will be actually present in the concrete
product. All the non-functional components are variation
points that implement different solutions according to the
technological evolution. Each choice will be linked to a variant
attached to a variation point, realizing the traceability. For
example, the non-functional component <<Compliance with
law(s)>> will be directly linked to the rules specifying the
law(s).

Fig. 1. ISO/IEC 26550 SPLE (Software Product Lines Engineering) Reference
Model Framework [4]

 Recall that the RA or domain architecture determines the
structure and the texture of the concrete applications or
products of the SPL. According to [3], the structure describes
the decomposition that is valid for all applications of the SPL
(commonality and variability). The texture is the collection of
common rules guiding the design and realization of the parts,
and how they are combined to form applications. It defines
common ways to deal with variability in domain or application
design and realization; it consists of coding rules and general
mechanisms such as styles [10] and design patterns [11] to deal
with specific situations/solutions that may occur during design,
realization, and coding. The Domain Realization phase is
focused on building this architectural texture that will be used
to design the concrete applications of the SPL family.

 A process was defined in [7], following the first three
phases of the DE lifecycle to obtain the RA, shown in grey in
Fig.1. Our present goal is to reduce the gap between the high-
level abstract RA and the more concrete application design by
defining first traceability links between the RA components
and the reusable technological assets. In order to do this, the
SPLE Domain Realization phase guidelines [3], [4] will be
adapted to deal with a more detailed design concerning the
reusable software components and their variants.

 The RA represented in UML 2.0 in Fig. 2 is a logic view of
the architecture, incorporating elements of the process view,
such as the layered domain style used by HR systems.
According to [1], architectural views can be combined.
However, in this UML 2.0 notation, components interfaces are
not shown, nor the provide/require in the connections; the
components, which are variation points are denoted as
stereotypes by << component name >>. Components that are
not variation points are considered common components that
will be present in all the products of the SPL family.

Fig. 2. Reference Architecture for the Vacation Request subsystem of BL
SEDIT [7]

 This paper is structured as follows besides this
introduction: the second section describes the Domain
Realization phase: the correspondence between architectural
components and the technological tools and the definition of
the components interface. Guidelines to perform these
activities are provided. The third section discusses some related
works and finally the conclusion and perspectives are
presented in the fourth section.

II. DOMAIN REALIZATION

A. Generalities
Domain Design is the DE process of SPLE in which the

commonality and the variability of the SPL are defined to
conform to the RA structure. The input for the domain
realization sub-process consists of the RA including the list of
reusable software artefacts already present or to be developed.
Each component should be planned, designed, and realized for
reuse in different contexts supported by the component
interface. It is important to note that the result of this phase
consists of loosely coupled, configurable components, not of a
running application. Domain realization can incorporate
configuration mechanisms into the components to realize the

variability of the SPL. Traceability links between the artefacts
of the reusable platform will facilitate systematic and
consistent reuse. Our problem concerns the way to establish
consistent traceability links between the RA abstraction level
and the design level of the concrete product, saying
Application Design and Realization (see Fig. 1). The output of
Domain Realization encompasses the design and
“implementation” aspects of reusable software components,
and their interfaces, for example some kind of configuration
files. Components realise variability by providing suitable
configuration parameters in their interfaces. Notice that
Domain Realization differs from the realization of single
systems mainly because the result consists of loosely coupled,
configurable components, not of a running application.

The industrial case study of the Vacation Request system
will illustrate our approach.

B. Correspondence between architectural components and
technical tools
As a first step to provide a rough process for the Domain

Realization phase, we will establish the correspondence
between architectural components and the technological tools
used by the enterprise, which are known reusable and available
assets. Notice that technology changes constantly, then all the
mentioned tools are potential variants, considering the SPL
variability model approach. In our case, each RA architectural
component will correspond to a set of modules, which have
been already built by Berger-Levrault. For example, two
systems implemented in Java are the main modules of the
SEDIT Vacation Request subsystem: - the X.Net human
resources manager; it allows the configuration of a validation
system for a vacation demand to check the hierarchy of the
staff responsible of authorizing the request; it corresponds to
the RA <<Signature Hierarchy>>; - the e.SEDIT RH to
automatize the staff administrative tasks, favouring also
collaborative work; it corresponds to the RA component
Administrative Tasks [12]. The architectural style for the RA is
event-based, layers and follows a client/server model for
communication [10], used in the HR domain.

The SEDIT tools of the technological platform, i.e., main
frameworks, toolkits, APIs and services used in the
development stage [8] are mostly open source and they are
shown in Table 1.

