cedric e cham

Quality-driven reference architecture
Incremental design:
an industrial experience

N. LEVY

BASED ON A WORK DONE TOGETHER WITH

MUSTAPHA DERRAS, LAURENT DERUELLE, VALERIE REINER FROM BERGER-LEVRAULT
JEAN MICHEL DOUIN, YANN POLLET, GERARDO RODRIGUEZ FROM CEDRIC - CNAM

FRANCISCA LOSAVIO FROM UNIVERSIDAD CENTRAL DE VENEZUELA

Context

Berger-Levrault designs solutions for local authorities and public
administrations as well as public and private healthcare facilities,
educational institutions, universities and private companies.

These solutions MUST be compliant with all kind of legislation

Problems faced :
> Legislation changes very often (and it will not stop)
> Cities are different, based on their size, location, etc but have similar
needs

> Berger-Levrault has acquired different companies proposing similar
products

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE

Problem

How to define a single system, common to all and adapted for everyone?

Product

First idea of solution Line

Have a core system common to all and variation points
where specific behaviors will be defined for each one.
These specific behaviors can be chosen and refined by a configuration

New problem

How to define such a Product Line ?

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE 3

Problem

How to define a Product Line = a core system with variation points to be
configured ?

How will variations

Second i1dea of solution points be chosen ?

» Describe a Reference Architecture for a given domg@ (the core)
* Introduce in the Reference Architecture variation points,

that are hooks or place holders

where different solutions will be attached

Quality
requirements are

a major cause of
variability

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE

Problem

How to define a Product Line = a configurable core system with variation
points ?

Second idea of solution

» Describe a Reference Architecture for a given domain (the core)
» Take into consideration products quality aspects :
Introduce non functional components in the reference architecture
« Declare as variation points these non functional components ...
and maybe others ...
« Enable the configuration of the system to select a solution

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE 5

Problem

s this a reusable approach ?

Third idea of solution

Describe a Methodology to define a Product Line of a given domain with
e Functional and

. components
 Non-functional P

where some will be denoted as Variation points

together with a mechanism of Configuration

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE 6

Top-down <> Bottom-up
approaches

A bottom-up strategy will be followed starting from an existing product

Case study with Berger-Levrault:

An industrial experience in the Human Resources domain : a Vacation
Request System that takes into account different regulations

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE 7

Big picture of the methodology

ystematically
transforming
by application

Systematically Taking quality

Introducing

transforming into accoun’ variability

of styles and

Functional |

' patterns
analysis of
the existing Abstract
system archltgcture pr— N
with _
- architecture
functional ,
with non-
components :

functional
properties

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE

Case study : vacation request

Bottom-up approach

Based on interviews with stakeholders of our industrial
partner Berger-Levrault

—> Definition of some data flow diagrams for the vacation
request business process followed by French municipal
communities

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE

Functional analysis of the
existing system

Description of
functional processes

Functional > Process 1
analysis

l Process 2
Existing Process 3
System

BPMN

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE

Request Vacations

Request complies with employees rights?

O*{Q Fill]_ B tvaluate]ﬁ@‘(es‘) |Q Submiit I
Request case Request

v 1
%’. Vacation Request 'y ‘ Take Vacations
g J
- No
Q Aproove
Request
8 =
g Send refusal ..Send Aprooval
'g’_ message message
8 Request aprooved?
v
ﬁ Handle administrative /
5 tasks
o

Vacation request business process

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE

& <ia

Request
Request already approved?

