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1. Introduction 

 

Big data has become a great challenge for many researchers. In fact, a huge amount of data 

is available on web. This is due to the simplicity to share content on web thought many 

platforms. This is also due to the development of smartphones that allows peoples to be 

connected at all time. 

Publish/Subscribe systems allow publishers to issue a content that can be an article or an 

information. This content is defined by key words called items. Several subscribers can 

receive that content on their smartphone.  Each user receives a content defined by items to 

which he subscribed. A processing efficiency is paramount to ensure rapid delivery. 

The FiND platform is a Publish/Subscribe system that allows diffusion of new information 

through RSS feeds. It uses an indexing system that allows an association between users and 

contents in a reasonable time. Furthermore, the introduction of concepts of partial 

satisfaction, novelty and diversity of information has led to the computation of Term 

Discrimination Values (TDV) of each item.  

𝑇𝐷𝑉 is a term weight which depends on its appearance in all publications. The number of 

publications processed by FiND system is of order of millions. This makes 𝑇𝐷𝑉 computation 

very expensive in term of time and memory space. This reduces scalability of the system. 

This work aims at building a solution that consists in, firstly, targeting items whose 𝑇𝐷𝑉 is 

likely to change much, and secondly, distributing computing across multiple clusters in a 

NoSQL environment like in the MongoDB database. 

NoSQL databases are used to store large amounts of data. They can store these data on 

different heterogeneous machines. These data are less structured than SQL data. The Map-

Reduce framework allows parallelization of different operations on SQL or NoSQL data. This 

allows a huge gain processing treatment.  

During this work we will try to optimize the calculation of TDVs for terms of a vocabulary 

from a collection of documents. We will implements several algorithms that will run on a 

NoSQL database. These algorithms will be distributed over several clusters through Map-

Reduce framework.     

We will expose different approaches to computing TDV (Section 2). We will study 

complexities of algorithms (Section 2). We will propose a data structure and algorithms to 

adapt different approaches of TDV computing to the distributed computing (Section 3). We 



will implement our algorithms (Section 4). We will presents results of experimentations 

(Section 5) .We will conclude at the end our work with further work (Section 6).  

 

 

2. Related work: 

Since TDV is the principal objective of this work, we will focus the related work on different 

technics to optimize the computation of TDV values. We will compare them in term of 

complexity for the whole process and also for the computation of a single term. In a second 

step, we will study how NoSQL databases and the Map-Reduce framework acts in order to 

explain what have to be done to transform technics from literature to distributed 

algorithms. 

2.1. Term Discrimination Value: 

Term discrimination value (𝑇𝐷𝑉) is a concept used in information retrieval in order to 

measure the relevance of documents for a given query.  It indicates influence of a term on 

similarity between documents. A term with a positive 𝑇𝐷𝑉 is a good discriminator i.e., the 

removal of this term from vocabulary make documents more similar. A term with negative 

𝑇𝐷𝑉 is a poor discriminator i.e., the removal of this term from vocabulary make documents 

less similar. A term with 𝑇𝐷𝑉 near zero is an indifferent discriminator i.e., the similarity 

between documents is not modified so after deleting the term.     

Let 𝐷 is a matrix of 𝑀 rows and 𝑁 columns. Each row of the matrix represents a document 

𝑑𝑖. Each column of the matrix represents the number of occurrence of a term tj in 

documents. An element 𝑑𝑖𝑗 of the matrix 𝐷 is the number of occurrences of the term tj in 

the document 𝑑𝑖. The set of documents (The 𝑀  rows) is called collection. The set of terms 

(The 𝑁 columns) is called vocabulary.     

We will outline in following three approaches to calculate the 𝑇𝐷𝑉. 𝐷 Matrix is used in all 

three approaches.  

2.1.1. First approach (the naïve and centroid methods)[ Willett, 1984] 

To calculate the TDV a term ti with naive method, we must calculate the density of the 

collection by summing the similarities of all pairs of documents. We must recalculate the 

density after ti removal of all documents (deleting is not physic; simply do not consider the 

term ti). The TDV the term ti is obtained by deducting the density without the term ti by 

density with the term ti and all dividing the result by the density with the term ti. 

Let two rows 𝑑𝑖  and  𝑑𝑗   of matrix 𝐷 representing two documents. The similarity between 𝑑𝑖  

and  𝑑𝑗   is computed using cosine function coefficient:   



cos(𝑑𝑗 , 𝑑𝑘) =
∑ 𝑑𝑗𝑖𝑑𝑘𝑖

𝑁
𝑖=1

(∑ 𝑑𝑗𝑖
2𝑁

𝑖=1 ∑ 𝑑𝑘𝑖
2𝑁

𝑖=1 )1/2(1) 

The density of a collection of documents represents the relationship between documents, 
which we refer by 𝑄. It is calculated using two different formulas. 

The first formula is to sum similarities between all pairs of documents: 

𝑄 =  ∑ ∑ cos (𝑑𝑖, 𝑑𝑗)𝑀
𝑗=𝑖+1

𝑀−1
𝑖=1  (2) 

Let 𝐺 = (𝐺1, … , 𝐺𝑘, … , 𝐺𝑁) the center of gravity of the collection 𝐶, then, for 1 ≤ 𝑘 ≤ 𝑁: 

𝐺𝑘 =
∑ 𝑑𝑖𝑘

𝑀
𝑘=1

𝑀
 (3) 

The second formula is to sum similarities between documents and 𝐺:  

𝑄 =   ∑ 𝑐𝑜𝑠(𝑑𝑖, 𝐺)𝑀
𝑖=1  (4) 

The density of collection after the deletion of 𝑡𝑖 in all documents is referred by 𝑄𝑖. 𝐷 Matrix 
is converted so that a document 𝑑𝑘 is represented as follows: 
𝑑𝑘 = (𝑑𝑘 1, … , 𝑑𝑘 𝑖−1 , 𝑑𝑘 𝑖+1, … , 𝑑𝑘𝑁). 𝑄𝑖 is computed in the same manner as 𝑄. 

The 𝑇𝐷𝑉 is the difference between the densities with and without the 𝑡𝑖  term respectively,    

𝐷𝑉𝑖 =  (𝑄𝑖 − 𝑄) / 𝑄  (5) 

The following algorithm is designed to compute  𝑇𝐷𝑉 with the naïve method:  

(1) 𝑄 = 0; 
(2) 𝐹𝑜𝑟 𝑖 ∶= 1 𝑡𝑜 𝑀 − 1 𝑑𝑜 
(3)  𝐹𝑜𝑟 𝑗 ∶= 𝑖 + 1 𝑡𝑜 𝑀 𝑑𝑜 

(4)   𝑄 ∶= 𝑄 + cos(𝑑𝑖, 𝑑𝑗) ; 

(5)𝐹𝑜𝑟 𝑖 ∶= 1 𝑡𝑜 𝑁 𝑑𝑜 
(6)  𝑄𝑖 = 0 
(7)  𝐹𝑜𝑟 𝑗 ≔ 1 𝑡𝑜 𝑀 − 1 𝑡𝑜 
(8)   𝐹𝑜𝑟 𝑘 ≔ 𝑗 + 1 𝑡𝑜 𝑚 𝑑𝑜 

(9)    𝑄𝑖 = 𝑄𝑖 + cos(𝑑𝑗
𝑖 , 𝑑𝑘

𝑖 ) ; 

(10)   𝐷𝑉𝑖 = (𝑄𝑖 − 𝑄)/𝑄; 

Algorithm 1: Naïve method 

The calculation of 𝑄 requires a complexity of 2𝑀2𝑁. The calculation of each value 𝑄𝑖  requires 

also a complexity of 2𝑀2𝑁. There are 𝑁 values 𝑄𝑖  calculate. This gives that the complexity of the 

naïve method algorithm is 2𝑀2𝑁2 + 2𝑀2𝑁. The complexity of calculation of a single term 

𝑡𝑙  is 4𝑀2𝑁. 