Guidelines:

Input: the RA (in our case, the Vacation Request structure of
RA in Fig. 2), the list of reusable software artefacts that are
already available or to be developed. In the SEDIT case, the
list of technological tools is used.

- For each component and sub-component in a layer, the
relation with the corresponding technical tool or with an
architectural component present in the subsequent layer,
are shown.
- Technological (s) solution (s) is (are) listed for each
component.

Output: loosely coupled components that can be configured by
their interfaces.

All the connections between layers follow the REST system
architectural style, where resources are directed only through
their URLs, via the http/https protocol. The JAMon system
monitors all connections between architectural components,
including message passing and RMI (Remote Method
Invocation). The technical tools/solutions in Table 1 are used
to implement the architectural components as reusable modules
at Application design level.

TABLE I. CORRESPONDENCE BETWEEN ARCHITECTURAL AND
TECHNOLOGICAL COMPONENTS

Architectural components Solutions realized with
technological or architectural
components

Presentation Layer (UI)

• User

o Check Access Rights
• <<Login>> (Security-

Authenticity)
• Supervisor

o Check Signature Rights
o Take decision

• Employee

o Submit Request
o Receive Response

• Administrator

o Handle administrative

tasks
<<MVC Client Side>>
(Maintainability – Modularity)

- Angular Js (client-side), Flying
Saucer, RESTful;

- << Access Rights Policy>>;
- Angular Js (client-side), Flying
Saucer, LDAP;

- Angular Js (client-side), Flying
Saucer, RESTful, D3JS, KSL;

- <<Signature Hierarchy>>;
- Send Notification; Send

Response;
- Angular Js (client-side), Flying
Saucer, RESTful;
 - Evaluate Case; Send
 Notification; Send Response;
- Angular Js (client-side), Flying
Saucer, RESTful;

- Administrative Tasks;

- Angular Js (client-side), Flying
Saucer, RESTful;
<<MVC Server-Side>>

Process Layer
• <<MVC Server-Side>>

• <<Signature Hierarchy>>

(Security – Authenticity)

• Evaluate Case
• Send Notification
• Send Response
• Administrative Tasks

• <<Compliance with

Employees Rights>>
(Suitability - Appropriateness)

• <<Compliance with Law(s)>>
(Suitability – Appropriateness)

• <<Access Rights Policy>>

• <<Data Access – Portability -
Persistency/Availability >>

- Angular Js (server-side), Spring,
Log4j, SLF4j; <<MVC (Client-
Side)>>;
- X.Net, Signature Rights DB,
Spring, Log4j, SLF4j, Spring
Security, Kerberos Security,;
- Spring, Log4j, SLF4j;
- Spring, Log4j, SLF4j;
- Spring, Log4j, SLF4j;
- e-SEDIT, Spring, Log4j, SLF4j;

- Employees Rights DB;

- Law (s) DB;

- Access Rights DB, Spring, Log4j,
SLF4j, Spring Security, Kerberos
Security;

- Hibernate, Hibernate 4GWT,
Hibernate JPA,
Hibernate Envers, CAS;

Data Layer (Data Base)
• <<Data Base>>

o Administrative DB
o Employee Rights DB
o Access Rights DB
o Signature Rights DB

• Data	Base	Schemas	

- Oracle, SqlServer, PostgreSql,
Informix, MySql;

- Oracle, SqlServer, PostgreSql,

Funded by Berger-Levrault

(Suitability	–	Correctness) Informix, MySql;
Communication Layer
• <<Network>>
• <<Network Security>>

(Security – Confidentiality –
Integrity – Authenticity)

<<Network Reliability>> (Reliability
– Availability)

- LAN, WAN
- http, https;

- It depends on the stability of the
connection;

Context External System
• <<Implementation>>

o Configuration
o Customization

Law (s) DB

- Spring

- Set of Rules

C. Specification of components’ interfaces
A new version of the Vacation Request RA presented in

Fig. 3 in UML 2.0 is built in this second step. Components and
their interfaces are shown in terms of required/provided
resources [13]. The study of the technology used by the
enterprise (see Table 1) has provided some hints to update the
abstract logic view of the original RA design (see Fig. 2), for
example by adding/eliminating components or sub-
components. A new <<Data Access>> component has been
located in Process Layer; it will be used to interface the
Process and Data Layers, to ensure data portability and
persistency/availability. Context is an external system that will
provide information to the <<Compliance with Law (s)>>
component, through a configuration operation, parameterized
by the entity, the staff characteristics, the law text, and a
configuration file that captures the specificity of the law’s
evolution. Notice that one of the main problems found in [3]
and [7], was that the variability in HR systems was due mostly
to the frequent law changes and not much to changes in the
main functionalities. Moreover, this process is usually
performed in a quasi-manual way at a quite high cost.

