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Abstract. Verifying software systems automatically from their source
code rather than modelling them in a dedicated language gives more con-
Þdence in establishing their properties. Here we propose a formal spec-
iÞcation and veriÞcation approach for concurrent C programs directly
based on the semantics of C. We deÞne a set of translation rules and
implement it in a tool (C2TLA+) that automatically translates C code
into a TLA+ speciÞcation. The TLC model checker can use this spec iÞca-
tion to generate a model, allowing to check the absence of runtime errors
and dead code in the C program in a given conÞguration. In addition, we
show how translated speciÞcations interact with manually written o nes
to: check the C code against safety or liveness properties; provide con-
currency primitives or model hardware that cannot be expressed in C;
and use abstract versions of translated C functions to address the state
explosion problem. All these veriÞcations have been conducted on an
industrial case study, which is a part of the microkernel of the PharOS
real-time system.

1 Introduction

Most software systems like the Linux kernel or the Apache Webserver are imple-
mented in a low level language such as C, which is one of the most used pro-
gramming languages in industry. Verifying C code is challenging, in particular
due to the presence of pointers and pointer arithmetic.

Moreover, C software systems are often concurrent, and traditional testing
techniques are not e�cient to check the correctness of the implementation. Thus,
the use of formal veri“cation techniques is essential. We address these issues in
the context of formal veri“cation of operating systems microkernels written in
C code. In this paper, we focus on the model checking technique, apopular tech-
nique for the veri“cation of correctness properties of “nite-state systems. Given
a set of properties expressed in a temporal logic and a model, it automatically
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analyzes the state space of the model and checks whether the model satis“es
the properties [6]. To apply this technique to the veri“cation of C programs,
the target modeling language should express all C features, handle concurrency,
allow to state the properties that we want to verify, and its tools should scale
up to large systems.

Contribution. Our main contribution is to provide a formal speci“cation and
veri“cation approach of C concurrent programs, based on both axiomatic (e.g.,
pre-post conditions) and operational (executable model) speci“cation of a C imple-
mentation. We use TLA+ [ 17] as a formal speci“cation language for writing our
speci“cations. In this approach, we translate a C code to an executable TLA+
speci“cation using the C2TLA+ tool that we present in the paper. The gener-
ated speci“cations can be checked for runtime errors in the C code. We show how
the speci“cations thus generated can be completed with manually written TLA+
speci“cations: to provide concurrency primitives, to model hardware that cannot
be expressed in C, to check the C code against safety or liveness properties and to
provide an abstract operational speci“cation. In the latter case, the operational
speci“cation can be used in place of the C code in order to verifythe whole sys-
tem. Preliminary experiments hint that this could considerably lessen the state
explosion problem. These examples are presented in a concretecase study, which
is part of the microkernel of the real-time operating system PharOS [19].

Outline. The rest of the paper is organized as follows. We discuss related work
in Sect.2. We give an overview of TLA+ in Sect. 3. Section4 presents the global
approach and focus on the translation from C to TLA+. Section 5 presents a
concrete application of the approach on the case study. Section6 concludes and
presents future research directions.

2 Related Work

There are a variety of formal veri“cation techniques. Among them there are
deductive veri“cation techniques using theorem proving such as VCC [7]. These
techniques provide a rigorous approach but usually require alot of human e�ort
and user expertise. Model checking is an automatic technique which requires less
human e�ort because it is fully automated once the system and its properties are
speci“ed. But, it is restricted to “nite-state systems. In what follo ws we focus
on the model checking tools for C programs related to our work.

SLAM [2] was the “rst model checker for C programs to implement the
Counterexample Guided Abstraction Re“nement (CEGAR) approach [5]. This
approach has been used later in the BLAST [11] toolkit. SLAM and BLAST
have been used to check device drivers but they are only used forsequential
C programs.

Besides CEGAR based tools, an approach consists to transform the C code
into the input language of a model checker. Modex [14] can automatically extract
a Promela model from a C code implementation. The Promela code generated
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is then checked with the SPIN [12] model checker. Promela is a simple lan-
guage that does not handle pointer and has no procedure calls. Modex handles
these missing features by including embedded declarations andstatements inside
Promela speci“cations. The embedded code fragments can not be checked by the
SPIN and can contain a division by zero error, or null pointer dereference. To
mitigate this problem, Modex instruments additional checks using assertions.
But, not all errors can be anticipated and the model checker can crash [13].

