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Optimal Multi-Crop Planning Implemented Under
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Abstract—Multi-Crop planning (MCP) optimization model for
cropping pattern and water allocation is introduced as a nonlinear
programming problem. Its solution promotes an efficient use of
water with a flexibility to keep the chosen crops at either full
or deficit irrigation throughout different stages so that the net
financial return is maximized within certain production bounds
and resources constraints. The problem-solution approach is as
follows: at first a preliminary mathematical tools are presented
involving existence, benchmark linear models and a relaxation
formulation, second two meta-heuristic algorithms Simulated
Annealing (SA) and Particle Swarm Optimization (PSO) are
implemented as a numerical technique for solving the MCP
problem. The particularity of our approach consists of using the
solution of the linear problem as an initial guess for the SA, while
for PSO the particle swarm is initiated in the neighberhood of
that solution.

Keywords—Multi-crop planning, deficit irrigation, nonlinear pro-
gramming, simulated annealing, particle swarm optimization

I. INTRODUCTION

THE demand on water is increasing exponentially due to
extraordinary population and industrial growth. the supply

is, therefore, far less than the actual demand and further its
existence is being threatened by the adverse effects of climate
change. Water resources management in the next decade is
inevitable and should be every nation’s primary objective.
In fact, there is a growing interest to develop advanced
management methods to prevent wasting water in the course
of satisfying human needs, protecting health, and ensuring
food production, restoring of ecosystems, as well as for
social economic evolvement and for sustainable development.
Programmes are launched by the European Union through the
Common Agricultural Policy (CAP) or internationally through
the Consortium of International Agricultural Research Centers
(CGIAR) in order to overcome these crucial problems.

Nowadays, there is a great urge to new irrigation technolo-
gies in agricultural research. So multiple optimization methods
are suggested to: find the right crop selection, implement
crop rotation and schedule precise irrigation. Traditionally,
agricultural models primarily focused on maximizing the yield
and the economic return per unit area by allocating water to
different crops according to their water needs [1, 2, 3]. With
time, studies have switched to deficit irrigation and its impact
on crop yield production. The objective was regulating deficit
irrigation in a way to save water by subjecting crops to periods
of moisture stress with minimal effects on yields. Within this
approach and based on FAO report [4], it is seen that, the
reduction in the yield may be little, compared with the benefits
obtained through diverting the saved water to cover wider

cropped area. The study in [5] claims that optimal irrigation
is useful in increasing the crop production, the irrigated area
and the net economic returns.

In this paper, a Decision- Support Tool (DST) based on
a Non Linear Programming (NLP) model for optimal multi-
crop planning is proposed . The aim is to maximize the net
financial returns. In fact, the authors presented a mathematical
programming model with an objective function inspired by
relations found in [6] and [7], and taking into account water
limitation at each time period as a constraint as in [5].
Furthermore, another restriction ought to be considered is the
crop production quota which is important to preserve crop
diversity (Greening rule - CAP). Otherwise, farmers will grow
the most profitable plant leading to agricultural surplus in
some crops and shortage in others. Nevertheless, this greening
rule will ensure market stability and will secure availability of
supplies. In response to the above conditions, the Multi-Crop
Planning (MCP) model is presented and utilized to find an
optimal water allocation and crop pattern to maximize profit.

In the past decade, comprehensive studies have been con-
ducted on Evolutionary Algorithms (EA) for solving nonlinear
programming problems concerning optimal crop planning and
irrigation water allocation. Genetic Algorithm (GA) [8, 9]
was used to solve the irrigation problem, while [10] search
for the optimal irrigation reservoir operation using Simulated
Annealing (SA). On the other hand [11] and [12] applied
Particle Swarm Optimization (PSO) algorithm to find the
optimal reservoir operation for the irrigation of multiple crops.
However, the problem-solution approach presented in this
investigation is as follows: 1- Preliminary mathematical tools
are addressed that involves solution existence, linear models
extraction and a relaxation formulation of (NLP), afterward 2-
Two meta-heuristic algorithms SA and PSO are implemented
as a numerical technique for solving the MCP problem. The
approach trait is using the solution of the linear problem
as an initial guess for the SA, while for PSO the particle
swarm is initiated in the neighborhood of that solution, rather
than generating them randomly as in [10] and [11]. The
effectiveness of the suggested models is tested and evaluated
using proposed data.