 The Context external system is not connected to the User
Interface (UI) Layer since the user that will operate this system
does not belong to the Vacation Request set of users
(Employee, Supervisor and Administrator); he will operate the
Vacation Request configuration externally, updating the law
changes. A solution benefiting for example from the Java
language features, such as the injection principle and related
design patterns [11], to make changes independently from the
coded lower levels modules, could be implemented within the
Configuration component. It is clear that other configuration
solutions could be available, that is why the main component
<<Implementation>> of the Context system is a variant. If the
Vacation Request system is offered on the cloud, it will be
available and used by each client with the appropriate
configuration, once the Context system, operated by an
external user, has concluded its tasks.

The parameters in the component interfaces could be
defined as: entity = {country, region, city, community. …};
staff-id = {id, password, status, …}; access, notify, sign-
approval, rights-check: Boolean; period: dates for the vacation
request or number of days required and period of the year;
eval-required: Boolean (push button to activate the evaluation
in Process Layer; updated-data: results of administrative tasks
related with the vacation request of an employee; law: data
structure representing the law text that can be expressed as a

set of rules; updated-config: updated configuration file; config-
file: reusable configuration file; this information can be
retrieved from the Context system expressed and executed in a
programming language, for example Java, benefiting from the
language features, such as injection principle and design
patterns [11], to perform the configuration according to the law
changes, independently from code.

Fig. 3. The Vacation Request RA with the interfaces of components

Guidelines:

Input: RA components annotated with reusable technological
tools (see Table 1);

- For each component, establish the provided/
required resources; new components can be added,
and/or existing components can be deleted; specify
the corresponding parameters; define the main
methods (corresponding to the RA abstract sub-
components, see Fig. 2) used by the component.

Output: RA structure expressed in UML 2.0 showing also the
RA texture with components’ interfaces (see Fig. 3).

Let us note that most of the functional components of the

RA are common components; the SEDIT technological
platform provides concrete solutions for several variants of the
RA variation points which are non-functional components (see
Table 1): <<MVC Client-side>> with Angular Js (client-side),
<<MVC Server-side>> with Angular Js (server-side),
<<Login>> with LDAP, <<Signature hierarchy>> with
Spring Security, Kerberos Security, <<Data Access>> with
Hibernate, and <<Data Base>> that is actually settled to
Oracle. As we have already pointed out, RESTful and JAMon
are followed for communications.

The problem remains however with the <<Compliance
with Law(s)>> variation point for which some solution has to
be provided. In this case the Context external system could be a
solution with the Configuration component. The
<<Implementation>> will consist of using the Java injection
facility and laws will be expressed as a set of rules [18]. The
design of this system is still an on-going work.

III. RELATED WORKS
Four works are discussed in this section, the first two are

dedicated to the SPL development process, and the last two
focuses on the HR domain and the migration to the cloud
structure, but do not treat the SPL context. In the near future,
Berger-Levrault would like to offer a cloud solution for his
clients by software product lines for the main functionalities
offered by the SEDIT system. Our work will contribute to
design a configuration system to treat the problem of laws
variation and compliance found in HR systems; as it has been
pointed out, these configuration tasks are in general manually
solved, requiring much effort and cost.

The paper of Käkölä [14] discusses the projects and future
directions for SPL standardization. The new standard ISO/IEC
26550 [4], which was an on-going project, is discussed. It
presents a reference model for Software Product Line
Engineering. To obtain maximum benefits from the SPLE
development methodology, businesses need to implement
coordinated changes in development methodologies, tools,
product architectures, organizational designs, and business
models. The SPLE Reference Model involves higher levels of
abstraction than the engineering of single systems partly
because the platforms require substantial investments, have
long life cycles, and have to provide product line architectures
and features generally applicable to a wide range of products,
services, and markets. Without appropriate abstractions, the
platforms with predefined variability cannot be built and
managed effectively. On the other hand, standardized methods
and tools for developing product lines cannot be easily
adopted, tool vendors face difficulties in developing tools to
enable SPLE, and universities cannot effectively set up SPLE
courses because an internationally accepted curriculum is
missing. However, two surveys and workshops are actually
organized to derive recommendations for educators to continue
improving the state of practice of teaching SPLs, aimed at both
individual educators as well as the wider community [17]. The
International Organization for Standardization (ISO) has
initiated several projects to create a set of international
standards for SPLE, such as the ISO/IEC 26550 Reference

Model, where guidelines and available tools and techniques are
provided. ISO hopes that researchers and practitioners can
enrich this initiative.