CBMC [4] is a bounded model checker for ANSI C programs that translates
a program into a formula (in Static Single Assignment form) which is then fed
to a SAT or SMT solver to check its satis“ability. It can be used to v erify array
bounds, pointer safety, exceptions and user-speci“ed assertions. On the other
hand, CBMC explores program behavior exhaustively but only up to a given
depth, i. e., it is restricted to programs without deep loops [10]. PlusCal [18] is
a high-level language for expressing multiprocess algorithms. A PlusCal algo-
rithm can be automatically translated into a TLA+ speci“cation. Plus Cal-2 [1]
improves Lamport•s PlusCal language by adding new constructs like hierarchi-
cal processes and specifying atomicity for some part of the code. Moreover, it
does not support some constructs of imperative programming like pointer-based
structures and does not handle function calls. PlusCal is also an algorithm lan-
guage that can be used to replace pseudo code but cannot be usedin the “nal
implementation.

In this work, we use TLA+ as formal framework which provides an expressive
power to specify the semantics of a programming language. It is supported by
the TLC model checker and the TLAPS [8] prover. Moreover, TLA+ is a logic
that can reason about concurrent systems and can express safety and liveness
properties unlike SLAM, BLAST and CBMC which have limited supp ort for
concurrent properties as they only check safety properties. Furthermore, TLA+
provides a mechanism for structuring large speci“cations using a re“nement
process between di�erent levels of abstraction unlike Spin and CBMC.

3 An Overview of TLA+

TLA+ [ 17] is the speci“cation language of the Temporal Logic of Actions (TLA).
TLA is a variant of linear temporal logic introduced by Lamport [ 16] for spec-
ifying and reasoning about concurrent systems. The syntax of TLA isgiven in
Fig. 1 (the symbol � meansequal by de“nition). Readers interested in a more
detailed presentation of TLA+ can refer to Lamport•s book [17].

TLA+ speci“es a system by describing its possible behaviors. Abehavior is
an in“nite sequence of states. Astate is an assignment of values to variables.
A state function is a nonboolean expression built from constants, variables and
constant operators and it assigns a value to each state. For example, y + 2 is a
state function that assigns to state s two plus the value that s assigns to the
variable y. An action is a boolean expression containing constants, variables
and primed variables (adorned with •�Ž operator). Unprimed variables refer to
variable values in the actual state and primed variables refer to their values in

amira.methni@cea.fr



Specifying and Verifying Concurrent C Programs with TLA+ 209

Fig. 1. TLA syntax [ 17]

the next-state. Thus, an action represents a relation between oldstates and new
states. A state predicate (or predicate for short) is an action with no primed
variables.

TLA+ formulas are built up from actions and predicates using boolean oper-
ators (¬ and � and others that can be derived from these two), quanti“cation
over logical variables (� , � ), and the unary temporal operator � (always) of
linear temporal logic [20].

The behaviors satisfying this speci“cation are the ones that represent correct
behaviors of the system, where a behavior represents a conceivable history of a
universe that may contain the system.

The predicate •enabled AŽ, whereA is an action, is de“ned to be true in
a state s i� there exists some state t such that the pair of states � s, t � satis“es
A . The formula [A ]vars , where A is an action and vars the tuple of all system
variables, is equal to (A � (vars� = vars)) where vars� is the expression obtained
by priming all variables in vars. It asserts that every step (pair of successive
states) is either anA step or else leaves the values of all variablesvars unchanged.
TLA+ de“nes the abbreviation • unchanged varsŽ to denote that vars� = vars.
While TLA+ permits a variety of speci“cation styles, the speci“cation th at we
use is de“ned by:

Spec� Init � � [Next]vars � Fairness (1)

where:

…Init is a state predicate describing the possible initial states by assigning
values to all system variables,

…Next is an action representing the program•s next-state relation,
…vars is the tuple of all variables,
…Fairness is an optional formula representing weak or strong assumptions about

the execution of actions.