O Q Select Yes

r r] p Request 4"@'

C O I e te Maodify Vacation Request i PR e ——
4 -Q Muodify

Vacation Deletion Request

= Request
O 2 Fill - (.)
| Request .
u _ Vacation Request Approvec
& Supplementary Rights Request ;
7=k /
LE Request complies with employees rights?
P ————
re u e S O J& B Evaluate ves 2 submit
Request case Request
L] Vacation Request
b u S I I l e SS = g
Continue Process? r
15 W X - Q Receive] Send
g Yes Message Notification
o i
= Ne
2 Go back to the
i original request event.
=
Abandon the Process
= i
& Receive - 4
Notification -
—_—
2 A EfSend Approval There can be 1
. PRIONEE non
2 Heanee MESHRE to or'n" levels of
2 q higher level approval.
a
3
kel No
% Handle
. Send refusal Yes nd Sppoval gadminishative
message IESsalE tasks
Request approved? Final Level Approval

2

Verify Information

G

Human Resources

October 31, 2017

From Functional analysis to
Abstract architecture

“*Introduce a component for each stakeholder’s lane in a pool that
accomplishes some business goal

“*Introduce a sub-component for each task
<+Only functionalities and their cooperation are concerned

—> the result is an abstract architecture with only functional components

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE 13

From functional analysis to
abstract architecture

Functional Abstract
processes architectures
Functional > Process1 | >l AAL
analysis
f Process2 |1 > AA 2
Existing Process 3 | ! >l AA3
System

BPMN

Systematic
transformation

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE

Supervisor %I User %I Administrator %I
Check
Sign_ature Check %I Handle %I
Right Access Rights Administrative
Tasks
e Take
(Decision
A
System %I Employee %I
Evaluate Submit
Case % Request %
I
g Send % f Receive %I
Notification Response
_ Send 4
Response J

Abstract architecture with functional components

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE

From various abstract
architectures to a single one

This is done by

<+Unifying all the components

“*Merging the components that correspond to the same functionality

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE

From various abstract
architectures to a single one

_ Integrated
Functional Abstract abstract
processes architectures architecture
_ Abstract
Functional | ——)| Process1 | >l AAL N architecture
analysis with all the
x Process 2 | | AA2 =) important
Existing Process3 | vl AA3 / functionalities
System

BPMN UML

Union / Merge

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE 17

Introducing non functional
properties

Abstract Integrated Domain
architectures abstract abstract
architecture architecture
Abstract Abstract
AAL N architecture architecture
AA 2 with all the with
: Important : functional
AA 3 / functionalities and non
functional
components

UML UML

Taking into account
non functional or
quality properties

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE

Taking into account non functional
or quality properties

Non functional or quality properties are not directly perceived by the

user, but they are required by the functional components to satisfy
completely their business goals

1. Choose the quality properties expected from the system as the
Product Quality Model. We use the 1SO 25010

2. Assign priorities, with respect to the business goals, to each quality
properties

3. For each quality property :
Integrate it as a non-functional component,
relate it with the functional component requiring it

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE 19

Quality properties for the
vacation request case study

In our case, the main quality properties are :

1. Security (authenticity) for all users and concerning the hierarchy
to be considered for signatures

2. Functional suitability (appropriateness, correctness) : compliance
with law and with employee’s right

3. Usability for all users
4. Maintainability (modifiability) concerning the system

5. Reliability (availability, persistency) concerning the administrative
data

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE 20

E_I Login %
Usability (Security -
Authenticity)
Signature Supervisor L User Administrator
Hierarchy % % % %
(Security - \ _Check Check
Authenticity) Signature Access Handle @
Right Rights Administrative
Tasks
- Take
Compliance witgl (LEEEIGH
Law (s)
(Suitability -
Appropriateness) System % Employee %I
Evaluate Submit
Compliance wit@ Case % Request %
Employee Rights
(Suitability - [send 3 Receive |
Appropriateness) Notification Response
Data Reliability
Maintainability _ Send ~ (Availability -
(Modifiability) |~~~ Response J Persistency)