The remaining of the article is organized as follows: Sec-
tion II describes in details the MCP problem while section
III presents the suggested technique used in solving it. A
numerical example and some results are discussed in section
IV, whereas the drawn conclusion of the study and the future
work are presented in section V.
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II. MULTI-CROP PLANNING MODEL DESCRIPTION

The MCP is designed to obtain the optimal farm plan for
allocating irrigation areas in a multi-cropping system. The
objective is to maximize net profit of the produced yield
over the planning horizon when conflicts emerge between the
supplied amount of water and the actual demand during the
irrigation season. This problem holds within, decision variables
involving the choice of crops, their acreage and their water
allocation at every time interval. A feasible solution must
satisfy a multiple constraints regarding land area, irrigation
and crop production .

TABLE I. NOTATIONS AND INDICES FOR (MCP) PROBLEMS

Notation Definition Unit

(MCP) model
l Number of stages Unitless
n Number of crops Unitless
Xi Area of the land planted with crop i ha
Pi Profit obtained when crop i is assigned to area Xi euro
ETaij Actual evapotranspiration of crop i at stage j mm
Etmij Potential evapotranspiration of crop i at stage j mm
WAij Applied water amount to crop i at stage j m3/ha
WRij Required water amount for crop i at stage j m3/ha
rj Available amount of water at stage j m3

Y ai Produced amount of crop i Kg/ha
Ymi Potential amount of crop i Kg/ha
kyij Yield response factor Unitless
λij Index of sensitivity of crop i at stage j Unitless
ci Fixed amount of crop i can’t exceed Kg
pi Selling price of crop i euro/ Kg
Bi Cost of used water by crop i euro/ha
pw Cost of water euro/m3

Ci Misc. costs to plant crop i euro/ha
Atotal Total area of agricultural activity ha

A. Objective Function
The objective function of the MCP model is the net profit

from crops production that is calculated by subtracting the total
cost (manual labor, seeds, fertilizers, water used...etc.) from the
market value of the yield. However, as a first step, one should
establish the water-crop relationship which contains timing,
quantity of water applied and the effects of crop-water stress
for deficit irrigation at different growth stages. A widely used
relation was presented by Jensen [6] and it is expressed in the
following formula:

Y ai
Y mi

=

l∏
j=1

(
ETaij
ETmij

)λij

(1)

Whereas [13] presents a linear relationship between relative
yield and relative evapotranspiration. It empirically derives
yield response factors (ky) for individual growth stages (i.e.
establishment, vegetative, flowering, yield formation and ripen-
ing). However, Jensen’s model (1) can be applied at time
steps smaller than the growth stages. Its sensitivity indices are
related to the yield response factors (ky) that represents the
effect of a reduction in evapotranspiration on yield losses, by
the following polynomial [10]:

λij = 0.2418(kyij)
3− 0.1768(kyij)

2+ 0.9464(kyij)− 0.0177

The polynomial is obtained for a coefficient of determination
R2 = 0.999.

In our work, we didn’t consider the water balance in soil.
According to [7], it can be assumed that the ratio of the actual
crop evapotranspiration to potential crop evapotranspiration is
the same as the ratio of irrigation supply to demand, that is:

ETaij
ETmij

=
WAij
WRij

(2)

Then combining equations (1) and (2), we get:

Y ai = Y mi

l∏
j=1

(
WAij
WRij

)λij

(3)

Thus the profit obtained from planting crop i can be deter-
mined using the formula:

Pi = [piY ai − (Bi + Ci)]Xi (4)

Writing Pi in terms of the variables Xi and WAij , we get:

Pi =

piY mi

l∏
j=1

(
WAij

WRij

)λij

− (pw

l∑
j=1

WAij + Ci)

Xi

(5)
Hence the objective function is given by:

F =

n∑
i=1

Pi (6)

B. Constraints
The objective function is considered to be bounded by a set

of constraints, regarding water limitations at each stage, total
land area and crop production quota:.

1) If the amount of water available at each time step or
stage is limited to a fixed quantity rj , for j = 1, ..., l,
then it is important to consider water limit constraint:

n∑
i=1

Xi ·WAij ≤ rj , for all j = 1, ..., l (7)

However, in a region with abundant water resources,
the availability of water is not a problem. In this case,
water is provided with no limits, so this constraint is
no more restrictive and could be omitted.