The following algorithm computes 𝑇𝐷𝑉 of vocabulary with the centroid method: 



(1) 𝐹𝑜𝑟 𝑖 ∶= 1 𝑡𝑜 𝑁 𝑑𝑜 
(2) 𝑐𝑖 = 0 
(3) 𝐹𝑜𝑟 𝑗 ∶= 1 𝑡𝑜 𝑀 𝑑𝑜 
(4)  𝑐𝑖: = 𝑐𝑖 + 𝑑𝑗𝑖; 

(5) 𝑐𝑖 = 𝑐𝑖/𝑁 
(6)𝑄: = 0; 
(7)𝐹𝑜𝑟 𝑖 ∶= 1 𝑡𝑜 𝑀 𝑑𝑜 
(8) 𝑄 ∶=  𝑄 + cos (𝑐, 𝑑𝑖); 
(9)𝐹𝑜𝑟 𝑖 ≔ 1 𝑡𝑜 𝑁 𝑡𝑜 
(10) 𝑄𝑖 = 0; 
(11) 𝐹𝑜𝑟 𝑗 ≔ 1 𝑡𝑜 𝑀 𝑑𝑜 

(12)  𝑄𝑖 = 𝑄𝑖 + cos(𝑐𝑖, 𝑑𝑗
𝑖) ; 

(13) 𝐷𝑉𝑖 = (𝑄𝑖 − 𝑄)/𝑄; 

Algorithm 2: Centroid method 

Calculation of centroid requires a complexity of 𝑀𝑁, calculation 𝑄 or 𝑄𝑖 requires a 

complexity of 2𝑀𝑁. The number of 𝑄𝑖 calculated is 𝑁. This gives that a complexity of the 

centroid method algorithm is 2𝑀𝑁2 + 3𝑀𝑁. The complexity of computing of 𝑇𝐷𝑉 of a 

single term 𝑡𝑙  is 5𝑀𝑁.  

2.1.2. Second approach (The clustering method) [Can and Ozkarahan,  1990] 

The second approach is to calculate the 𝑇𝐷𝑉 using Covering Cluster concept, which is a 

clustering method. Indeed, it is shown that there is a relationship clustering and indexing. 

Two documents in a same cluster are more likely to respond to the same query; two queries 

with two terms in the same cluster are more likely to return the same documents.    

The Cluster Concept Covering Method “C3M” is a clustering partitioning algorithm, which 

aims at designating documents which are centers of gravity of clusters and, in a single 

iteration, associate each document to cluster to which it is closest.  

Two conditions must be true to apply C3M to calculate the 𝑇𝐷𝑉: 

(1) ∑ 𝑑𝑖𝑗 > 0;  0 ≤ 𝑗 ≤ 𝑁𝑁
𝑗=1    Each document contains at least one term. 

(2) ∑ 𝑑𝑖𝑗 > 0𝑀
𝑖=1 ; 0 ≤ 𝑖 ≤  𝑀  Each term is assigned to at least one document.  

Once the above conditions are satisfied, the calculation of the TDV is achieved in three steps.  

a) Construction of 𝐶 matrix 

Each box 𝑖𝑗 of this matrix indicates the probability of drawing a document 𝑑𝑗 taking all the 

terms of a document 𝑑𝑖. The matrix 𝐶 therefore indicates how close a document from 
another document compared to others.  

The first step is to build a 𝐶 matrix such that each element 𝑐𝑖𝑗 is given by the following 

formula: 



𝑐𝑖𝑗 = ∑ 𝑠𝑖𝑘 ∗ 𝑠′𝑇
𝑘𝑗

𝑛
𝑘=1  (6) 

where: 

(1) 𝑠𝑖𝑘 =
𝑑𝑖𝑘

∑ 𝑑𝑖ℎ
𝑀
ℎ=1

  (7) (The probability to select 𝑡𝑘 from 𝑑𝑖) 

(2) 𝑠′𝑇
𝑘𝑗 =

𝑑𝑗𝑘

∑ 𝑑ℎ𝑘
𝑀
ℎ=1

 (8) (The probability to select 𝑑𝑗 from 𝑡𝑘) 

Formula (5) can therefore be written as follows:  

𝑐𝑖𝑗 = ∑
𝑑𝑖𝑘

∑ 𝑑𝑖ℎ
𝑛
ℎ=1

∗
𝑑𝑗𝑘

∑ 𝑑ℎ𝑘
𝑚
ℎ=1

𝑁
𝑘=1  (9) 

In arise: 

(1) 𝛼𝑖 =
1

∑ 𝑑𝑖ℎ
𝑁
ℎ=1

 (10) 

(2) 𝛽𝑖 =
1

∑ 𝑑ℎ𝑘
𝑀
ℎ=1

 (11) 

Formula (8) becomes: 

𝑐𝑖𝑗 = 𝛼𝑖 ∗ ∑ 𝑑𝑖𝑘 ∗ 𝛽𝑘 ∗ 𝑑𝑗𝑘
𝑁
𝑘=1 (12) 

 

An element 𝑐𝑖𝑖 of matrix 𝐶 is called decoupling coefficient of 𝑑𝑖 document. It shows to which 
point document 𝑑𝑖 is different from others i.e., more 𝑐𝑖𝑖 is great, more the document 𝑑𝑖 does 
not look at other documents of the collection. This makes elements 𝑐𝑖𝑖, 1 < 𝑖 < 𝑀 good 
indicators of the number of clusters to choose when partitioning a collection. An element 𝑐𝑖𝑖 
is appointed by 𝛿𝑖 (𝛿𝑖=𝑐𝑖𝑖).   

The value 𝜑𝑖 = 1 − 𝛿𝑖  is called coupling coefficient of 𝑑𝑖  document. It indicates how much 
𝑑𝑖   document resemble other documents. 

b) Computing number of clusters:  

The formula for calculating the number of needed clusters after the partitioning of the 
collection is as follows: 

𝑛𝑐 = ∑ 𝛿𝑖
𝑀
𝑖=1 (13) 

This formula gives an approximation of the number of clusters because as the amount 
∑ 𝛿𝑖

𝑀
𝑖=1 increases, the density of the collection decrease thus the number of required clusters 

increases.  