Formula Specis true of a behavior � i� Init is true of the “rst state of � and
every step of� is either a Next step or a •stuttering stepŽ, in which none of the
speci“ed variables change their values, andFairness holds.

The TLA+ formula Spec� � is valid when the model represented bySpec
satis“es the property � , or implements the model � .

TLA+ has a model checker called TLC that can be used to check the validity
of safety and liveness properties. TLC handles speci“cationsthat have the stan-
dard form of the formula (1). It requires a con“guration “le which de“nes the
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Fig. 2. SpeciÞcation and veriÞcation process

“nite-state instance to analyze. TLC begins by generating all states satisfying
the initial predicate Init . Then, it generates every possible next-statet such that
the pair of states � s, t � satis“es Next and the Fairness constraints, looking for a
state where an invariant is violated. Finally, it checks temporal properties over
the state space.

4 SpeciÞcation and VeriÞcation Process

4.1 Proposed Approach

Approach Work”ow. The speci“cation and veri“cation process is illustrated in
Fig. 2. The “rst step of the process is to translate from an implementation
provided by one or more .c “les a TLA+ speci“cation using our translator
C2TLA+. Before translation, the C “les are parsed and normalized according
to CIL (C Intermediate Language) [21]. Normalization to CIL makes programs
more amenable to analysis and transformation. In particular, all expressions
containing side-e�ects are put into separate statements (introducing temporary
variables); initializers for local variables are turned into assignments; all forms of
loops (while , for and do-while ) are normalized as a singlewhile(1) looping
construct plus explicit goto statement.

After obtaining the Abstract Syntax Tree (AST) of the C program, C2TLA+
generates the TLA+ speci“cation according to a set of translation rules described
in Subsect.4.2. The whole system is composed of TLA+ modules resulting from
C translation or manual speci“cation that come from di�erent sour ces:

… Several standard modules are provided with TLA+. They containthe de“ni-
tion of basic operators. LikeHead, Tail , Len (for length), 	 (for concatenation),
and SubSeq(for subsequence) that are de“ned inSequencesmodule.
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… TheRuntime module contains the TLA+ de“nition of arithmetic, logical and
relational operators used by C2TLA+, as well as the de“nition of load() and
store() for loading/storing an lvalue in the memory.

… Modules resulting from translation. C2TLA+ generates for each .c “le a
TLA+ module and the Parameters module which contains the de“nition of
constants, type sizes, o�sets of member “elds and variables used by the trans-
lation. It also de“nes the initial predicate Init , the action Next and the speci-
“cation formula Spec. For simplicity, we assume that the size of an integer or
a pointer is 1 (one memory cell).

… Optional manual modules can be speci“ed by the user. They provide concur-
rency primitives or hardware that can not be expressed in C, or an abstract
model.

The set of properties is manually speci“ed. Then, all the modules are inte-
grated to form the complete speci“cation, which is given to TLC to generate the
model and check the properties (or re“nements) to be veri“ed. If a property is
not satis“ed, TLC reports a trace that leads to the bad state. TLC al so provides
coverage information, i. e., the number of times each action was •executedŽ to
construct a new state. Using this information, we can identify actions that are
never •executedŽ and which might indicate an error in the speci“cation. Both
the trace and coverage information can be translated back to C.

The Considered Subset of C.We restrict ourselves to a subset of C resulting
from the simpli“cations done by CIL. Table 1 gives the BNF representation of
the AST of CIL for this subset. The considered aspects include basic data-types
(int , struct , enum), integer operations, arrays, pointers, pointer arithmetic, all
kinds of control ”ow statements, function calls and recursion. Currently, we do
not handle ”oat types, non-portable conversions between objects of di�erent
types, dynamic allocation, function calls through pointers, and assignment of
structs (not needed by our case study), but the translator could be updated to
handle them.

4.2 Memory Layout of Concurrent C Program

A concurrent program consists in several interleaved sequences of operations
called processes(corresponding to threads in C). C2TLA+ attributes a unique
identi“er to each process, and de“nes the constantProcSet to be the set of all
process identi“ers.

The memory layout of a C program in C2TLA+ is organized into four re gions:

… A region that contains global (and static) variables. This region is represented
by a an array, calledmem, that maps addresses to values. This memory region
is shared by all processes.

