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Abstract.  Verifying software systems automatically from their source
code rather than modelling them in a dedicated language gives more con-
bPdence in establishing their properties. Here we propose a formal spec-
ibcation and veribcation approach for concurrent C programs directly
based on the semantics of C. We debne a set of translation rules and
implement it in a tool (C2TLA+) that automatically translates C code

into a TLA+ specibcation. The TLC model checker can use this spec ibca-
tion to generate a model, allowing to check the absence of runtime errors
and dead code in the C program in a given conbguration. In addition, we
show how translated specibcations interact with manually written o nes
to: check the C code against safety or liveness properties; provide ©on-
currency primitives or model hardware that cannot be expressed in C;
and use abstract versions of translated C functions to address the state
explosion problem. All these veribcations have been conduded on an
industrial case study, which is a part of the microkernel of the PharOS
real-time system.

1 Introduction

Most software systems like the Linux kernel or the Apache Webserveare imple-
mented in a low level language such as C, which is one of the most u$ero-
gramming languages in industry. Verifying C code is challenging, in pgicular
due to the presence of pointers and pointer arithmetic.

Moreover, C software systems are often concurrent, and traditioal testing
techniques are not e cient to check the correctness of the impementation. Thus,
the use of formal veri“cation techniques is essential. We addresthese issues in
the context of formal veri“cation of operating systems microkernds written in
C code. In this paper, we focus on the model checking technique, gopular tech-
nigue for the veri“cation of correctness properties of “nite-state systems. Given
a set of properties expressed in a temporal logic and a model, it aomatically
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analyzes the state space of the model and checks whether the modedtis“es
the properties [6]. To apply this technique to the veri“cation of C programs,
the target modeling language should express all C features, halte concurrency,
allow to state the properties that we want to verify, and its tools should scale
up to large systems.

Contribution. Our main contribution is to provide a formal speci“cation and
veri“cation approach of C concurrent programs, based on both aiomatic (e.g.,
pre-post conditions) and operational (executable model) speci“ction of a C imple-
mentation. We use TLA+ [ 17] as a formal speci“cation language for writing our
speci“cations. In this approach, we translate a C code to an exedable TLA+
speci“cation using the C2TLA+ tool that we present in the paper. The gener-
ated speci“cations can be checked for runtime errors in the C codéNe show how
the speci“cations thus generated can be completed with manually witten TLA+
speci“cations: to provide concurrency primitives, to model hadware that cannot
be expressed in C, to check the C code against safety or livesg properties and to
provide an abstract operational speci“cation. In the latter case the operational
speci“cation can be used in place of the C code in order to verifghe whole sys-
tem. Preliminary experiments hint that this could considerably lessen the state
explosion problem. These examples are presented in a concratase study, which
is part of the microkernel of the real-time operating system PharOS 19].

Outline. The rest of the paper is organized as follows. We discuss rekd work
in Sect.2. We give an overview of TLA+ in Sect. 3. Section4 presents the global
approach and focus on the translation from C to TLA+. Section 5 presents a
concrete application of the approach on the case study. Sectiof concludes and
presents future research directions.

2 Related Work

There are a variety of formal veri“cation techniques. Among them there are
deductive veri“cation techniques using theorem proving such a VCC [7]. These
techniques provide a rigorous approach but usually require dot of human e ort
and user expertise. Model checking is an automatic technique whh requires less
human e ort because it is fully automated once the system and its poperties are
speci“ed. But, it is restricted to “nite-state systems. In what follo ws we focus
on the model checking tools for C programs related to our work.

SLAM [2] was the “rst model checker for C programs to implement the
Counterexample Guided Abstraction Re“nement(CEGAR) approach [5]. This
approach has been used later in the BLAST 11] toolkit. SLAM and BLAST
have been used to check device drivers but they are only used faequential
C programs.

Besides CEGAR based tools, an approach consists to transform $hC code
into the input language of a model checker. Modex14] can automatically extract
a Promela model from a C code implementation. The Promela code eperated
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is then checked with the SPIN [L2] model checker. Promela is a simple lan-
guage that does not handle pointer and has no procedure calls. dlex handles
these missing features by including embedded declarations argtatements inside
Promela speci“cations. The embedded code fragments can notdichecked by the
SPIN and can contain a division by zero error, or null pointer deeference. To
mitigate this problem, Modex instruments additional checks using assertions.
But, not all errors can be anticipated and the model checker can aash [L3].