Note: 



After calculating the number of clusters. An algorithm is executed to designate the cluster 
centroids and then another is executed to assign each document to a centroid. We will not 
discuss these algorithms in this article because it does not help to compute TDV.  

c) Computing 𝑇𝐷𝑉 

The 𝑇𝐷𝑉 value of a term 𝑡𝑙  is therefore the difference between the number of clusters 
before and after the transformation of D matrix such that each document 𝑑𝑘 is represented 
by 𝑑𝑘 = (𝑑𝑘 1, … , 𝑑𝑘 𝑙−1 , 𝑑𝑘 𝑙+1, … , 𝑑𝑘𝑛)   (removal of 𝑡𝑙  terms from all documents).  

The number of clusters is inversely proportional to the density of a collection. Indeed more a 
collection is dense, less the number of clusters is great. So instead of calculating  𝑇𝐷𝑉 value 
of a term 𝑡𝑙  by subtracting densities without and with the term 𝑡𝑙 . This 𝑇𝐷𝑉 value is 
approximated by subtracting numbers of clusters of the collection with and without the term 
𝑡𝑙 . 

The 𝑇𝐷𝑉 is thus calculated as follows: 

𝑇𝐷𝑉𝑙 = 𝑛𝑐 − 𝑛𝑐𝑙(14) 

where 𝑛𝑐𝑙  is the number of clusters after removing the term 𝑡𝑙  from the vocabulary and the 
partitioning of the collection. 

After replacing 𝑛𝑐  and 𝑛𝑐𝑙  by their formulas we obtain:  

𝑇𝐷𝑉𝑙 = ∑ [𝛿𝑖 − 𝛼𝑖
𝑙(

𝛿𝑖

𝛼𝑖
∗ 𝑑𝑖𝑙

2 ∗ 𝛽𝑙)]
𝑓𝑙
𝑖=1  (15) 

Where: 

(1) 𝛼𝑖
𝑙 = (∑ 𝑑𝑖ℎ

𝑛
ℎ=1 − 𝑑𝑖𝑙)

−1 : The inverse of sum of elements of row 𝑖 less 𝑑𝑖𝑙. 

(2) 𝑓𝑙  : The number of documents such as 𝑑𝑖𝑙 ≠ 0. 

The following algorithm computes 𝑇𝐷𝑉 of vocabulary terms with the clustering method: 

(1)  𝐹𝑜𝑟 𝑖 ∶= 1 𝑡𝑜 𝑀 𝑑𝑜   
(2) 𝛼𝑖 = 0; 
(3) 𝐹𝑜𝑟 𝑗 ∶= 1 𝑡𝑜 𝑁 𝑑𝑜 
(4)  𝛼𝑖 = 𝛼𝑖 + 𝑑𝑖𝑗;   

(5) 𝛼𝑖 = 1/𝛼𝑖 ; 
(6)  𝐹𝑜𝑟 𝑙 ∶= 1 𝑡𝑜 𝑁 𝑑𝑜  

(7) 𝛽𝑙 = 0 ; 
(8) 𝐹𝑜𝑟 𝑖 ∶= 1 𝑡𝑜 𝑀 𝑑𝑜 

(9)  𝛽𝑙 = 𝛽𝑙 + 𝑑𝑖𝑙 ; 
(10) 𝛽𝑙 = 1/𝛽𝑙;  
(11) 𝐹𝑜𝑟 𝑖 ∶= 1 𝑡𝑜 𝑀 𝑑𝑜  
(12) 𝐹𝑜𝑟 𝑗 ∶= 1 𝑡𝑜 𝑁 𝑑𝑜 



(13)  𝛿𝑖 = 𝛿𝑖 + 𝛽𝑗 ∗ 𝑑𝑖𝑗
2; 

(14) 𝛿𝑖 = 𝛿𝑖 ∗ 𝛼𝑖  ; 
(15) 𝐹𝑜𝑟 𝑙 ∶= 1 𝑡𝑜 𝑁 𝑑𝑜  
(16) 𝑇𝐷𝑉𝑙 = 0; 
(17) 𝐹𝑜𝑟 𝑖 ∶= 1 𝑡𝑜 𝑀 𝑑𝑜  
(18)  𝐼𝐹 𝑑𝑖𝑙 > 0 

(19)   𝛼𝑖
𝑙 = 1/(1/𝛼𝑖 − 𝑑𝑖𝑙) ; 

(20)   𝑇𝐷𝑉𝑙 = 𝑇𝐷𝑉𝑙 + [𝛿𝑖 − 𝛼𝑖
𝑙 ∗ (

𝛿𝑖

𝛼𝑖
− 𝑑𝑖𝑙

2 ∗ 𝛽𝑙)] 

Algorithm 3: Clustering method  

The computing of each 𝛼𝑖 and each 𝛿𝑖 requires a complexity of 𝑁. The computing of each𝛽𝑙 
requires a complexity of 𝑀. Therefore, the computing of all 𝛼𝑖, 𝛽𝑙and 𝛿𝑖 requires a 
complexity of 3𝑀𝑁. After computing all 𝛼𝑖, 𝛽𝑙and 𝛿𝑖, calculating the 𝑇𝐷𝑉 value of each term 
𝑡𝑙  requires a complexity of 𝑀𝑁. This gives that a complexity of the clustering method 
algorithm is 𝑀𝑁2 + 3𝑀𝑁. The complexity of algorithm of calculating of a single term 𝑡𝑙  is 
4𝑀𝑁.  

2.1.3. Third approach (Dot Product method) [El-Hamdouchi and Willett, 1988]: 

This method involves defining and calculating a centroid of the collection. It involves also 
defining a matrix “dif”. The 𝑇𝐷𝑉 values are functions of components of centroid and values 
of the matrix “dif”. Components of the centroid and elements of matrix will be defined in 
following.  

Let 𝐴 be a vector representing a linear combination of 𝐷𝑗  documents, 1 ≤ 𝑗 ≤ 𝑥𝑎. These 

documents belong to a given cluster. A is designed as the centroid of the cluster. It is 
calculated as follows:  

𝐴 = ∑ 𝑤𝑗 ∗ 𝐷𝑗
𝑥𝑎
𝑗=1 (16) 

where 𝑤𝑗 is the weight of the 𝑗th document in the cluster.  

Let B a vector and its components are defined by the similarities between documents that 

belong to a second cluster (B is the centroid of the second cluster). 

The vector B is calculated as follows:   

𝐵 = ∑ 𝑤𝑗 ∗ 𝐷𝑗
𝑥𝑏
𝑗=1  (17) 

The dot product between A et B is given by:  

𝐷𝑂𝑇𝑃𝑅𝑂𝐷𝐴𝐵 = ∑ 𝑤𝑗𝑑𝑗
𝑥𝑎
𝑗=1 ∗ ∑ 𝑤𝑘𝑑𝑘

𝑥𝑏
𝑘=1 (18) 

Through a series of processing, authors will extract a formula for calculating a TDV of term of 

vocabulary. The goal of transformations that will be performed on the formula (18) is to 



extract formulas of calculation densities of a cluster of documents (collection documents) 

with all terms of vocabulary and without one of terms. These densities are necessary to 

calculate 𝑇𝐷𝑉 values of any term of vocabulary.     