… A region that contains local variables and function parameters.It is rep-
resented by the TLA+ variable stack data. This region is represented by a
2-dimensional array: one dimension corresponds to the process id (the stack
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Table 1. BNF representation of the AST of CIL for the considered subset of C (The
symbols + pa / � pp denote the addition/substraction between a pointer and an integer.
� pp denotes the substraction between two pointers. � is a terminal symbol that denotes
an empty element).

is not shared between processes); the other to addresses (i. e., o�sets in the
stack). The stack of each function is divided into stack frameswhose bound-
aries (for each process) are given in another variable,stack regs. Each stack
frame corresponds to a call to a function which has not yet returned. Note that
this representation allows a function to access variables in its callers (through
pointers), which is frequent in C.

… A region that stores the program counter of each process; i .e., which statement
is being executed. This information needs to be saved and restored on function
calls and returns. Rather than saving the program counter together with the
data (in the stack data variable), we “nd it simpler to organize the registers of
the program as a stack. We de“ne the TLA+ variable stack regs, associating
to each process a stack of records. Each record contains two “elds:

€ pc, the program counter, points to the current statement of the function
being executed, represented by a tuple� function name, label� ;

€ fp, the frame pointer, contains the base o�set of the current stackframe.
Note that we do not need to store the stack pointer, which is already given using
• Len(stack data)Ž. Each element of the stack of records represents the registers
of a function in the callstack; in particular, • Head(stack regs[id])Ž represents
the registers of the function being currently executed by the process id .

… A region that contains the values returned by a process. It is modeled using
an array called ret, indexed by the process identi“er.

C2TLA+ maps each C variable to unique TLA+ constant modeled by a
record composed with two “elds. The “rst one, loc, determines the memory region
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(a) C code (b) Memory representation

Fig. 3. Example of a C code in which one process (with id equals 0) executes function
P0() and the second one executes functionP1() . The arrows in the C code indicate
which statement the process id is executing. The top of the stack regs[0] indicates that
process 0 is executing the statement with label 9 of function max().

where the variable is stored (mem or stack data). The other one, o�s , de“nes
the o�set of the data in the memory region. Fig. 3 provides a snapshot of the
memory on a C code example. The TLA+ expression [loc 
� ŽmemŽ, o�s 
� 0]
denotes the recordAddr x such that Addr x.loc equals ŽmemŽ and Addr x.o�s
equals 0.o�s for a local variable is relative to the start of the stack frame of the
current function, while o�s for a global variable is the absolute index inmem.

C2TLA+ assigns to global (and static) variables not explicitly initialized
the value 0 for integers, and [loc 
� Null , o�s 
� Null ] for pointers. For local
variables, it assigns theUndef value. Null and Undef are TLA+ •model valuesŽ,
which are an unspeci“ed values that TLC considers to be unequal to any value
that can be expressed in TLA+.

Loading and Assignment. An lvalue is a kind of expression that is evaluated to
an address and which refers to a region of storage. Accessing the value stored in
this region is performed using theload() operator (de“ned in Fig. 4) which uses
the TLA+ construct if/then/else .

The left-hand operand of an assignment must be an lvalue. The assign-
ment in C2TLA+ is performed by the store() operator de“ned in Fig. 5, which
assigns to the lvalueptr the value of the right-hand operand of the assignment.
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load ( id , ptr )
�
= if ptr .loc = “mem” then mem [ptr .o�s ]

else stack data [id ][Head (stack regs [id ]) .fp + ptr .o�s ]

Fig. 4. DeÞnition of load() operator

The expression [mem except ![ptr .o�s ] = value] denotes the function that is
equal to mem except that it maps the value of ptr .o�s to value.

store ( id , ptr , value )
�
=

� � ptr .loc = “mem”
� mem � = [ mem except ! [ptr .o�s ] = value ]
� unchanged stack data

� � ptr .loc = “stack data”
� stack data � = [ stack data except ! [id ][Head (stack regs [id ]) .fp + ptr .o�s ] = value ]
� unchanged mem

Fig. 5. DeÞnition of store() operator

The position of a parameter or local variable in stack data[id] is relative
to the base of the stack frame of the current function, which equals to Head
(stack regs[id]).fp.