CBMC [4] is a bounded model checker for ANSI C programs that translates
a program into a formula (in Static Single Assignment form) which is then fed
to a SAT or SMT solver to check its satis“ability. It can be used to v erify array
bounds, pointer safety, exceptions and user-speci‘ed asseoms. On the other
hand, CBMC explores program behavior exhaustively but only yp to a given
depth, i.e., it is restricted to programs without deep loops [L(]. PlusCal [18] is
a high-level language for expressing multiprocess algorithms. A Plus&l algo-
rithm can be automatically translated into a TLA+ speci“cation. Plus Cal-2 [1]
improves Lamportes PlusCal language by adding new constructs like ierarchi-
cal processes and specifying atomicity for some part of the ced Moreover, it
does not support some constructs of imperative programming like pinter-based
structures and does not handle function calls. PlusCal is also an algdghm lan-
guage that can be used to replace pseudo code but cannot be usigdthe “nal
implementation.

In this work, we use TLA+ as formal framework which provides an expressive
power to specify the semantics of a programming language. It is gported by
the TLC model checker and the TLAPS [8] prover. Moreover, TLA+ is a logic
that can reason about concurrent systems and can express sagjeand liveness
properties unlike SLAM, BLAST and CBMC which have limited supp ort for
concurrent properties as they only check safety properties. &rthermore, TLA+
provides a mechanism for structuring large speci“cations usig a re“nement
process between di erent levels of abstraction unlike Spin ad CBMC.

3 An Overview of TLA+

TLA+ [ 17] is the speci“cation language of the Temporal Logic of Actions (TLA).

TLA is a variant of linear temporal logic introduced by Lamport [ 16] for spec-
ifying and reasoning about concurrent systems. The syntax of TLA isgiven in

Fig. 1 (the symbol meansequal by de“nition). Readers interested in a more
detailed presentation of TLA+ can refer to Lamportes book [17].

TLA+ speci“es a system by describing its possible behaviors. Abehavior is
an in“nite sequence of states. Astate is an assignment of values to variables.
A state function is a nonboolean expression built from constants, variables and
constant operators and it assigns a value to each state. For exanip, y + 2 is a
state function that assigns to state s two plus the value that s assigns to the
variable y. An action is a boolean expression containing constants, variables
and primed variables (adorned with « Z operator). Unprimed variables refer to
variable values in the actual state and primed variables refer to thé values in
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1>

(formula) (predicate) | O[(action)] (state functiony | —{(formula)

| (formula) A {formula) | O{(formula)

(action) £ poolean valued expression containing constant symbols, variables,
and primed variables
(predicate) £ (formula) with no primed variables | ENABLED (action)
"y

(state function) nonboolean expression containing constant symbols and variables

Fig.1. TLA syntax [ 17]

the next-state. Thus, an action represents a relation between oldtates and new
states. A state predicate (or predicate for short) is an action with no primed
variables.

TLA+ formulas are built up from actions and predicates using boolean oper-
ators (- and and others that can be derived from these two), quanti“cation
over logical variables (, ), and the unary temporal operator (always) of
linear temporal logic [20].

The behaviors satisfying this speci“cation are the ones that repesent correct
behaviors of the system, where a behavior represents a concable history of a
universe that may contain the system.

The predicate enabled AZ, whereA is an action, is de“ned to be true in
a state s i there exists some state t such that the pair of states s,t satis“es
A. The formula [Alvars ,» Where A is an action and vars the tuple of all system
variables, is equal to @ (vars = vars)) where vars is the expression obtained
by priming all variables in vars. It asserts that every step (pair of successive
states) is either anA step or else leaves the values of all variablesars unchanged.
TLA+ de“nes the abbreviation « unchanged varsZ to denote thatvars = vars.
While TLA+ permits a variety of speci“cation styles, the speci“cation th at we
use is de“ned by:

Spec  Init [Nextlyars Fairness (1)
where:

..Init is a state predicate describing the possible initial states by assignip
values to all system variables,

...Next is an action representing the programes next-state relation,

...vars is the tuple of all variables,

..Fairness is an optional formula representing weak or strong assumptionstaout
the execution of actions.