Our research aims to make a practical use of the SPLE
methodology, integrating practices such as the early
consideration of quality issues in the RA design, and applying
it to an industrial case study.

Guidelines, practices, benefits, and risks to adopt a SPL
approach are discussed in the SEI SPL framework by Northup
and Clements [6] “… substantial production economies can be
achieved when the systems in a SPL are developed from a
common set of assets in a prescribed way, in contrast to being
developed separately, from scratch … It is exactly these
production economies that make the SPL approach attractive”.
Reuse has evolved from subroutines (1990s) to services
(2000s). Most organizations produce families of similar
systems, differentiated by features, and a reuse strategy makes
sense. Commonalities are exploited differently according to the
enterprise domain; hence the study of the domain is essential
for the SPL development. Enterprises that have succeeded with
product lines vary widely in considering activities such as the
nature of their products, the market or mission, business goals,
organizational structure, culture and policies, the software
process discipline, and the maturity and extent of legacy
artefacts. Nevertheless, there is not one correct set of practices
for every organization [4]; activities and practices emerge,
having to do with the ability to construct new products from a
set of common assets while working under the constraints of
organizational contexts, and this problem is still not solved.
The recommendation in this work to derive a concrete product,
is to follow a production plan, which details how the core
assets are to be used to build the product. However, each of the
main activities for SPL development, saying, the core asset
development (where the RA is built), the product development,
and management is individually essential, and they are a blend
of technology and business practices. However, the threshold
between these activities and how to put them smoothly and
correctly together is not discussed in the framework, and it is
the problem we are focusing. We are putting into industrial
practice an SPL development approach that blends several
practices and techniques: a bottom-up architecture-cantered
strategy to build the RA [7], the extraction of functional
components from business goals, the use of the properties of
the domain architectural styles, the early account of quality
requirements as architectural components, as the major
responsible of the SPL variation. In our work we use the
Domain Realization guidelines of [3], [4], studying the
available technology and developing the component interfaces;
our goal is to reduce the gap between the abstract RA and the
concrete product derivation, to produce in the near future, a
semi-automatic product configuration process.

The paper of Dai, He and Xing [15] proposes a “6+1”
structure as a cloud service platform for Human Resource
Management; it does not concern SPL, only the HR domain.
HR management includes standard management tasks such as
wage, attendance (including leave and vacation demands), and
personnel file. A rather classic 6-layered structure is proposed
for the platform architecture: 1. UI layer to face clients and to
collect data; clients choose the services (e.g. salary, vacation

request or recruitment management). 2. Data integrity control
layer. 3. Process layer for data processing; it is the platform
computation core. 4. Data base logic layer, to control the
operations of data in data tables. 5. Data table definition layer,
and 6. Data Base layer. Our interest is focused on the “+1”
layer. In practice work, HR management business is not always
normalized, such as organizational structure adjustment, salary
system design and psychological counselling to the employees;
the laws are not normalized neither and can be applied
differently to each entity. These problems usually require
relevant experts to solve, based on their experience, implying
huge costs. Meanwhile, many experts have characteristic
methods and techniques, they need working platforms to
provide services. The cloud service platform can help them
build their own sub-working platforms and offers technical
support. The “+1” structure will implement characteristic HR
management service. The Configuration component in our
Context external system for the Vacation Request SEDIT
subsystem, could fit into this “+1” layer since it will be used by
external experts, usually located in third-party enterprises.

The adoption of the cloud technology for HR systems is the
subject of Kumar work [16], but it does not concern SPL. The
National Institute of Standards and Technology (NIST) defined
cloud computing as “a model that provides ubiquitous,
convenient, on-demand network access to a shared pool of
computing resources like servers, networks, storage,
applications and services with minimal management effort and
service provider interaction”. The most updated version of the
cloud technology in the field of HR is the Software as a
Service (SaaS) technology. This is the most popular form of
the technology. The server, in this case, usually provides the
entire software to the user through an application, which does
not need to be installed or upgraded because the vendor
automatically does this onto the cloud. The user has only to
upload and manage information stored in the cloud. Neither
upgrading nor updating need to be done by the user. In our
case, the whole HR SEDIT system of Berger-Levrault seeks to
be offered though the cloud as a SPL in the HR domain. The
Vacation Request subsystem is an important functionality that
is common to many entities covered by SEDIT. A huge
configuration effort must be performed to offer the appropriate
configuration to the great number of SEDIT clients. A SaaS
configuration service should be included, starting to configure
the Vacation Request subsystem to face the law’s evolution,
being this a major problem of HR systems. Other configuration
problems could be solved in this way; but this subject is still an
on-going work.