Arrays, Pointer Arithmetic and Structure Member. Accessing an array element
in C2TLA+ requires computing the o�set using the size of the elements, the
index and the base address of the array. For example, accessing toz[a] is trans-
lated into:

load ( id , [loc �	 Addr z .loc , o�s �	 (Addr z .o�s + ( load ( id , Addr a ) 
 Size of int ))])

The same kind of computation is used to perform pointer arithmetic. Simi-
larly, accessing a structure member is achieved by shifting thebase address of
the structure with the constant accumulated size of all previous members. For
example, accessing topoint.y is translated into:

load ( id , [loc �	 Addr point .loc , o�s �	 (Addr point .o�s + O�set point y )])

4.3 Intra-procedural Control Flow

Function De“nition. Each C function de“nition is translated into an operator
with the process identi“er id as argument. The function body is translated into
the disjunction of the translation of each statement it contains. A C statement
is translated into the conjunction of actions that are done simultaneously. At
a given state one and only one action is true (i. e., feasible). The translation of
function dec() of the example is as follows:
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dec ( id ) � � � Head (stack regs [id ]) .pc = � “dec” ,“lbl 19” �
� store ( id , Addr dec i , minus ( load ( id , Addr y ) , load ( id , Addr dec param b)))
� stack regs � = [ stack regs except ! [id ] =

� [pc �	 � “dec” , “lbl 20” � , fp �	 Head (stack regs [id ]) .fp ]� � Tail (stack regs [id ])]
� unchanged � ret �

� � Head (stack regs [id ]) .pc = � “dec” ,“lbl 20” �
� stack regs � = ...

The translation of each statements simultaneously asserts that the program
counter points to s; performs the action corresponding to that statement; and
updates the program counter to point to the next statement to execute.

Jump Statements.The translation of goto / break / continue statements consists
in updating stack regs[id] to the successor statement. Thegoto l1 statement
in function max() is translated as:

� � Head (stack regs [id ]) .pc = � “max” , “lbl 10” �
� stack regs � = [ stack regs except ! [id ] =

� [pc �	 � “max” , “lbl 12” � , fp �	 Head (stack regs [id ]) .fp ]� � Tail (stack regs [id ])]
� unchanged � mem , stack data , ret �

Selection Statements. C integer expressions used inif condition are normal-
ized by C2TLA+. Selection statement causes the program control (i. e., stack
regs[id]) to be transferred to a speci“c block based upon whether the guard
expression is true or not. The translation of if statement in function max() is
as follows:

� � Head (stack regs [id ]) .pc = � “max” , “lbl 9” �
� if (( Gt ( load ( id , Addr max param u )) , ( load ( id , Addr max param v ))) �= [ val �	 0])

then stack regs � = [ stack regs except ! [id ] =
� [pc �	 � “max” , “lbl 10” � , fp �	 Head (stack regs [id ]) .fp ]� � Tail (stack regs [id ])]

else stack regs � = [ stack regs except ! [id ] =
� [pc �	 � “max” , “lbl 11” � , fp �	 Head (stack regs [id ]) .fp ]� � Tail (stack regs [id ])]

� unchanged � mem , stack data , ret �

Iteration Statement. All loops in C are normalized by CIL as a singlewhile(1)
looping construct (plus eventual if and break statements), that we translate
like other jump statements.

4.4 Inter-procedural Control Flow

Function Call. The function call is translated in two actions. Before calling a
function f , its stack frame is pushed onto thestack data[id] which obeys the
LIFO order. The stack regs[id] is updated by changing its head to a record
whosepc “eld points to the action done once the call has “nished. At the top
of stack regs[id] is pushed a record with pc pointing to the “rst statement of
the called function, and fp to the new stack frame. Once the function returns,
the second action copies the return value. For instance, the translation of r1 =
dec(2) is as follows:

amira.methni@cea.fr



216 A. Methni et al.

� � Head ( stack regs [id ]) .pc = � “P1” , “lbl 30” �
� stack data � = [ stack data except ! [id ] = stack data [id ] � � [val �	 2], [val �	 Undef ]� ]
� stack regs � = [ stack regs except ! [id ]