Formula Specis true of a behavior i Init is true of the “rst state of and
every step of is either a Next step or a estuttering stepZ, in which none of the
speci‘ed variables change their values, andrairness holds.

The TLA+ formula Spec is valid when the model represented bySpec
satis“es the property , or implements the model

TLA+ has a model checker called TLC that can be used to check the alidity
of safety and liveness properties. TLC handles speci“cationshat have the stan-
dard form of the formula (1). It requires a con“guration “le which de“nes the
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Fig. 2. Specibcation and veribcation process

“nite-state instance to analyze. TLC begins by generating all states satisfying
the initial predicate Init . Then, it generates every possible next-stateé such that
the pair of states s,t satis“es Next and the Fairness constraints, looking for a
state where an invariant is violated. Finally, it checks temporal properties over
the state space.

4 Specibcation and Veribcation Process

4.1 Proposed Approach

Approach Work”ow. The speci“cation and veri“cation process is illustrated in
Fig. 2. The “rst step of the process is to translate from an implementation
provided by one or more.c “les a TLA+ speci“cation using our translator
C2TLA+. Before translation, the C “les are parsed and normalized according
to CIL (C Intermediate Language) [21]. Normalization to CIL makes programs
more amenable to analysis and transformation. In particular, dl expressions
containing side-e ects are put into separate statements (introducing temporary
variables); initializers for local variables are turned into assignmets; all forms of
loops (while , for and do-while ) are normalized as a singlewhile(1) looping
construct plus explicit goto statement.

After obtaining the Abstract Syntax Tree (AST) of the C program, C2TLA+
generates the TLA+ speci“cation according to a set of translation rules described
in Subsect.4.2. The whole system is composed of TLA+ modules resulting from
C translation or manual speci“cation that come from di erent sour ces:

... Several standard modules are provided with TLA+. They contairthe de“ni-
tion of basic operators. LikeHead Tail, Len (for length), (for concatenation),
and SubSeq(for subsequence) that are de“ned inSequencesnodule.
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... TheRuntime module contains the TLA+ de“nition of arithmetic, logical and
relational operators used by C2TLA+, as well as the de"nition of load() and
store() for loading/storing an Ivalue in the memory.

. Modules resulting from translation. C2TLA+ generates for edt .c “le a

TLA+ module and the Parameters module which contains the de“nition of

constants, type sizes, o sets of member “elds and variables uskby the trans-

lation. It also de“nes the initial predicate Init , the action Next and the speci-
“cation formula Spec For simplicity, we assume that the size of an integer or
a pointer is 1 (one memory cell).

. Optional manual modules can be speci“ed by the user. They prime concur-
rency primitives or hardware that can not be expressed in C, or a abstract

model.

The set of properties is manually speci“ed. Then, all the modués are inte-
grated to form the complete speci“cation, which is given to TLC to generate the
model and check the properties (or re“nements) to be veri‘ed. Ifa property is
not satis“ed, TLC reports a trace that leads to the bad state. TLC al so provides
coverage information, i.e., the number of times each action was secutedZ to
construct a new state. Using this information, we can identify actions that are
never sexecutedZ and which might indicate an error in the speci‘cdion. Both
the trace and coverage information can be translated back to C.

The Considered Subset of C.We restrict ourselves to a subset of C resulting
from the simpli“cations done by CIL. Table 1 gives the BNF representation of
the AST of CIL for this subset. The considered aspects include bas data-types
(int , struct , enun), integer operations, arrays, pointers, pointer arithmetic, all

kinds of control "ow statements, function calls and recursion. Currently, we do

not handle "oat types, non-portable conversions between olgcts of dierent

types, dynamic allocation, function calls through pointers, and assigment of
structs (not needed by our case study), but the translator could be ypdated to

handle them.

4.2 Memory Layout of Concurrent C Program

A concurrent program consists in several interleaved sequers of operations
called processes(corresponding to threads in C). C2TLA+ attributes a unique
identi“er to each process, and de“nes the constantProcSet to be the set of all
process identi“ers.

The memory layout of a C program in C2TLA+ is organized into four re gions:

... Aregion that contains global (and static) variables. This region isepresented
by a an array, calledmem, that maps addresses to values. This memory region
is shared by all processes.