The formula (18) may be rewritten as: 

𝐷𝑂𝑇𝑃𝑅𝑂𝐷𝐴𝐵 = ∑ ∑ 𝑤𝑗 ∗ 𝑤𝑘 ∗ 𝐷𝑂𝑇𝑃𝑅𝑂𝐷𝐽𝐾
𝑥𝑏
𝑘=1

𝑥𝑎
𝑗=1  (19) 

where 𝐷𝑂𝑇𝑃𝑅𝑂𝐷𝐽𝐾 is the dot product between vectors (documents) 𝑑𝑗 and 𝑑𝑘. 

The weight of document 𝑑𝑗  is defined as: 

𝑤𝑗 = 𝑆𝑈𝑀𝑆𝑄𝐽1/2 (20) 

where 𝑆𝑈𝑀𝑆𝑄𝐽 = ∑ 𝑑𝑗𝑖
2𝑀

𝑖=1  (21) 

If 𝑤𝑘 is defined with the same manner the formula (19) becomes: 

𝐷𝑂𝑇𝑃𝑅𝑂𝐷𝐴𝐵 = ∑ ∑ 𝐶𝑂𝑆𝐽𝐾
𝑥𝑏
𝑘=1

𝑥𝑎
𝑗=1  (22) 

Where 𝐶𝑂𝑆𝐽𝐾 difines the siminarity between documents 𝑑𝑗 and 𝑑𝑘. 

Let the cluster A and the cluster B are the same cluster and is called cluster C (A=B=C) and 

composed by 𝑀 documents. 

The formula for calculating vector C is the following:  

𝐶 = ∑ 𝑤𝑗 ∗ 𝐷𝑗
𝑀
𝑗=1  (23) 

We obtain that the dot product between C and itself is given by the following formula: 

𝐷𝑂𝑇𝑃𝑅𝑂𝐷𝐶𝐶 = ∑ ∑ 𝑤𝑗 ∗ 𝑤𝑘 ∗ 𝐷𝑂𝑇𝑃𝑅𝑂𝐷𝐽𝐾𝑀
𝑘=1

𝑀
𝑗=1  (24) 

The dot product between C and itself is equivalent to SUMSQC (𝐶 ∗ 𝐶) the sum of squares of 

components of the centroid C because the sum of multiplication vectors by weight gives the 

centroid. 

The calculation of the 𝑇𝐷𝑉 of a 𝑡𝑖 term involves the calculation of 
𝑀(𝑀−1)

2
 similarities 

between documents 𝑑𝑗 and 𝑑𝑘 where 𝑖 < 𝑘 and therefore formula (20) becomes as follows: 

𝑆𝑈𝑀𝑆𝑄𝐶 = 2 ∗ ∑ 𝑤𝑗 ∗ 𝑤𝑘 ∗𝑀
𝑗,𝑘=1
(𝑗<𝑘)

𝐷𝑂𝑇𝑃𝑅𝑂𝐷𝐽𝐾 + ∑ 𝑤𝑗
2𝑆𝑈𝑀𝑆𝑄𝐽𝑁

𝑗=1   (25) 

 

Let 𝑄 is the density of the cluster 𝐶. The density is calculated as follows: 



𝑄 = ∑ 𝐶𝑂𝑆𝐽𝐾𝑀
𝑗,𝑘=1
𝑗<>𝑘

 (26) 

From the formula (25) we obtain the two following formulas:  

2𝑄 = 𝑆𝑈𝑀𝑆𝑄𝐶 − ∑ 𝑤𝑗
2 ∗ 𝑆𝑈𝑀𝑆𝑄𝐽𝑁

𝑗=1  (27) 

and: 

2𝑄𝑖 = 𝑆𝑈𝑀𝑆𝑄𝐶𝐼 − ∑ 𝑤𝑖𝑗
2 ∗ 𝑆𝑈𝑀𝑄𝐽𝐼𝑁

𝑗=1  (28) 

where 𝑆𝑈𝑀𝑆𝑄𝐶𝐼 and 𝑆𝑈𝑀𝑄𝐽𝐼 are respectively the sum of square of components of the 

centroid and the sum of square of components 𝐽th document when the term 𝑡𝑖 is deleted 

from the vocabulary. And where 𝑤𝑖𝑗 is the weight of document 𝑑𝑗 after the same deletion.  

The 𝑇𝐷𝑉 of a term 𝑡𝑖 is then defined as (𝑄𝑖 − 𝑄)/𝑄. But the division by 𝑄, which is the 

positive constant, does not change the order of TDVs of vocabulary’s terms. Thus, division by 

𝑄 may be neglected. In addition, the multiplication of the right side of the expression by 2 is 

not going to change the order of TDVs of vocabulary’s terms. The TDV of a term 𝑡𝑖 can be 

expressed as follow:  

𝐷𝑉𝑖 = 𝑆𝑈𝑀𝑆𝑄𝐶𝐼 − 𝑆𝑈𝑀𝑆𝑄𝐶 − ∑ 𝑤𝑖𝑗
2 ∗ 𝑆𝑈𝑀𝑆𝑄𝐽𝐼𝑁

𝑗=1 + ∑ 𝑤𝑗
2 ∗ 𝑆𝑈𝑀𝑆𝑄𝐽𝑁

𝑗=1  (29) 

With 𝑤𝑗 = 1/𝑆𝑈𝑀𝑆𝑄𝐽1/2 and 𝑤𝑖𝑗 = 1/𝑆𝑈𝑀𝑆𝑄𝐽𝐼1/2 we obtain: 

𝐷𝑉𝑖 = 𝑆𝑈𝑀𝑆𝑄𝐶𝐼 − 𝑆𝑈𝑀𝑆𝑄𝐶 (30) 

Let 𝑐𝑘 ant 𝑐𝑖𝑘 les 𝑘ths components of 𝐶 and 𝐶𝐼, respectively. Where 𝐶𝐼 is the centroid of the 

collection after the term 𝑡𝑖 from the vocabulary. Then, by substituting for 𝑆𝑈𝑀𝑆𝑄𝐶𝐼 and 

𝑆𝑈𝑀𝑆𝑄𝐶 we obtain: 

𝐷𝑉𝑖 = ∑ 𝑐𝑖𝑘
2𝑁

𝑘=1
𝑘<>𝑖

− ∑ 𝑐𝑘
2𝑁

𝑘=1   

           = ∑ (𝑐𝑖𝑘
2 − 𝑐𝑘

2)𝑁
𝑘=1

𝑘<>𝑖

− 𝑐𝑘
2  

                                         = ∑ [(𝑐𝑖𝑘 + 𝑐𝑘) ∗ (𝑐𝑖𝑘 − 𝑐𝑘)] − 𝑐𝑖
2𝑁

𝑘=1
𝑘<>𝑖

 (31) 