Abstract architecture with functional and non functional
components

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE

Refining the architecture

Integrated
abstract
architecture

Abstract
architecture
with all the

iImportant
functionalities

October 31, 2017

N. LEVY - CEDRIC CNAM - FRANCE

Domain
abstract
architecture

Abstract
architecture
with
functional
and non
functional
components

Domain
reference
architecture

Architecture

considering

the domain
style

Applying domain
architectural style

22

Applying an architectural pattern
to a component

Architectural pattern = <architectural configuration, properties>

Pattern

Component

)

Taking into account the Architecture taking into
style in the component account domain patterns

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE 23

Refining the architecture

Integrated Domain Domain
abstract abstract reference
architecture architecture architecture
Abstract Abstract Architecture
architecture architecture considering
with all the : with the domain
important functional : style and
functionalities and non design
functional patterns
components

\/

Applying several
architectural and
design patterns

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE

Presentation Layer (Ul) ‘ User E
‘o Check Access% Login M
‘ Rights | Iis;cu?tyt;l)
uthentici
Supenvison % Epploves $-| Administrator % .
o g recnitectuure
9 Receive IAdministrative S - -
=3 | le=dD) = considering the
] ﬁ
‘ MVC ClientSide (Maintainability - Modifiability) %” d - t I
— Process Layer (System) y
MVC Server Side (Maintainability - Modifiability) %
- | ' The architectural layer pattern is
Signature % Evaluate % Compliance with ACCGSS@ .
Hierarchy Case] Empl‘o)yee Rights g Rights d f d ff I .
ecury oyeamgns composed of different layers :
Authenticity) % Appropriatedness)
Send M
U Notiggation L/ Compliance with g % @ P rese ntatl 0 n I aye r
L i -
7) (Sun!”bﬁﬁ;’y - e P |
ppropriatedness; ® y
L] e, L rocess layer
= Data layer
+— Data Layer (Data Base E @ Commun|cat|0n Iayers In
(1 ver () Data Base %
Administrati b
Data Base Schemasgl m"::l);fa v gl 7 etwee n
(Suitability - Correctness)
rmore J
Platform Portability @
(Portability) Access % J
Rights DB
Data Reliability Signature g
(Availability - Rights DB
Persistency) T
L)
__| Communication Layer Network Security E
(Security - Confidentiality
\ Network - Integrity - Authenticity)
- Network Reliability @‘
(Reliability - Availability)

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE

Introducing variability

Domain
abstract
architecture

Abstract
architecture
with
functional
and non
functional
components

October 31, 2017

Domain Domain
reference product line
architecture architecture

Introducing variation
points associated to
variants

N. LEVY - CEDRIC CNAM - FRANCE

Introducing variability

“Software variability is the ability of a system to be efficiently extended,
changed, customized or configured for use in a particular context “

Jan Bosch

To organize variant elements so they can be reused when deriving a
concrete products we introduce

Variation points and their variants attached to them
Variation points are denoted << name>> as UML stereotypes.

They are sets of components, whose elements are called variants

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE 27

Defining variability

Component A

October 31, 2017

Solution 1

Component B

=)

Solution 2

3

N. LEVY - CEDRIC CNAM - FRANCE

28

Defining variability

Component A

October 31, 2017

3

<<Variation Point>>

Solution 1

Component B

Solution 2

o7

N. LEVY - CEDRIC CNAM - FRANCE

29

Defining variability
=

<<Variation Point>>
Shared behavior

Component A Component B

Solution 1 : %I Solution 2 : %I
special case 1 special case 2

Variants : : :
1 — Shared behavior + special case 1 Variants having

2 — Shared Behavior + special case 2 partly the same
behavior and having

also a specific one

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE

Defining variability
=

<<Variation Point>>
Shared behavior

Component A Component B

- o

v | v
if Cond 1 %I if Cond 2 %I
then Special case 1 then Special case 2

Variants :
1 — Shared behavior
2 — Shared behavior + special case 1
3 — Shared Behavior + special case 2