. A region that contains local variables and function parameterslt is rep-
resented by the TLA+ variable stack data. This region is represented by a
2-dimensional array: one dimension corresponds to the procesd (the stack
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Table 1. BNF representation of the AST of CIL for the considered subset of C (The
symbols +pa/ , denote the addition/substraction between a pointer and an integer.

» denotes the substraction between two pointers. is a terminal symbol that denotes
an empty element).

<prg> :=<decls> (<fun_def>)*

<decls> 1= Egee | <decl> <decls>

<decl> i=<type> VAR.ID ;

<params> 1= Epgram | <param> <params>

<param> =<type> VAR.ID ,

<fun_def> 1=<type> FUN_ID (<params> ) { <decl> <stmt> }

<type> n=  int | <type> * | struct { (<type> VAR.ID ;)* };
| enum { ENUM_ID , (ENUM.ID)* };

<stmt> = { (<stmt>;)* } | while(1) <stmt>
| if <expr> <stmt> (else <stmt>)7 | <lval> = <expr>
| <lIval> = FUN_ID ( (<expr>,)* ) | LABEL.ID: <stmt>
| goto LABEL_ID | break | continue | return (<expr>)?
| €stmt \* Skip instruction *\

<expr> = <expr> <bin_op> <expr> | <un_op> <expr>
| <expr> +,,<expr> | <expr> -p,<expr>
| <expr> -p,<expr> | & <expr> | <lval> | CONSTANT

<lval> = VAR.ID <offs> | (x <expr> ) <offs>

<offs> :=  .FIELD.ID <offs> | [ <expr> 1 <offs> | eqg,

<bin_op> = x|+ = U]/ > >=] <] <=] =] t=]| ]| Il

<un_op> = !

{VAR, FUN, ENUM, LABEL, FIELD}_ID ::= [a-zA-Z][0-9a-zA-Z_]*

CONSTANT = [1-9]([0-9])*

is not shared between processes); the other to addresses (i. e.s&ts in the

stack). The stack of each function is divided into stack frameswhose bound-
aries (for each process) are given in another variablestack regs Each stack
frame corresponds to a call to a function which has not yet returred. Note that
this representation allows a function to access variables in its caller (through

pointers), which is frequent in C.

. Aregion that stores the program counter of each process; i .e hieh statement
is being executed. This information needs to be saved and restorechdunction

calls and returns. Rather than saving the program counter togetter with the

data (in the stack data variable), we “nd it simpler to organize the registers of
the program as a stack. We de“ne the TLA+ variable stack regs associating
to each process a stack of records. Each record contains two “edd

€ pc, the program counter, points to the current statement of the function
being executed, represented by a tuplefunction name, label ;
€ fp, the frame pointer, contains the base o set of the current stackframe.

Note that we do not need to store the stack pointer, which is alreay given using

« Len(stack_data)Z. Each element of the stack of records represents the registers
of a function in the callstack; in particular, « Head(stack regs[id])Z represents
the registers of the function being currently executed by the procesid.

. A region that contains the values returned by a process. It is nuiled using
an array called ret, indexed by the process identi“er.

C2TLA+ maps each C variable to unique TLA+ constant modeled by a
record composed with two “elds. The “rst one, loc, determines the memory region
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(a) C code (b) Memory representation

Fig. 3. Example of a C code in which one process (withid equals 0) executes function
PO() and the second one executes functionP1() . The arrows in the C code indicate
which statement the processid is executing. The top of the stack_regs[0] indicates that
process 0 is executing the statement with label 9 of function max().

where the variable is stored (nem or stack data). The other one, o s, de“nes
the o set of the data in the memory region. Fig. 3 provides a snapshot of the
memory on a C code example. The TLA+ expressionlpc ~ ZmemZ,o0s 0]
denotes the recordAddr_x such that Addr_x.loc equals ZnemZ and Addr_x.o s
equals 0.0 s for a local variable is relative to the start of the stack frame of the
current function, while os for a global variable is the absolute index inmem.

C2TLA+ assigns to global (and static) variables not explicitly initialized
the value 0 for integers, and [oc Null,o0s Null] for pointers. For local
variables, it assigns theUndef value. Null and Undef are TLA+ *model valuesZ,
which are an unspeci“ed values that TLC considers to be unequlato any value
that can be expressed in TLA+.