2) Under deficit irrigation, the applied water can not
exceed the required amount,

WAij≤WRij , for all i = 1, ..., n & j = 1, ..., l (8)

whereas, in state of full irrigation equality is assumed.
3) The produced yield of crop i can not be greater than a

fixed quantity ci,

XiY ai ≤ ci, for all i = 1, ..., n (9)

This condition is important for two main reasons: it
maintains crops diversity and keeps the market values
of crops stable. In fact, any over production of certain
crop can cause a decrease in price which is here not
the case.
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4) Area constraint

n∑
i=1

Xi ≤ Atotal (10)

5) Non-negativity constraints

WAij ≥ 0, for i = 1, ..., n & j = 1, ..., l (11)

Xi ≥ 0, for i = 1, ..., n (12)

C. The Nonlinear Optimization Problem

In the foregoing, the decision variables are the planted
areas X ′is and the applied water at each stage WAij . Let
us denoted by S ⊂ Rn+l×n the set of all points that satisfy
constraints (7-12), then the Nonlinear Programming (NLP)
problem becomes:

max
x∈S

F (x)

III. SUGGESTED SOLUTION APPROACH

A. Mathematical Tools

In the following and before proceeding to the numerical
part, a preliminary theoretical study was carried out. It
involves existence, benchmark linear models and relaxation
formulation of the main (NLP) problem.

Proposition 1: (Existence) The (NLP) problem admits a
solution in S.

Proof: Since λij > 0, the function F defined from
Rn+l×n into R is a continuous function. Moreover it is obvious
that the set S is closed and bounded, thus S is a compact set.
By Weierstrass theorem, F attains its global maximum in S.

Proposition 2: In case of no water limits and full irrigation
the (NLP) problem is reduced to a Linear Programming
problem denoted by (LP1) and has the form:

(LP1)


max
X

fTX∑n
i=1Xi ≤ Atotal

0 ≤ Xi ≤ ci/Y mi, i = 1, ..., n

where f is a vector in Rn such that for every i = 1, ..., n ;

fi = piY mi− (pw
l∑

j=1

WRij + Ci), X = (X1, X2, ..., Xn).

Proof: No water limits with full irrigation means that,
constraint (7) is omitted and we have WAij = WRij for
all i = 1, ..., n and j = 1, ..., l. So, WAij

WRij
= 1, Y ai=Y mi.

In this case the profit from crop i becomes fi = piY mi−

(pw
l∑

j=1

WRij + Ci). As a result the objective function and

the nonlinear constraints become linear, and the problem is
transformed into the form:

max
X

n∑
i=1

fiXi

XiY mi ≤ ci, ∀i = 1, ..., n
n∑
i=1

Xi ≤ Atotal

Xi ≥ 0, ∀i = 1, ..., n

By setting f = (f1, f2, ..., fn), X = (X1, X2, ..., Xn). The
above linear problem is reshaped into (LP1).

Proposition 3: Suppose full irrigation is considered within
a limited amount of available water. (NLP) is transformed into
a Linear programming model (LP2) that has the form:

max
X

fTX

n∑
i=1

Xi ·WRij ≤ rj , ∀ j = 1, ..., l

n∑
i=1

Xi ≤ Atotal

0 ≤ Xi ≤ ci/Y mi, ∀i = 1, ..., n

Proof: The proof is carried in same way as that of
proposition 2, but constraint (7) should be put back due limited
amount of water.

The solution of the (LP1) and that of (LP2) model will
present the optimal crop distribution among the areas in two
different scenarios: the first one, full irrigation with no water
limits while the second case is, full irrigation with water
amount limitations.

Remark 1: These two models are intended to provide a
reference for the (NLP) problem. In fact, (LP2) gives a lower
bound for the (NLP) objective function, that is:

max
x∈S

F (x) ≥ max
X∈S2

fTX

where S2 is the set of all points that satisfy constraints of
(LP2).

Recall 1: Denote by E the objective function to be max-
imized over a domain D. A relaxation of a maximization
problem,

z = max {E(x); x ∈ D ⊂ Rn}

is another maximization problem of the form,

zR = max {ER(x); x ∈ DR ⊂ Rn}

with the following properties: DR ⊇ D and ER(x) ≥ E(x)
for all x ∈ D.