Variants sharing a
behavior and having
a conditioned
special behavior

4 — Shared Behavior + special case 1
+ special case 2

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE

Defining variability

3

<<Variation Point>>
Shared behavior

Component A Component B

Y _ ! V
<<Vairf|ec1§|é)r?dP10mt>> S %
then Shared behavior 1.1 then Special case 2

; Solution by
7 dependenc
v : v e injection
using Spring

if Cond 1.1 %I if Cond 1.2 %I
then Special case 1.1 then Special case 1.2

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE

Presentation Layer (UI) User

Check Access%
Rights

<<Login >> % M)
(Security - Authenticity)

SuPe“’E:’ Kk gl il g Administrator gl
- Sign:tfjre % it @
Right R B Ha_ndle .
Receive % m_llpls:(ratlve
ot g Response asks —\

Decision

__. I . Reference
£ ;| architecture o

<<MVC Server Side>> (Maintainability - Modifiability) @
| <<Compliance I
<§Signature g Evaluate @ with Employee <<Acces$|
Hierarchy>> Case L Rights>> Rights
(Security - (Suitability - Policy>>
Authenticity) %) ropriatedness; - -
Send .
~ Notification L <'<Compllance g
with Law (s)>> - : gl
(Suitability - Administrative
g Appropriatedness) Tasks
__ Send L []]]
Response
((—/
A Data Layer (Data Base) Data Base @ E Context {l y
Administrative % Implementation @
<<Data Base Schemasgl DB
(Suitability - Correctness) Configuration %
Employee @ J
gl Rigths DB Customization gl
<<Platform Portability>!
(Portability) Access] \ ee d fO I a
Rights DB J
= fi -
<<Data Reliability>> $:| Signature g CO n I g U ratl 0 n
(Reliability - Availability- Rights DB J .
Persistency) T m h m
_ J External System e C a n I S
Communication Layer O E Vari an S
(Security - Confidentiality -
\ Network Integrity - Authenticity)
|
<<Network Reliabilitp>g|
(Reliability - Availability)

N.LEVY - CEDRIC CNAM - FRANCE

The proposed methodology

Description Integrated Domain Domain Domain
of functional Abstract abstract abstract reference product line
processes AICHItECTUres rchitecture architecture architecture architecture
Abstract :
Process 1 ﬁ:{) AA 1 % Abstract architecture ﬁgcﬁslitgg’rcil:]re
architecture with the domaig
Processzﬁ:> AA 2 H;> Wlth allthe == functional == style and C
important and non desian
Process3ﬁ:> AA 3 3? functionalities functional J
patterns
components

Configuring

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE

Traceabllity

Non functional
component identified
as a Variation Point

Check Non functional
Signature component _required Process Layer E
Right bgotl;ggt;l(;rrl‘?l Signature <<Signature
/ Hierarchy Hierarchy>>
. (Security - (Security -
Functional Authenticity) | Authenticity)
component Signature % —
from Hierarchy

BPMN

(Security - Non functional
Authenticity) component required
by functional
) component "realized"
Domain in Process Layer

Engineering
Application Concrete Software %I
Engineering l Product with a specifc %

Configurator

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE 35

Conclusion

Starting from an existing system, we have reengineered the system
architecture from interviewing domain experts

We identified functional components and their non functional
requirements

The non functional requirements have been expressed as components
We identified the common core and the variants introducing variability

- we obtained the

Software Product Line Reference Architecture
from an existing system with its variations points and variants

We have considered the suitability to legal requirements (laws and
regulations) as a priority quality requirement, since they change often
overtime. Our approach eases the modifiability thanks to traceability

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE 36

Perspectives

We have studied only one of Berger-Levrault’s system
—> we will enhance our methodology studying various
Our objective is to built support tools

To facilitate the configuration, we have represented the reference
architecture as an ontology in order to ease the transformations

October 31, 2017 N. LEVY - CEDRIC CNAM - FRANCE

37

cedric e cham

Thank you !

Questions ?