= � [pc �	 � “dec” ,“lbl 19” � ,fp �	 Len (stack data [id ]) + 1] �
� � [pc �	 � “P1” , “lbl 30.1” � , fp �	 Head (stack regs [id ]) .fp ]� � Tail (stack regs [id ])]

� unchanged � mem , ret �
� � Head ( stack regs [id ]) .pc = � “P1” , “lbl 30.1” �

� store ( id , Addr P 1 r 1, ret [id ])
� stack regs � = [ stack regs except ! [id ] =

� [pc �	 � “P1” , “lbl 31” � , fp �	 Head (stack reg [id ]) .fp ]� � Tail (stack regs [id ])]
� unchanged � ret �

Return Statement. Once the function returns, the top of the stack regs[id] is
popped and its stack frame is removed fromstack data[id] using the SubSeq
operator. The returned value is stored onret[id] . The return i statement of
function dec() is translated as follows:

� � Head (stack regs [id ]) .pc = � “dec” , “lbl 20” �
� stack regs � = [ stack regs except ! [id ] = Tail (stack regs [id ])]
� stack data � = [ stack data except ! [id ] =

SubSeq(stack data [id ], 1, Head (stack regs [id ]) .fp Š 1)]
� ret � = [ ret except ! [id ] = load ( id , Addr dec i )]
� unchanged � mem �

4.5 Generating the SpeciÞcation

In addition to generating constants and variables declarations, C2TLA+ also
de“nes in Parameters module the main speci“cation by generating:

… TheInit predicate that initializes all variables of the system.
… The tuple of all variablesvars �= �mem, stack data, stack regs, ret � .
…process(id ), that de“nes the next-state action of process id . It asserts that

one of the functions is being executed untilstack regs[id] becomes empty. For
the C code example, it is de“ned as:

process ( id )
�
= � stack regs [id ] �= ��

� ( max ( id ) � inc ( id ) � dec ( id ) � P 0( id ) � P 1( id ) )

… The next-state actionNext of all processes, that states that one of the process
that has not “nished is nondeterministically chosen to execute one step.

Next
�
= � 
 id � ProcSet : process ( id )

� ( � id � ProcSet : ( stack regs [id ] = �� ) � (unchanged vars ))

… The complete speci“cationSpec �= Init � � [Next]vars � WFvars (Next). It is
necessary to consider the fairness assumptions if we want to check liveness
properties. We assume only weak fairness assumptions.

The speci“cation can be checked by TLC without manually de“ning anyt hing
by the user. Errors that occur because TLC could not evaluate an expression
correspond to a runtime error in the C code, like dereferencing a null pointer,
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and are reported to the user. C2TLA+ also generates theTermination property
which asserts that all processes have their stack pointer eventually empty. This
property is useful in some test cases.

Termination
�
= � ( � id � ProcSet : Head (stack regs [id ]) .pc = �� )

5 Implementation and Experiments

C2TLA+ is developed as a Frama-C [9] plugin, implemented in OCaml. Frama-
C uses CIL to reorganize and simplify C code, produces an Abstract Syntax Tree
(AST) and passes it to the C2TLA+ translator. We have used C2TLA+ in a case
study, described in Sect.5.1. We use this case study as an example to describe
the interactions between generated speci“cations and manuallyspeci“ed ones.

5.1 Case Study Description

We have applied our approach and tools (C2TLA+, TLC) on a critical pa rt of the
microkernel of the PharOS [19] real-time operating system (RTOS). This part
contains approximately 600 lines of code and consists in a distributedversion of
the scheduling algorithm of the RTOS tasks. It implements a variant of the EDF
(Earliest-Deadline First) scheduling algorithm. It runs on a dual-core system and
consists of two processes: one running on thecontrol core and the other on the
executing core. The two processes share a set of task lists. Concurrent access
to shared data is ensured by lock-free synchronization. Figure6(a) presents the
architecture of the modules of the microkernel that are of interest to us:

date provides the current date of the system. The considered implementation
uses Lamport•s algorithm of concurrent reading and writing of clocks [15].
This allows to read a concrete clock value, even if this value is concurrently
updated.

spinlock implements lock-based concurrency primitive using •compare-and-
swapŽ primitive.

tasklist implements the life-cycle of a task as given in Fig.6(b). Tasks can
be in several states, each state corresponds to a data structure listing the
tasks in that state. The incoming/outgoing edge denotes insertion/removal
operation. Tasks are characterized by theirstart time and deadline.

scheduler is at the top-level. It performs inter-core noti“cations to awak e proce-
sses when they have things to do. This module is not considered intranslation
because we do not provide support for interruptions yet.