Let us rearrange F :

F =

n∑
i=1

piY ai − (pw

l∑
j=1

WAij + Ci)

Xi



4

F =

n∑
i=1

piY aiXi −
n∑
i=1

(pw

l∑
j=1

WAij + Ci)Xi

Now define the new objective function:

FR =

n∑
i=1

pimin(Y aiXi, ci)−
n∑
i=1

(pw

l∑
j=1

WAij + Ci)Xi

(13)
Proposition 4: The nonlinear programming problem

(RNLP) defined as:
max
x∈SR

FR(x)

is the relaxed version of the (NLP) problem. where SR ⊂
Rn+l×n is the set of points that statisfy constraints (7-8, 10-
12).

Proof: It is clear that S ⊂ SR and for all x ∈ S, we
have FR(x) = F (x). Thus (RNLP) is the relaxation of (NLP)
problem.

B. Models solution
The optimization of the objective functions addressed

in both (NLP) and (RNLP) is a problem without obvious
analytical solution and perhaps with multiple local optimum.
However, in the recent years Evolutionary Algorithms
(EA) have become popular tools for nonlinear optimization
problems. In fact two Evolutionary Algorithms are used in
this work: the first is the Particle Swarm Optimization (PSO)
and the second is the Simulated Annealing (SA) algorithm.

1) Particle Swarm Optimization: Particle Swarm Optimiza-
tion was first presented by Kennedy and Eberhart in 1995.
The PSO search procedures are based on the swarm concept
(inspired by social behaviors of bird flocking or fish schooling),
which is a group of individuals that are able to optimize certain
fitness function. Every individual can transmit information to
another and ultimately allow the entire group to move towards
the same object or in the same direction. It is a method to
simulate the behavior of individuals of the species who work
for the benefit of the whole group.

PSO is initialized with a population of random solutions
creating a particle swarm and searches for optima by updating
generations. Each particle keeps track of its coordinates in the
search space which are related to the best solution (fitness) it
has reached so far. This value is referred to Pbest. Another
“best” value that is tracked by the particle swarm optimizer
is the best value, obtained so far in all of the particle swarm.
This best value is a global best and is named Gbest .To find
the optimal solution, each particle moves in the direction of
its Pbest and Gbest. After continuous iterations, the particle
swarm will gravitate towards the optimum solution. The parts
of PSO are given below:

(1) Velocity update

vk+1
i = ωvki +c1·rand ·(Pbestki−xki )+c2·rand ·(Gbestk−xki )

• c1 and c2 are learning factors of PSO
• rand is a random number uniformly distributed

• Pbestki individual best optima for particle i after k
iterations

• Gbestk group optima after k iterations
• ω inertia weight
• vk+1

i velocity of particle i in iteration k + 1
• xki position of particle i in iteration k
(2) Position update
•

xk+1
i = xki + vk+1

i

(3) Weighting

ω = ωmax −
ωmax − ωmin

Itermax
· Iter

• ωmax largest weight
• ωmin smallest weight
• Iter iterative times
• Itermax maximum iterative times for PSO

2) Simulated Annealing: The basic concept of SA was in-
spired from statistical thermodynamics by American physicist
Metropolis in 1953. Whereas Kirkpatrick in 1983 suggested
using this concept for finding solutions for optimization prob-
lems, and was the first literature to successfully utilize SA
in combinatorial optimized problems. the SA is theoretically
guaranteed to converge to the global optimal solution under
certain assumptions and given infinite execution time. In
practice, however, globally optimal or near-optimal solutions
can be obtained in a large yet finite number of iterations [10].

A general description of the algorithm is given below. Let us
denote by E(x) the function being minimized, where x is the
vector of decision variables, of dimension d. The basic steps
of the algorithm are the following:
1. Choose the initial temperature T0 and an initial state x0,
calculate its energy E0; set the step number k = 0
2. Find a feasible candidate state xk+1 = xk + 4x, 4x is
randomly generated from a normal distribution of mean 0 and
variance Tk
3. Calculate Ek+1 and the energy difference4E = Ek+1−Ek
4. If 4E < 0, state improvement, update solution; otherwise
accept it, if random(0,1)≤ exp(− 4E/Tk)
5. Lower the temperature with the geometric cooling scheme
proposed by Kirkpatrick et al, Tk+1 = αTk, α ∈ (0, 1)
6. Increment k and repeat steps 2–6 until k satisfies some
specified stopping criterion.