Loading and Assignment. An Ivalue is a kind of expression that is evaluated to
an address and which refers to a region of storage. Accessingelivalue stored in
this region is performed using theload() operator (de“ned in Fig. 4) which uses
the TLA+ construct if/then/else

The left-hand operand of an assignment must be an Ivalue. The ssign-
ment in C2TLA+ is performed by the store() operator de“ned in Fig. 5, which
assigns to the Ivalueptr the value of the right-hand operand of the assignment.
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load (id, ptr) = if ptr .loc = “mem” then mem [ptr .0s ]
else stack _data [id J[Head (stack _regs[id]).fp + ptr .0s ]

Fig. 4. DebPnition of load() operator

The expression inem except ![ptr.os] = value] denotes the function that is
equal to mem except that it maps the value of ptr.o s to value.

store (id, ptr , value) =
ptr .loc = “mem”
mem =[mem except ![ptr .os ]= value]
unchanged stack _data
ptr .loc = “stack _data”
stack _data = [ stack _data except ![id ][Head (stack _regs[id]).fp + ptr .os ]= value]
unchanged mem

Fig. 5. Debnition of store() operator

The position of a parameter or local variable in stack data[id] is relative
to the base of the stack frame of the current function, which equé to Head
(stack_regs[id]).fp.

Arrays, Pointer Arithmetic and Structure Member. Accessing an array element
in C2TLA+ requires computing the o set using the size of the elements, the

index and the base address of the array. For example, accessing 1fa] is trans-

lated into:

load (id , [loc Addr _z.loc,0s (Addr _z.os +(load (id, Addr _a) Size_of _int ))]) ‘

The same kind of computation is used to perform pointer arithmetic. Smi-
larly, accessing a structure member is achieved by shifting thébase address of
the structure with the constant accumulated size of all previous menbers. For
example, accessing tgoint.y is translated into:

load (id , [loc Addr _point .loc,0s (Addr _point .os + Oset _point _y)])

4.3 Intra-procedural Control Flow

Function De“nition. Each C function de“nition is translated into an operator
with the process identi“er id as argument. The function body is translated into
the disjunction of the translation of each statement it contains. A C statement
is translated into the conjunction of actions that are done simultaneously. At
a given state one and only one action is true (i. e., feasible). The traslation of
function dec() of the example is as follows:
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dec(id) Head (stack _regs[id]).pc = “dec”,“Ibl _19”
store (id , Addr _dec_i, minus (load (id, Addr _y), load (id, Addr _dec_param _b)))
stack _regs = [ stack _regs except ![id]=
[pc “dec”, “Ibl _20”" , fp Head (stack _regs[id]).fp]  Tail (stack _regs [id ])]
unchanged ret
Head (stack _regs[id]).pc = *“dec”,“Ibl _20”
stack _regs = ...

The translation of each statements simultaneously asserts that the program
counter points to s; performs the action corresponding to that statement; and
updates the program counter to point to the next statement to execute.

Jump Statements. The translation of goto/break/ continue statements consists
in updating stack regs[id] to the successor statement. Thegoto 11 statement
in function max() is translated as:

Head (stack _regs[id]).pc = “max”, “lbl 10"
stack _regs = [ stack _regs except ![id]=

[pc “max”, “Ibl -12" , fp Head (stack _regs[id]).fp]  Tail (stack _regs[id ])]
unchanged mem, stack _data , ret

Selection Statements. C integer expressions used irif condition are normal-
ized by C2TLA+. Selection statement causes the program control (. e., stack
regs[id]) to be transferred to a speci“c block based upon whether the guard
expression is true or not. The translation of if statement in function max() is
as follows:

Head (stack _regs[id]).pc = “max”, “lbl_9”
if ((Gt (load (id, Addr _max _param _u)), (load (id, Addr _max _param _v))) =[val 0])
then stack _regs = [ stack _regs except ![id]=

[pc “max”, “Ibl 10" , fp Head (stack _regs[id]).fp]  Tail (stack _regs[id ])]
else stack _regs = [ stack _regs except ![id]=

[pc “max”, “Ibl -11" , fp Head (stack _regs[id]).fp]  Tail (stack _regs[id ])]
unchanged mem, stack _data , ret

Iteration Statement. All loops in C are normalized by CIL as a singlewhile(1)
looping construct (plus eventual if and break statements), that we translate
like other jump statements.