Let 𝐾𝐼 be a set of documents containing the terms 𝑡𝑖 and 𝑡𝑘, KNI set of documents 

containing 𝑡𝑘 but not 𝑡𝑖. For 𝑘 <> 𝑖, 𝑐𝑘 may be obtained by following formula: 

𝑐𝑘 = ∑ 𝑤𝑗𝑑𝑗𝑘𝐷𝑗∈𝐾𝐼 + ∑ 𝑤𝑗𝑑𝑗𝑘𝐷𝑗∈𝐾𝑁𝐼  (32) 

Similarly 𝑐𝑖𝑘, 𝑘 <> 𝑖, can be expressed by following formula: 

𝑐𝑖𝑘 = ∑ 𝑤𝑖𝑗𝑑𝑗𝑘𝐷𝑗∈𝐾𝐼 + ∑ 𝑤𝑖𝑗𝑑𝑗𝑘𝐷𝑗∈𝐾𝑁𝐼  (33) 



For documents 𝑑𝑗 that belong to 𝐾𝑁𝐼, since 𝑡𝑖 do not appears in this documents, the 

following equation is checked:  

𝑤𝑖𝑗𝑑𝑗𝑘 = 𝑤𝑗𝑑𝑗𝑘  (34) 

Thus the formula (24) can by rewritten as follows:  

𝐷𝑉𝑖 = ∑ [𝐷𝐼𝐹𝑘
𝑖 ∗ (𝐷𝐼𝐹𝑘

𝑖 + 2 ∗ 𝑐𝑘)]𝑁
𝑘=1

𝑘<>𝑖

− 𝑐𝑖
2 (35) 

Where for each term 𝑡𝑖 each term 𝑡𝑘  𝐷𝐼𝐹𝑘 is computed as follows: 

𝐷𝐼𝐹𝑘
𝑖 = ∑ (𝑤𝑖𝑗 − 𝑤𝑗) ∗ 𝑑𝑗𝑘𝐷𝑗∈𝐾𝐼 (36) 

All of the elements 𝐷𝐼𝐹𝑘
𝑖  forms the matrix 𝐷𝐼𝐹. 

The following algorithm computes vocabulary terms with Dot product method:   

(1) 𝐹𝑜𝑟 𝑖 ≔ 1 𝑇𝑜 𝑁  𝑑𝑜   

(2) 𝑐𝑖 ≔ 0;  

(3) 𝐹𝑂𝑅 𝑗 ≔ 1 𝑇𝑜 𝑀 𝐷𝑜   

(4)  𝑐𝑖 ≔ 𝑐𝑖 + 𝑤𝑗𝑑𝑗𝑖;  

(5) 𝐹𝑜𝑟 𝑖 ≔ 1 𝑇𝑜 𝑁 𝐷𝑜  

(6) 𝐹𝑜𝑟 𝑘 ≔ 1 𝑇𝑜 𝑁 𝐷𝑜 

(7)  𝐷𝐼𝐹𝑘
𝑖 = 0; 

(8) 𝐹𝑜𝑟 𝑗 ≔ 1 𝑇𝑜 𝑀 𝐷𝑜    

(9)  𝐼𝑓 𝑑𝑗𝑖 > 0 𝑇ℎ𝑒𝑛   

(10)   𝐹𝑜𝑟 𝑘 ≔ 1 𝑇𝑜 𝑁 𝐷𝑜  

(11)    𝐼𝑓 𝑑𝑗𝑘 > 0 𝑇ℎ𝑒𝑛  

(12)     𝐷𝐼𝐹𝑘
𝑖 ≔ 𝐷𝐼𝐹𝑘

𝑖 + [𝑤𝑖𝑗 − 𝑤𝑗] ∗ 𝑑𝑗𝑘;  

(13) 𝐷𝑉𝑖 ≔ 0; 

(14) 𝐹𝑂𝑅 𝑘 ≔ 1 𝑇𝑜 𝑁 𝐷𝑜 

(15)  𝐷𝑉𝑖 = 𝐷𝑉𝑖 + 𝐷𝐼𝐹𝑘
𝑖 ∗ (𝐷𝐼𝐹𝑘

𝑖 + 2 ∗ 𝑐𝑘); 

(16) 𝐷𝑉𝑖 ≔ 𝐷𝑉𝑖 − 𝑐𝑖
2  

Algorithm 4: Dot product method  

This algorithm, which calculates the centroid 𝑐, involves computing all of its 𝑁 components. 

Calculate each component involves calculate weight of each document. Calculate each 

component involves also browsing all of 𝑀 documents. Therefore the computation of the 

centroid 𝑐 requires a complexity +𝑀(𝑁 − 1) . After computing the centroid 𝑐, the 

computation of 𝑇𝐷𝑉 of each term 𝑡𝑖 requires to calculate the sum of the 𝑁 values of 𝐷𝐼𝐹𝑘, 

1 ≤ 𝑘 ≤ 𝑁.  This requires a complexity of +𝑀(𝑁 − 1) + 2𝑁 . Therefore the complexity of 

Dot product method algorithm is 𝑀𝑁2 + 𝑀𝑁(𝑁 − 1) + 2𝑁2 + 𝑀𝑁 + 𝑀(𝑁 − 1).  The 

computation of TDV of single term 𝑡𝑖 is 2𝑀𝑁 + 2𝑀(𝑁 − 1) + 2𝑁. 

2.1.4. Complexities: 



Assuming that each document is a vector of size 𝑁 and that there is 𝑀 documents in the 
collection, the complexity of algorithms will be given by a function of 𝑁 and 𝑀.  

The following table is the synthesis complexities of algorithms presented below for 
calculation of TDV of single and all terms.  

 Naïve 
method 

Centroid 
method 

Clustering 
method 

Dot product method  

Single term 4𝑀2𝑁 5𝑀𝑁 4𝑀𝑁 2𝑀𝑁 + 2𝑀(𝑁 − 1) + 2𝑁 

Algorithm 2𝑀2𝑁(𝑁 + 1) 

 

𝑀𝑁(3 + 2𝑁) 

 

𝑀𝑁2 + 3𝑀𝑁 𝑀𝑁2 + 𝑀𝑁(𝑁 − 1) 

+2𝑁2 + 𝑀𝑁 + 𝑀(𝑁 − 1) 

Table 1: Complexities of the different methods 

Nested loops that contain these algorithms make their huge complexities. In the naïve 
method, calculating the density is very expensive, In addition, density must be calculated N + 
1 times (once for global density and N ignoring a different terms). For the second method 
the density should be calculated N + 1 times but its calculation is less complex since it 
requires only to sum similarities between the centroid and documents and not between 
every pairs of the document. This causes the centroid method is better than the naive 
method.  According to the clustering method, the calculation of components of vectors 
alpha, beta, and delta have complexities 𝑀𝑁. Once these calculations are made, the 
complexity of calculation of TDV is 𝑀𝑁2. It makes this method better than the centroid one. 
For the dot Product method, which most expensive costs is the calculation the “dif” matrix. 
It costs 𝑁2 + 𝑀𝑁2, so that this method is better than the centroid method and worse than 
the clustering method. 