An essential parameter that should be considered during the
implementation of SA is the initial temperature T0. If it is set
too low, the randomly generated candidate states will never
be far from the initial state and the search space will not be
properly explored. This may lead to convergence to a local
minimum. On the other hand, if it is set too high, the vast
majority of candidate states will be rejected as infeasible and
the generation procedure will be very inefficient. Kirkpatrick
suggested that a suitable initial temperature is one that results
in an average increase acceptance probability of about 0.8. The
value of T0 will clearly depend on the scaling of cost function
and hence the determination of T0 is problem-specific.
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C. Implementation and Approach
The solution approach is carried through the following steps:
• Solve (LP2). Denote by X∗ = (X∗1 , ..., X

∗
n) solution of

(LP2) and by WX∗ = vec(χi · WRij), where χi ={
0 if X∗i = 0
1 if X∗i 6= 0

and vec of a matrix is a linear

map. which converts the matrix into a column vector
• Solve (NLP) and (RNLP) using PSO by initiating a

particle swarm in the neighborhood of (X∗,WX∗).
• Resolve (NLP) and (RNLP) using SA with (X∗,WX∗)

as initial guess.
• Compare the different approaches then choose the best.

IV. SIMULATIONS AND DISCUSSIONS

A. Numerical Example
In this part, we shall perform an experimental evaluation for

each algorithm to compute the optimal cropping pattern and
irrigation scheduling for a lot of six crops. However, optimal
solution determination requires knowledge about the area of
agricultural region Atotal , availability of water (rj) at each
stage j = 1, 2, 3, 4 during the irrigation season and of course
the crop characteristics (ky).

Under the given conditions concerning the available water
resources and crop production, the models were tested over a
spread acreage covering 322 acres with available total amount
of water over the four stages equal to 245000 m3. The
programs were coded in MATLAB language and ran on Intel
Core i7-5500U CPU @ 2.40 GHZ, 12.0 GB RAM. Further,
the main parameters needed for the optimization procedure
and other critical data for the (NLP) and (RNLP) models are
obtained after some experimentation. For example the initial
temperature parameter for the SA was set to 23 based on
Kirkpatrick suggestion . This is assumed to be high enough
to avoid getting stuck to local maxima and to allow the initial
exploration of the solution space without generating excessive
numbers of infeasible candidate states. The initial guess for SA
algorithm is either 1- randomly generated or 2- the solution
of the (LP2) problem. For the PSO algorithm, the number
of particles was set to 1000 where the particles position were
initialized using either one of the two approaches, 1- randomly
over the whole search space or 2- with a uniformly distributed
random vector in the neighborhood of the solution obtained
by the (LP2) model. Each scenario, for the nonlinear models,
is run for 5 times. The top results are presented in Table II.

B. Results and Discussions
In Table II, the recommended optimum crop pattern for each

model aside with the consumed water amount are presented.
Well, in the best case, the net profit gained is equal to
e626240 , when full irrigation is applied in a state of water
abundance. Whereas, implementing the same strategy in case
of limited water resources, the optimal net profit has decreased
to e345430 and the crop spread area has reduced from 100%
to 44.3%. However, considering the water limitation (245000
m3), the authors of this paper turned to deficit irrigation and
crop pattern re-arrangement. Despite the water shortage, which

is 41.5% less than the water consumed (418600 m3) in
the best case, the optimal net financial returns obtained by
the nonlinear programming models has reached 65.2% with
respect to the profit obtained by (LP1) (Figure 1). Regarding
the crop spread area, it has improved to cover 65.4 % of the
total area. Moreover, it is found that crops 4 and 5 have the
highest plantation areas according to solutions of (LP1) and
(LP2). Therefore, it leads us to consider them as dominating
crops. Motivated by these dominating crops, the SA and PSO
algorithms was launched with the aid of the solution of (LP2)
as a starting point for the schemes NLP SA1, RNLP SA1 and
NLP PSO1. In fact, this guarantees that the achieved profit in
worst case scenario is at least that of (LP2) and not below.

Since the water supplied to the farmers is less than desired.
The solution that could be adopted by a farmer is the one that
provides the greatest income. In this case and based on the
obtained results, the RNLP SA1 scheme is recommended.

In what follows, the performance measure for both algo-
rithms SA and PSO is examined for different initialization
methods, using the Coefficient of Variation (CV). We recall,
CV is defined as:

CV =
σ

µ

where µ is the mean and σ standard deviation. In fact, CV
exhibits the extent of variability in relation to the mean.