4.4  Inter-procedural Control Flow

Function Call. The function call is translated in two actions. Before calling a
function f, its stack frame is pushed onto thestack data[id] which obeys the
LIFO order. The stackregs[id] is updated by changing its head to a record
whosepc “eld points to the action done once the call has “nished. At the top
of stack_regs[id] is pushed a record with pc pointing to the “rst statement of
the called function, and fp to the new stack frame. Once the function returns,
the second action copies the return value. For instance, the traslation of r1 =
dec(2) is as follows:
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Head ( stack _regs[id]).pc = “P1", “Ibl _30”
stack _data = [ stack _data except ![id]= stack _data[id] [val 2], [val Undef ] ]
stack _regs = [ stack _regs except ![id]

= [pc “dec” ,“Ibl _19" ,fp Len (stack _data [id ]) + 1]

[pc “P1”, “Ibl _30.1" , fp Head (stack _regs[id]).fp]  Tail (stack _regs [id ])]

unchanged mem, ret
Head ( stack _regs[id]).pc = “P1",“lbl_30.1"
store (id, Addr _P1_r 1, ret [id ])
stack _regs = [ stack _regs except ![id]=

[pc “P1”, “Ibl _31" , fp Head (stack _reg[id]).fp]  Tail (stack _regs[id ])]
unchanged ret

Return Statement. Once the function returns, the top of the stack regs[id] is
popped and its stack frame is removed fromstack data[id] using the SubSeq
operator. The returned value is stored onret[id]. The return i statement of
function dec() is translated as follows:

Head (stack _regs[id]).pc = “dec”, “Ibl _20”
stack _regs = [ stack _regs except ![id]= Tail (stack _regs[id ])]
stack _data = [ stack _data except ![id]= B
SubSeq (stack _data [id ], 1, Head (stack _regs[id ]).fp S 1)]
ret =[ret except ![id]= load (id, Addr _dec_i)]
unchanged mem

4.5 Generating the Specibcation

In addition to generating constants and variables declarations, CILA+ also
de“nes in Parameters module the main speci“cation by generating:

... Thenit predicate that initializes all variables of the system.

... The tuple of all variablesrvars = mem, stack_data, stack_regs, ret .

...procesqid), that de“nes the next-state action of processid. It asserts that
one of the functions is being executed untilstack regs[id] becomes empty. For
the C code example, it is de“ned as:

process (id) =  stack _regs[id] =
(max (id) inc(id) dec(id) PO(id) P1(id))

. The next-state actiorNext of all processes, that states that one of the process
that has not “nished is nondeterministically chosen to execute one stp.

Next = id ProcSet : process (id)
( id ProcSet : (stack _regs[id]= ) (unchanged vars))

. The complete speci“catiorBpec = Init [Nextlvars WHFyars (Next). It is
necessary to consider the fairness assumptions if we want to ctle liveness
properties. We assume only weak fairness assumptions.

The speci“cation can be checked by TLC without manually de“ning anything
by the user. Errors that occur because TLC could not evaluate an gpression
correspond to a runtime error in the C code, like dereferencig a null pointer,
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and are reported to the user. C2TLA+ also generates theTermination property
which asserts that all processes have their stack pointer evenally empty. This
property is useful in some test cases.

Terminaton = ( id ProcSet : Head (stack _regs[id]).pc = )

5 Implementation and Experiments

C2TLA+ is developed as a Frama-C P] plugin, implemented in OCaml. Frama-
C uses CIL to reorganize and simplify C code, produces an Abstict Syntax Tree
(AST) and passes it to the C2TLA+ translator. We have used C2TLA+ in a case
study, described in Sect5.1. We use this case study as an example to describe
the interactions between generated speci“cations and manuallyspeci“ed ones.