Clustering et dot Product methods have therefore a better complexity but the clustering 
method gives approximated TDVs and dot Product that consume too much memory space.  

Note: In practice, the document is represented by a vector of size n. Terms whose 
occurrences are equal to zero are not represented. 

2.2. No-SQL databases and the Map-Reduce framework 

NoSQL databases are designed to save large amounts of data that data. The backup is 
done on different servers enabling parallel processing. We will apply implemented 
methods on large databases and we want to optimize the time processing. This is why 
we choose NoSQL.  

2.2.1. Map-Reduce 

Map-Reduce is a programming model proposed by google body. A developer using this 
model must specify a map function is a reduce function. A map function contains an emit 
with a key and a value. Values with same key are grouped and threated by a reduce 



function. Map and reduce functions are parallelized and run on multiple clusters 
simultaneously. 

2.2.2. NoSQL 

NoSQL databases are classified in four categories: 

 Key-value based databases: 

A table in the database contains a list of keys. A list of values is associated to each key. A 
data searches can only be performed against keys. Examples of key-value based databases 
are SimpleDB, Dynamo, Voldemort, Redis, BerkleyDB and riak. 

 Document based databases: 

Designed to store documents in XML, JSON or BSON format. Columns contain semi-
structured data. A data searches can be performed against both keys and values. Examples 
of document based databases are Couched, MongoDB and RavanDB. 

MongoDB is a database management system for storing documents in the BSON format. It 
allows saving documents without a predefined schema. A document consists of objects. 
These objects can be simples or complex. Simple objects are composed of attributes and 
values. Complex objects are composed of objects and object lists. It is this DBMS that we will 
use for our job. 

 Column based databases: 

They are near database relational databases. Each object has a different number of columns. 
They are provided for cases where each record has millions of columns. It is not necessary to 
save “null” values in these tables; however, the table updates costs are very expensive. 
Examples of column-based databases are Cassandra, HBase, BigTable, HyperTable, 
SimpleDB, DynamoDB. 

 Graph based databases: 

They are oriented objects databases. They are used to represent connections between 
objects. Each node can point to other nodes that will be called neighbors. This optimizes 
local research and allows finding the related object without jointure. Sometimes, to find 
links between objects, it is necessary to cross the entire graph which is very expensive. 
Examples of graph-based databases are Neo4j, InfoGrid, Sone GrapgDB, InfinitGraph, 
HyperGraphDB. 

  



3. Incremental computation of TDVs 

Previous technics, which have been presented in the related work, were dedicated to 

compute a whole static corpus of documents. But if this corpus evolves over time this 

computation becomes very expensive and a huge waste of time. Thus we propose in this 

chapter to focus on an incremental computation of TDVs based on the previous methods. 

This means to extract minimal information for each method necessary for the computation 

of a single incoming document, but also to update the minimum amount of structures in the 

repository. We will show for each method the needed information and provide the 

complexity of each of them. 

Let 𝐶 be a collection of 𝑀 documents and 𝑁 terms. The changes that can be made on this 

collection are adding and deleting a document. 

3.1. Naïve method 

When adding or deleting a document, applying this method to recalculate the TDV a term 𝑡𝑖 

is to calculate the sum of similarities with and without the term ti between the document 

added or deleted and other documents of the collection. Then, add or deduct obtained 

values from the old values of the density with and without the density term 𝑡𝑖. TDV of term 

𝑡𝑖 is equal to the subtraction of the new value density without the term 𝑡𝑖 by the new value 

of the density with the term 𝑡𝑖 and the division of the result of subtraction by the new value 

of the density with the term 𝑡𝑖. 

The 𝑇𝐷𝑉 of a term is calculated using the formula (1). Density 𝑄 is calculated using formula 

(2). Adding or deleting a document implies changes in 𝑄 and 𝑄𝑖 values. 

To calculate the new density 𝑄𝑛𝑒𝑤 after adding document 𝑑𝑀+1 we must add to 𝑄𝑜𝑙𝑑 

similarities between the document 𝑑𝑀+1 and documents of the collection 𝐶. 𝑄𝑛𝑒𝑤 is 

obtained through the following formula: 

𝑄𝑛𝑒𝑤 = 𝑄𝑜𝑙𝑑 + ∑ cos (𝑑𝑖, 𝑑𝑀+1)𝑀
𝑖=1  (37) 

The following algorithm computes 𝑇𝐷𝑉 of vocabulary terms with naïve method after 
insertion of a document 𝑑𝑀+1:    

(1) 𝑄𝑛𝑒𝑤 = 𝑄𝑜𝑙𝑑; 
(2) 𝐹𝑜𝑟 𝑖 ∶= 1 𝑡𝑜 𝑀 𝑑𝑜 
(3) 𝑄𝑛𝑒𝑤 ∶= 𝑄𝑛𝑒𝑤 + cos(𝑑𝑖, 𝑑𝑀+1) ; 
(4)𝐹𝑜𝑟 𝑖 ∶= 1 𝑡𝑜 𝑁 𝑑𝑜 

(5) 𝑄𝑖
𝑛𝑒𝑤 = 𝑄𝑖

𝑜𝑙𝑑; 
(6) 𝐹𝑜𝑟 𝑗 ≔ 1 𝑡𝑜 𝑀 𝑡𝑜 

(7)  𝑄𝑖
𝑛𝑒𝑤 = 𝑄𝑖

𝑛𝑒𝑤 + cos(𝑑𝑗
𝑖, 𝑑𝑀+1

𝑖 ) ; 

(8) 𝐷𝑉𝑖 = (𝑄𝑖
𝑛𝑒𝑤 − 𝑄𝑛𝑒𝑤)/𝑄𝑛𝑒𝑤; 



Algorithm 5: Insertion in naïve method   

The new density 𝑄𝑛𝑒𝑤 after deleting a document 𝑑ℎ, 1 ≤ ℎ ≤ 𝑀, is calculated by subtracting 

to 𝑄𝑜𝑙𝑑 similarities between the document 𝑑ℎ and other documents of the collection 𝐶. 𝑄𝑛𝑒𝑤 

is therefore obtained by the following formula: 

𝑄𝑛𝑒𝑤 = 𝑄𝑜𝑙𝑑 − ∑ cos (𝑑𝑖, 𝑑ℎ)𝑀
𝑖=1

𝑖<>ℎ

(38) 

The algorithm to perform the calculation of the 𝑇𝐷𝑉 after removing of a document 𝑑ℎwith 

the naïve method is the same as the insertion in naïve method algorithm. Simply replace 

𝑑𝑀+1 by 𝑑ℎand ‘−‘ by ‘+’ in line (4) and replace 𝑑𝑀+1
𝑖  by 𝑑ℎ

𝑖  and ‘−‘ by ‘+’.  