Table III shows, after running each scheme 5 times, the
mean of the maximized objective functions and the CV along
with the average execution time. It is obvious that when the
algorithm was initialized with the aid of the solution of (LP2)
problem, the maximized objective functions exhibit smaller
deviation from the mean. However, when the algorithm was
initialized with a random starting point, it was less reliable and
in most of the times it had converged to a local maximum.

According to Tables II and III, the result of RNLP SA1
came very promising regarding profit maximization and solu-
tion variability when compared with the rest of approaches
for the nonlinear models. The RNLP SA1 has possessed
the highest profit with the lowest variance at a reasonable
execution time. However, if one is seeking a faster running
time in the nonlinear problem category, the NLP PSO1 may
be the next preferred choice. The execution time, on average,
has been reduced by 50.9% relative to NLP PSO and by 62%
relative to RNLP SA1. In contrast, the top maximized profit
obtained by NLP PSO1 was e401373 with a mean value
of e367387 and CV = 0.075. This small average profit in
comparison with the other ones may be explained by the fact
that, basic PSO can be easily trapped into a local optimum.
Another competing alternative regarding runtime is (LP2). Its
solution is obtained almost instantly and the profit achieved is
just 10% behind that of RNLP SA1 (Figure 1). Well, (LP2)
gives us a chance to gain a closer insight about the dominating
crops especially in case when decisions are to be made in a
very short time period.

In a word, RNLP SA1 is an excellent tool for solving
the MCP problem, it achieves high accuracy with moderate
execution time. However, according to [14] increasing the
number of variables the SA will converge rather slowly in
order to provide sufficient moves carried out in every variable
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TABLE II. EXPERIMENTAL RESULTS

Scenerio Problem Algorithm Initialization Area in Acres of each crop i Irrigated Consumed Profit (e) Elapsed
Name Used Starting point 1 2 3 4 5 6 Area (ac) Water (m3) Time (sec)

LP1 LP1 Interior-Point Random 0 0 0 166.7 114.0 41.0 322 418600 626240 0.02
LP2 LP2 Interior-Point Random 0 0 0 28.6 114.0 0 142.6 185710 345430 0.03

NLP SA NLP Simulated Annealing Random 12.7 0.4 0.8 83.4 108.5 10.1 215.9 242700 400297 817
RNLP SA RNLP Simulated Annealing Random 51.5 0.5 0.5 77.4 117.1 1.2 248.2 241740 402555 2052
NLP PSO NLP Particle Swarm Optimization Random 20.8 2.6 5.2 125.3 91.4 46.9 292.2 245000 346512 854
NLP SA1 NLP Simulated Annealing Sol. LP2 9.2 1.3 3.1 82.3 121.2 0.2 217.4 241420 405356 759

RNLP SA1 RNLP Simulated Annealing Sol. LP2 6.1 1.2 0.5 85.1 115.2 2.5 210.5 241500 408199 1008
NLP PSO1 NLP Particle Swarm Optimization Sol. LP2 3.6 1.3 1.3 70.9 116.4 1.8 195.3 232230 401373 498

direction. So NLP PSO1 may provide an extra tool, but with
trade off between accuracy and runtime.

Fig. 1. Profit function comparison between different models

TABLE III. PERFORMANCE OF EACH SCHEME

Model Mean Objective Coefficent of Mean Elapsed Coefficent of
i Function Variation Time Variation

NLP SA 383206 0.048 461 0.556
RNLP SA 367594 0.139 1985 0.778
NLP PSO 305785 0.119 983 0.187
NLP SA1 396460 0.016 561 0.493

RNLP SA1 404858 0.009 1269 0.388
NLP PSO1 367388 0.075 483 0.020

V. CONCLUSION

This work presents some mathematical tools aside with a
numeric approach for resolving the Multi Cropping Planning
(MCP) problem. Firstly, we establish a nonlinear programming
(NLP) model that describes the MCP problem. Then two
linear formulations and a relaxed version were extracted from
the (NLP) model. Based on the provided numerical example,
results obtained by simulated annealing and particle swarm
optimization algorithms that were initiated near the solution of
a specific linear problem revealed, for certain schemes, a sig-
nificant decrease in algorithms execution time and an increase
in the cropped area and total farming financial income under
deficit irrigation. The computational results lead us to consider,
in the future work, the real capabilities of the suggested
approach. It will be illustrated through its implementation with

real data obtained from the Bekaa-Valley region near Qaraoun
reservoir- Lebanon, whereas the availability of water at each
stage is tightly linked to hydropower production.
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