5.1 Case Study Description

We have applied our approach and tools (C2TLA+, TLC) on a critical pa rt of the
microkernel of the PharOS [L9] real-time operating system (RTOS). This part
contains approximately 600 lines of code and consists in a distributedersion of
the scheduling algorithm of the RTOS tasks. It implements a variant of the EDF
(Earliest-Deadline First) scheduling algorithm. It runs on a dual-core system and
consists of two processes: one running on theontrol core and the other on the
executing core The two processes share a set of task lists. Concurrent access
to shared data is ensured by lock-free synchronization. Figuré(a) presents the
architecture of the modules of the microkernel that are of interest to us:

date provides the current date of the system. The considered implemeéation
uses Lamportes algorithm of concurrent reading and writing of docks [L5].
This allows to read a concrete clock value, even if this value is concuently
updated.

spinlock implements lock-based concurrency primitive using ecompae-and-
swapZ primitive.

tasklist implements the life-cycle of a task as given in Fig6(b). Tasks can
be in several states, each state corresponds to a data structure listqhthe
tasks in that state. The incoming/outgoing edge denotes insertiorfremoval
operation. Tasks are characterized by theirstart time and deadline.

scheduler is at the top-level. It performs inter-core noti“cations to awak e proce-
sses when they have things to do. This module is not considered inanslation
because we do not provide support for interruptions yet.

5.2 TLA+ Modules of the Model

C2TLA+ takes as inputs the C source code of these modules. By agdping our
approach, we obtain the TLA+ modules of Fig. 7.

C2TLA+ generates the Parameters module and a TLA+ module for each C
input “le. These modules can interact with manually speci“ed TLA+ modules.
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(a) Modules dependencies (b) State-transition diagram of tasks

Fig. 6. Case study description

Fig. 7. TLA+ modules of the case study

Test Environment. The test environment represents the entry point of the
model. It simulates the main scheduler module by calling the tasklist APl and
it is manually speci“ed in the TestEnvironment TLA+ module.

Interacting with Manually TLA+ Specibcations.

Specifying Concurrency Primitives. The spinlock module contains the de“nition
of sacquireZ and ereleaseZ operations which use the scomparand-swapZ (CAS)
primitive. Fig. 8(a) shows the pseudo code version of this primitive. As this oper-
ation is performed atomically, we cannot translate it with C2TLA+. Suc h prim-
itives are speci“ed manually, respecting the calling conventions of Sosect.4.4
and are declared in the C code using __attribute __ annotation mechanism
to de“ne the TLA+ module where the primitives are speci‘ed. For i nstance,
CAS is speci“ed in the Atomic _primitives module as shown in Fig8(b). Other
primitives could be added to Atomic_primitives which could be provided as a
standard module.

Using an Abstract Model. The implementation of read and write operations
on clock, in date module, is performed on several instructions. The possible
interleaving of these instructions multiplies the number of states ofthe model.
To cope with this problem, we write an abstract TLA+ version of date, called
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int CAS (int *,int , int) _attribute  __ CAS (id) =
((Atomic _primitives,alias("CAS"))); Head (stack _regs[id ]).pc = “CAS”, “lbl -1"
if (load (id, load (id, Addr _CAS _param _addr )) =
int CAS(int *addr, int old, int new) load (id , Addr _CAS _param _old))
{ then mem =[mem except
atomic { Iload (id , Addr _CAS _param _addr ).os ] =
int temp = *addr; load (id , Addr _CAS _param _new )]
if (temp == old) ret =[ret except ![id]=[val 1]]
else ret =[ret except ![id]=[val 0]]
*addr = new; unchanged mem
return O; stack _regs = [ stack _regs except ![id]=
Tail (stack _regs [id ])]
else return 1; } stack _data = [stack _data except ![id]=
} SubSeq (stack _data [id ], 1, Head (stack _regs[id]).fp S 1)]
(a) Pseudo code (b) TLA+ code

Fig. 8. CAS dePnition

Date_abs which reads and writes the whole date atomically. Using this version
considerably decreases the state space (see TaBle We also verify that Date
(the translated module) is a re“nement of Date_abs

5.3 Specifying and Verifying Properties

We veri“ed various properties of the system. Here we provide sme examples.
We have checked that all spinlocks protect the critical sections, i. g statements
of the two processes cannot be executed simultaneously.