The calculation of 𝑄𝑛𝑒𝑤 requires a complexity of 2MN. The calculation of all of the N values 
𝑄𝑖

𝑛𝑒𝑤 requires a complexity of 2𝑀𝑁2. This gives that the complexity of algorithm (5) is 
2𝑀𝑁2 + 2𝑀𝑁. The complexity of calculation of a single term 𝑡𝑖  is 4𝑀𝑁.  

3.2. Centroid method 

When adding or deleting a document, the centroid is recalculated. Densities with and 
without terms are recalculated by summing similarities between the document and the new 
centroid with and without terms. 

As for naïve method, 𝑇𝐷𝑉 of a term is calculated using the formula (1). Bat the density 𝑄 is 
calculated using the formula (4). Adding or deleting a document implies changes of values 𝑐, 
𝑄 and 𝑄𝑖. 

By adding a document 𝑑𝑀+1, the new centroid 𝑐𝑛𝑒𝑤may be calculated using based on the 
previous. The calculation of 𝑐𝑖

𝑛𝑒𝑤the ith component of the new centroid is done using the 
following formula: 

𝑐𝑖
𝑛𝑒𝑤 =

𝑁(𝑐𝑖
𝑜𝑙𝑑)+𝑑𝑀+1

𝑁+1
 (39) 

The new density 𝑄𝑛𝑒𝑤 after adding the document 𝑑𝑀+1 is obtained by the following 
formula:  

𝑄𝑛𝑒𝑤 = ∑ cos (𝑑𝑖, 𝑐𝑛𝑒𝑤)𝑀+1
𝑖=1  (40) 

The following algorithm computes 𝑇𝐷𝑉 of vocabulary terms with centroid method after 
insertion of a document 𝑑𝑀+1 : 

(1) 𝑄𝑛𝑒𝑤 = 0; 
(2) 𝐹𝑜𝑟 𝑖 ∶= 1 𝑡𝑜 𝑁 𝑑𝑜 

(3) 𝑐𝑖
𝑛𝑒𝑤 ∶= (𝑁 ∗ 𝑐𝑖

𝑜𝑙𝑑 + 𝑑𝑀+1 𝑖)/(M + 1); 
(4) 𝐹𝑜𝑟 𝑖 ∶= 1 𝑡𝑜 (𝑀 + 1) 𝑑𝑜 
(5)  𝑄𝑛𝑒𝑤 ∶= 𝑄𝑛𝑒𝑤 + cos (𝑑𝑖, 𝑐𝑛𝑒𝑤); 
(6) 𝐹𝑜𝑟 𝑖 ∶= 1 𝑡𝑜 𝑁 𝑑𝑜 



(7)  𝑄𝑖
𝑛𝑒𝑤 = 0; 

(8)  𝐹𝑜𝑟 𝑗 ≔ 1 𝑡𝑜 (𝑀 + 1) 𝑡𝑜 

(9)   𝑄𝑖
𝑛𝑒𝑤 = 𝑄𝑖

𝑛𝑒𝑤 + cos(𝑑𝑗
𝑖, 𝑐𝑖 𝑛𝑒𝑤) ; 

(10) 𝐷𝑉𝑖 = (𝑄𝑖
𝑛𝑒𝑤 − 𝑄𝑛𝑒𝑤)/𝑄𝑛𝑒𝑤; 

Algorithm 6: Insertion in centroid method 

By removing a document 𝑑ℎ, 1 ≤ ℎ ≤ 𝑁, from the collection 𝐶, the ith component of the 
new centroid is calculated based on the ith component of the previous centroid. 𝑐𝑖

𝑛𝑒𝑤 is 
obtained by the following formula: 

𝑐𝑖
𝑛𝑒𝑤 =

𝑁(𝑐(𝑖)𝑜𝑙𝑑)−𝑑ℎ

𝑀−1
 (41) 

The density 𝑄𝑛𝑒𝑤 after the deleting of the document 𝑑ℎ is done by the following formula:  

𝑄𝑛𝑒𝑤 = ∑ cos (𝑑𝑖, 𝑐𝑛𝑒𝑤)𝑀−1
𝑖=1 (42) 

To compute TDV of vocabulary terms after removing of document 𝑑ℎ we mast execute 
insertion in centroid method algorithm with replacing formula (39) by formula (41) in line (3) 
and 𝑀 + 1 by 𝑀 − 1in lines (4) and (8). 

Calculation of the new centroid requires a complexity of 𝑁. Calculation of 𝑄𝑖
𝑛𝑒𝑤or 

𝑄𝑛𝑒𝑤requires a complexity of 2MN. The number of Qi calculated is N. This gives that a 
complexity of algorithm (6) is 2MN2 + 2MN + N. The complexity of algorithm of calculation 
of a single term tl is 4MN + N. 

3.3. Clustering method 

When adding or deleting a document, values of components of vectors 𝛼, 𝛽 and 𝛿 are 
changed before recalculating values of TDVs. 

For the clustering method, the 𝑇𝐷𝑉 of a term is calculated using the formula (15). The 
addition or the removal of a document involves charges of values 𝛿𝑖, 1 ≤ 𝑖 ≤ 𝑀. 

Adding a document 𝑑𝑀+1  involves adding a value 𝛼𝑀+1. The values 𝛿𝑖, 1 ≤ 𝑖 ≤ 𝑀, are 
change. Changes of values of 𝛿𝑖 are due to changes of values of  𝛽𝑗, 1 ≤ 𝑗 ≤ 𝑁. The new 

values 𝛽𝑗
𝑛𝑒𝑤, 1 ≤ 𝑗 ≤ 𝑁 are calculated with the following formula : 

𝛽𝑗
𝑛𝑒𝑤 = 1/(1/𝛽𝑗

𝑜𝑙𝑑 + 𝑑𝑀+1 𝑗) (43) 

The new values 𝛿𝑖
𝑛𝑒𝑤 ,1 ≤ 𝑖 ≤ 𝑀 + 1, are calculated with the following formula: 

𝛿𝑖
𝑛𝑒𝑤 = 𝛼𝑖 ∗ ∑ 𝛽𝑗

𝑛𝑒𝑤 ∗ 𝑑𝑖𝑗
2𝑁

𝑗=1 (44) 

The following algorithm computes TDV of vocabulary terms with clustering method after 
insertion of a document 𝑑𝑀+1 : 



(1)   𝛼𝑀+1 = 0; 
(2)   𝐹𝑜𝑟 𝑗 ∶= 1 𝑡𝑜 𝑁 𝑑𝑜 
(3)  𝛼𝑀+1 = 𝛼𝑀+1 + 𝑑𝑀+1 𝑗;   

(4)   𝛼𝑀+1 = 1/𝛼𝑀+1 ; 
(5)   𝐹𝑜𝑟 𝑗 ∶= 1 𝑡𝑜 𝑁 𝑑𝑜  

(6)  𝛽𝑗
𝑛𝑒𝑤 = 1/(1/𝛽𝑗

𝑜𝑙𝑑 + 𝑑𝑀+1 𝑗); 