5.2 TLA+ Modules of the Model

C2TLA+ takes as inputs the C source code of these modules. By applying our
approach, we obtain the TLA+ modules of Fig. 7.

C2TLA+ generates the Parameters module and a TLA+ module for each C
input “le. These modules can interact with manually speci“ed TLA+ modules.
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(a) Modules dependencies (b) State-transition diagram of tasks

Fig. 6. Case study description

Fig. 7. TLA+ modules of the case study

Test Environment. The test environment represents the entry point of the
model. It simulates the main scheduler module by calling the tasklist API and
it is manually speci“ed in the TestEnvironment TLA+ module.

Interacting with Manually TLA+ SpeciÞcations.

Specifying Concurrency Primitives. The spinlock module contains the de“nition
of •acquireŽ and •releaseŽ operations which use the •compare-and-swapŽ (CAS)
primitive. Fig. 8(a) shows the pseudo code version of this primitive. As this oper-
ation is performed atomically, we cannot translate it with C2TLA+. Suc h prim-
itives are speci“ed manually, respecting the calling conventions of Subsect.4.4
and are declared in the C code using attribute annotation mechanism
to de“ne the TLA+ module where the primitives are speci“ed. For i nstance,
CAS is speci“ed in the Atomic primitives module as shown in Fig.8(b). Other
primitives could be added to Atomic primitives which could be provided as a
standard module.

Using an Abstract Model. The implementation of read and write operations
on clock, in date module, is performed on several instructions. The possible
interleaving of these instructions multiplies the number of states ofthe model.
To cope with this problem, we write an abstract TLA+ version of date, called
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int CAS (int *,int , int) attribute
((Atomic primitives,alias("CAS")));
...
int CAS(int *addr, int old, int new)
{
atomic {
int temp = *addr;
if (temp == old)
{

*addr = new;
return 0;

}
else return 1; }

}

(a) Pseudo code

CAS ( id )
�
=

� Head (stack regs [id ]) .pc = � “CAS” , “lbl 1” �
� if ( load ( id , load ( id , Addr CAS param addr )) =

load ( id , Addr CAS param old ))
then � mem � = [ mem except

! [load ( id , Addr CAS param addr ) .o�s ] =
load ( id , Addr CAS param new )]
� ret � = [ ret except ! [id ] = [ val �	 1]]

else � ret � = [ ret except ! [id ] = [ val �	 0]]
� unchanged � mem �

� stack regs � = [ stack regs except ! [id ] =
Tail (stack regs [id ])]

� stack data � = [ stack data except ! [id ] =
SubSeq(stack data [id ], 1, Head (stack regs [id ]) .fp Š 1)]

(b) TLA+ code

Fig. 8. CAS deÞnition

Date abs which reads and writes the whole date atomically. Using this version
considerably decreases the state space (see Table2). We also verify that Date
(the translated module) is a re“nement of Date abs.

5.3 Specifying and Verifying Properties

We veri“ed various properties of the system. Here we provide some examples.
We have checked that all spinlocks protect the critical sections, i. e., statements
of the two processes cannot be executed simultaneously.

Mutex (sc1, sc2)
�
=

� (( Head (stack regs [“exec core”]) .pc = sc1) � (Head (stack regs [“control core”]) .pc �= sc2))

An important invariant of the system is that the tasks in the ready list are
sorted by their deadlines; this is necessary to implement the EDF algorithm. To
state this invariant, we “rst de“ne a recursive operator getSeqDeadlineswhich
maps the C linked list to a more abstract TLA+ sequence. The property is sim-
pler to state on this abstract sequence by de“ning theIsSortedSeq() operator.

getSeqDeadlines [ptr � SetAddr ]
�
=

if (ptr �= [ loc �	 Null , o�s �	 Null ])
then � load ( id , [loc �	 ptr .loc , o�s �	 (ptr .o�s + O�set task deadline )]) �

� getSeqDeadlines [load (“unsued” , [loc �	 ptr .loc , o�s �	 (ptr .o�s + O�set task next )])]
else ��

IsSortedSeq (S)
�
=

S �= �� � ( � i � 1 . . Len (S) , j � 1 . . Len (S) : ( i �= j ) � ( i � j ) � (S[i ].val � S[j ].val ))

The property applied on ready list is expressed as follows:

� IsSortedSeq (getSeqDeadlines [load (“unused” , Addr readyList )])

We have also checked some liveness properties, for instance, that if a thread
entered its critical section, it will eventually leave it. This property can be
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expressed by comparing the program counter of the process to the statement
labels of the functions •spinlock acquireŽ and •spinlock releaseŽ. For example,
for the executing core, the property is expressed as:

� (( Head (stack regs [“exec core”]) .pc = � ” spinlock acquire ” , ” lbl 2” � ) �
� (Head (stack regs [“exec core”]) .pc = � ” spinlock release ” , ” lbl 15” � ))

In order to use the abstract model Date abs instead of Date, we have to
check that the Date model is a re“nement of the Date abs model. For this, we
have to map states inDate model with those of Date abs model by substituting
constants and variables used inDate abs with those of Date. The re“nement is
expressed in TLA+ as logical implication. Verifying this re“nement is satisfying
that the speci“cation of Date implies this substitution.

5.4 VeriÞcation and Discussion

We integrated the modules together and we performed model checking on two
complete speci“cations. The “rst speci“cation uses the translated Date module
and the second one uses the abstractDate abs module. The experiment was
performed on an Intel Core Pentium i7-2760QM with 8 cores (2.40 GHzeach)
machine, with 8 Gb of RAM memory. We model checked the two speci“cations
by considering four possible values of the clock. The executing core updates
the start time and deadline of the task that has run and inserts it into the
unsorted lists. Table 2 provides the generated states and the model checking
time according to the number of tasks, for the two considered speci“cations.

Table 2. Runtimes of model checking (time in seconds)

Tasks SpeciÞcation using

Date Date abs

State space Time State space Time

1 5.986.509 227 718.084 20

2 > 501.876.263 > 10.800 5.450.732 64

3 - - 45.201.603 960

4 - - 138.679.106 2.400

For two tasks, the speci“cation using Date module takes more than 3 h to
be model checked. Using an abstract model signi“cantly reduces the size of the
state space and the time required for model checking.

We have successfully checked that the correctness properties (de“ned in Sub-
Sect.5.3) are satis“ed by the model. One of the motivations for verifying this
code was to check that the “ne-grained locking constructs wereproperly used.
We checked that changing the locks in the source code leads toTLC “nding
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that some invariants become violated. In that case, we obtain the error trace
that explains how the error can happen and TLC reports that the coverage is
incomplete.

6 Conclusion and Future Work

We have sketched an approach for specifying and verifying C code based on an
automated translation from C to TLA+. The main advantage of our ap proach
is the ability to make generated TLA+ speci“cations from a C implement a-
tion interact with more abstract, potentially already existing manually speci“ed
TLA+ speci“cations. We use the TLC model checker to verify a part of the
implementation of an RTOS microkernel against safety and liveness properties
expressed in TLA+. We also checked that a generated speci“cation was a re“ne-
ment of an abstract TLA+ speci“cation, and showed that we could successfully
use abstraction to reduce the size of the state space.

We plan to extend this work on several interesting directions. We would
like to extend the translator to handle a bigger subset of C and to generate
TLA+ properties from the ACSL [ 3] speci“cation language used in Frama-C.
We want to update the translator so that the generated TLA+ speci“cation
catches all C runtime errors. It would be interesting to bene“t fr om Frama-C
analysis of shared variables by several processes to generate TLA+ code with
less interleaving between the processes, to reduce the state space. We also plan
to further study the use of TLA+ modules with di�erent levels of re“ nement.
Finally, we aim to use the TLA+ proof system [ 8] to prove properties on an
abstract speci“cation of PharOS and prove that the speci“cation generated by
C2TLA+ is a re“nement of this abstract speci“cation.
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