Mutex (scl, sc2) =
((Head (stack _regs [“exec_core”]).pc = scl) (Head (stack _regs [“control _core”]).pc = sc2))

An important invariant of the system is that the tasks in the ready list are
sorted by their deadlines; this is necessary to implement the EDF lorithm. To
state this invariant, we “rst de“ne a recursive operator getSegDeadlineswhich
maps the C linked list to a more abstract TLA+ sequence. The prgperty is sim-
pler to state on this abstract sequence by de“ning thelsSortedSed) operator.

getSeqDeadlines [ptr SetAddr |=
if (ptr =[loc Null , os Null )
then load (id, [loc ptr .loc, os (ptr .os + Oset _task _deadline )])
getSeqDeadlines [load (“unsued”, [loc ptr .loc, os (ptr .os + Oset _task _next)])]
else
IsSortedSeq (S) =
S = (i 1..Len(S),j 1l..Len(S):(i=1j) ( 1J) (S[il.val  S[j].val))

The property applied on ready list is expressed as follows:

’ IsSortedSeq (getSeqDeadlines [load (“unused”, Addr _readyList )]) ‘

We have also checked some liveness properties, for instance athif a thread
entered its critical section, it will eventually leave it. This property can be
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expressed by comparing the program counter of the process tche statement
labels of the functions espinlock acquireZ and espinlock releaseZ. For example,
for the executing corg the property is expressed as:

((Head (stack _regs [‘exec_core”]).pc = "spinlock _acquire ", ”Ibl _2" )
(Head (stack _regs [“exec_core”]).pc = " spinlock _release ", " Ibl _15" ))

In order to use the abstract model Date_abs instead of Date, we have to
check that the Date model is a re“nement of the Date_abs model. For this, we
have to map states inDate model with those of Date_abs model by substituting
constants and variables used inDate_abs with those of Date. The re“nement is
expressed in TLA+ as logical implication. Verifying this re“nement is satisfying
that the speci“cation of Date implies this substitution.

5.4 Veribcation and Discussion

We integrated the modules together and we performed model ch&ng on two
complete speci“cations. The “rst speci“cation uses the translaed Date module
and the second one uses the abstradDate_abs module. The experiment was
performed on an Intel Core Pentium i7-2760QM with 8 cores (2.40 GHzeach)
machine, with 8 Gb of RAM memory. We model checked the two speci“ations
by considering four possible values of the clock. The executm core updates
the start time and deadline of the task that has run and inserts it into the
unsorted lists. Table 2 provides the generated states and the model checking
time according to the number of tasks, for the two considered sp&“cations.

Table 2. Runtimes of model checking (time in seconds)

Tasks | Specibcation using

Date Date_abs

State space | Time State space| Time
5.986.509 227 718.084 20
>501.876.263 > 10.800| 5.450.732 |64

- - 45.201.603 | 960

- - 138.679.106 2.400

AW NP

For two tasks, the speci“cation using Date module takes more than 3 h to
be model checked. Using an abstract model signi“cantly reducethe size of the
state space and the time required for model checking.

We have successfully checked that the correctness propertied€“ned in Sub-
Sect.5.3) are satis“ed by the model. One of the motivations for verifying this
code was to check that the “ne-grained locking constructs wergroperly used.
We checked that changing the locks in the source code leads t6LC “nding
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that some invariants become violated. In that case, we obtain the emwr trace
that explains how the error can happen and TLC reports that the coverage is
incomplete.

6 Conclusion and Future Work

We have sketched an approach for specifying and verifying C ae based on an
automated translation from C to TLA+. The main advantage of our ap proach
is the ability to make generated TLA+ speci“cations from a C implement a-
tion interact with more abstract, potentially already existing manually speci“ed
TLA+ speci“cations. We use the TLC model checker to verify a part of the

implementation of an RTOS microkernel against safety and liveness mperties
expressed in TLA+. We also checked that a generated speci“catin was a re“ne-
ment of an abstract TLA+ speci“cation, and showed that we could successfully
use abstraction to reduce the size of the state space.

We plan to extend this work on several interesting directions. We vould
like to extend the translator to handle a bigger subset of C and to geerate
TLA+ properties from the ACSL [ 3] speci“cation language used in Frama-C.
We want to update the translator so that the generated TLA+ speci“cation
catches all C runtime errors. It would be interesting to bene“t from Frama-C
analysis of shared variables by several processes to generd LA+ code with
less interleaving between the processes, to reduce the state spadie also plan
to further study the use of TLA+ modules with di erent levels of re" nement.
Finally, we aim to use the TLA+ proof system [8] to prove properties on an
abstract speci“cation of PharOS and prove that the speci“cation generated by
C2TLA+ is a re“nement of this abstract speci“cation.
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