IV. CONCLUSION
In a previous work [7] we have designed a RA for a HR

SPL. We have now proceeded to link the high-level RA core
asset to the lower level application design by adapting the
Domain Realization phase of SPLE [3], [4]. An industrial case
study, the Vacation Request subsystem of the SEDIT system of
Berger-Levrault illustrates our approach.

The main result of this preliminary work is a new version
of the RA including the specification of the component

interfaces. In particular, we studied how the non-functional
abstract components that were introduced to take in charge
qualities, are realized using technological solutions. A problem
that still remains, is to define an external configuration
component that will be used to satisfy laws evolution, which is
a huge problem in HR systems. The perspectives would be to
have the SEDIT HR system on the cloud and an external
system to take account of law changes using Java injection and
design patterns facilities, without modifying the code [18].

REFERENCES
[1] P. Krutchen, “Architectural Blueprints—The “4+1” View Model of

Software Architecture,” IEEE Software 12 (6) pp. 42-50, November
1995.

[2] P. Clements, P. and L. Northrop, SPL: practices and patterns, Addison
Wesley 3rd edition. Readings, MA, 2001.

[3] G. Böckle, K. Pohl and F. van der Linden. SPL Engineering:
Foundations, Principles, and Techniques, Springer, Berlin, 2005.

[4] ISO/IEC NP 26550: Software and Systems Engineering – Reference
Model for Software and Systems PL. ISO/IEC JTC1/SC7 WG4, 2015.

[5] R. Mazo, S. Assar, C. Salinesi and N.B. Hassen, “Using SPL to improve
ERP Engineering: Literature Review and Analysis”, In Latin American
Journal of Computing LAJC, Vol. 1 (1), 2014.

[6] L. Northrop and P. Clements with F. Bachmann, J. Bergey, G. Chastek,
S. Cohen, P. Donohoe, L. Jones, R. Krut, R. Little, J. McGregor, and L.
O’Brien, Framework for Software Product Line Practice, Version 5.0,
SEI, Carnegie Mellon, 2012.

[7] M. Derras, L. Deruelle, J. M. Douin, N. Levy, F. Losavio, Y. Pollet and
V. Reiner, “Reference Architecture Design: a practical approach,”
ICSOFT 2018, Porto, Portugal, pp. 599-606, July 2018.

[8] Berger-Levrault, Schéma architecture - SEDIT REST – Evolution,
Internal Communication, 2017.

[9] ISO/IEC 25010: SQuaRE, Quality model, 2011.
[10] M. Shaw and D. Garlan, Software Architecture. Perspectives of an

emerging discipline, Prentice-Hall, 1996.
[11] E. Gamma, R. Helm, R. Johnson, J. Vlissides and G. Booch, Design

Patterns: Elements of Reusable OO Software 1st Edition, 1995.
[12] G. Rodríguez, Analyse fonctionnelle de domaine dans le cadre de

logiciels de gestion de collectivités territoriales, Master International,
École d’Ingénieurs, CNAM (Conservatoire National des Arts et Métiers)
Paris, France, September 2017.

[13] D. Bell, UML basics – The Component Diagram – UML 2.0 diagrams,
IBM, 2004.
https://www.ibm.com/developerworks/rational/library/dec04/bell/index.
html

[14] T. Käkölä, “Standards initiatives for SPL engineering and management
within the international organization for standardization,” System
Sciences (HICSS), 43rd Hawaii Internat. Conf., IEEE pp.1-10, 2010..

[15] L. Dai, Y. He, G. Xing, “Intelligent Information Management,” 7, pp.1-
6, published in SciRes Online January 2015.
http://www.scirp.org/journal/iim,
http://dx.doi.org/10.4236/iim.2015.71001.

[16] R. Kumar, “Cloud Technology and HR Management,” Annual Research
Journal of SCMS (Symbiosis Centre for Management Studies),
Symbiosis International University, Pune, India, Vol. 5, pp. 82-91,
March 2017.

[17] M. Acher, R. E. Lopez-Herrejon, and R. Rabiser. “Teaching Software
Product Lines: A Snapshot of Current Practices and Challenges,”. ACM
Trans. Comput. Educ. 18, 1, Article 2, 31 pages. October 2017,
https://doi.org/10.1145/3088440

[18] Douin J. M., Pollet Y.. La proposition VIP : Variability & Injection
Pattern, Internal communication, Cédric, CNAM, 2018.