(7)   𝐹𝑜𝑟 𝑖 ∶= 1 𝑡𝑜 𝑀 + 1 𝑑𝑜  
(8) 𝐹𝑜𝑟 𝑗 ∶= 1 𝑡𝑜 𝑁 𝑑𝑜   

(9)  𝛿𝑖
𝑛𝑒𝑤 = 𝛿𝑖

𝑛𝑒𝑤 + 𝛽𝑗
𝑛𝑒𝑤 ∗ 𝑑𝑖𝑗

2; 

(10) 𝛿𝑖
𝑛𝑒𝑤 = 𝛿𝑖

𝑛𝑒𝑤 ∗ 𝛼𝑖  ; 
(11) 𝐹𝑜𝑟 𝑙 ∶= 1 𝑡𝑜 𝑁 𝑑𝑜   
(12) 𝑇𝐷𝑉𝑙 = 0; 
(13) 𝐹𝑜𝑟 𝑖 ∶= 1 𝑡𝑜 𝑀 + 1 𝑑𝑜  
(14)  𝐼𝐹 𝑑𝑖𝑙 > 0  

(15)   𝛼𝑖
𝑙 = 1/(1/𝛼𝑖 − 𝑑𝑖𝑙) ; 

(16)   𝑇𝐷𝑉𝑙 = 𝑇𝐷𝑉𝑙 + [𝛿𝑖
𝑛𝑒𝑤 − 𝛼𝑖

𝑙 ∗ (𝛿𝑖
𝑛𝑒𝑤/𝛼𝑖 − 𝑑𝑖𝑙

2 ∗ 𝛽𝑙
𝑛𝑒𝑤)]; 

Algorithm 7: Insertion in clustering method   

With the removal of a document 𝑑ℎ, 1 ≤ ℎ ≤ 𝑀 from the collection 𝐶. The values 𝛽𝑗 

1 ≤ 𝑗 ≤ 𝑁 are change. This involves changing of values 𝛿𝑖 1 ≤ 𝑖 ≤ 𝑀. The new values 
𝛽𝑗

𝑛𝑒𝑤, 1 ≤ 𝑗 ≤ 𝑁, are calculated using the following formula:  

𝛽𝑗
𝑛𝑒𝑤 = 1/(1/𝛽𝑗

𝑜𝑙𝑑 − 𝑑𝑀+1 𝑗) (45) 

The new values 𝛿𝑖
𝑛𝑒𝑤are calculated with the formula (44). 

After removing a document 𝑑ℎ, for computing TDV of vocabulary terms with clustering 
method we must execute insertion in clustering method with deleting lines (1)-(4), replacing 
formula (42) by formula (44) in line (6) and replacing 𝑀 + 1 by 𝑀 − 1 in lines (7) and (13). 

The computing of 𝛼𝑀+1 requires a complexity of 𝑁. The computing of all 𝛽𝑗
𝑛𝑒𝑤,1 ≤ 𝑗 ≤ 𝑁, 

requires a complexity of 𝑀. The computing of all 𝛿𝑖
𝑛𝑒𝑤 requires a complexity of 𝑀𝑁. After 

computing all 𝛼𝑖, 𝛽𝑙and 𝛿𝑖, the computing of 𝑇𝐷𝑉 of each term 𝑡𝑙  require a complexity of 
𝑀𝑁. This gives that a complexity of algorithm (7) is 𝑀𝑁2 + 𝑀𝑁 + 2𝑁. The complexity of 
algorithm of calculating of a single term 𝑡𝑙  is 2𝑀𝑁 + 2𝑁.  

3.4. Dot product method 

When adding or deleting a document, values of components of centroid and elements of the 
collection “dif” are modified. New values must be recalculated before reapplying formula of 
calculation of TDVs with dot Product method. 

The TDV of a term is calculated using the formula (35). After adding or deleting a document, 

values 𝑐𝑖 and 𝐷𝐼𝐹𝑘
𝑖 , 1 ≤ 𝑘 ≤ 𝑁, are change.  



After adding a document 𝑑𝑀+1,the components 𝑐𝑖
𝑛𝑒𝑤of the new centroid 𝑐𝑛𝑒𝑤 are 

calculated with the following formula: 

𝑐𝑖
𝑛𝑒𝑤 = 𝑐𝑖

𝑜𝑙𝑑 + 𝑤𝑀+1𝑑𝑀+1 𝑖 (46) 

The new values 𝐷𝐼𝐹𝑘
𝑖 𝑛𝑒𝑤, 1 ≤ 𝑘 ≤ 𝑁, are calculated using the following formula:  

𝐷𝐼𝐹𝑘
𝑖 𝑛𝑒𝑤 ≔ 𝐷𝐼𝐹𝑘

𝑖 𝑜𝑙𝑑 + (𝑤𝑖𝑀+1 − 𝑤𝑀+1) ∗ 𝑑𝑀+1 𝑘 (47) 

The following algorithm computes 𝑇𝐷𝑉 of vocabulary terms with Dot product method after 
insertion of a document 𝑑𝑀+1 𝑖:   

(1) 𝐹𝑜𝑟 𝑖 ≔ 1 𝑇𝑜 𝑁  𝑑𝑜   

(2) 𝑐𝑖
𝑛𝑒𝑤 ≔ 𝑐𝑖

𝑜𝑙𝑑 + 𝑤𝑀+1𝑑𝑀+1 𝑖;  

(3) 𝐹𝑜𝑟 𝑖 ≔ 1 𝑇𝑜 𝑁 𝐷𝑜    

(4) 𝐼𝑓 𝑑ℎ𝑖 > 0 𝑇ℎ𝑒𝑛   

(5)  𝐹𝑜𝑟 𝑘 ≔ 1 𝑇𝑜 𝑁 𝐷𝑜  

(7)   𝐼𝑓 𝑑𝑀+1 𝑘 > 0 𝑇ℎ𝑒𝑛  

(8)    𝐷𝐼𝐹𝑘
𝑖 𝑛𝑒𝑤 ≔ 𝐷𝐼𝐹𝑘

𝑖 𝑜𝑙𝑑 + [𝑤𝑖𝑀+1 − 𝑤𝑀+1] ∗ 𝑑𝑀+1 𝑘;  

(9) 𝐷𝑉𝑖 ≔ 0; 

(10) 𝐹𝑜𝑟 𝑘 ≔ 0 𝑇𝑜 𝑁 𝐷𝑜 

(11)  𝐷𝑉𝑖 = 𝐷𝑉𝑖 + 𝐷𝐼𝐹𝑘
𝑖 𝑛𝑒𝑤 ∗ (𝐷𝐼𝐹𝑘

𝑖 𝑛𝑒𝑤 + 2 ∗ 𝑐𝑘); 

(12) 𝐷𝑉𝑖 ≔ 𝐷𝑉𝑖 − 𝑐𝑖
2 ; 

Algorithm 8 : Insertion in Dot product method 

After deleting of a document 𝑑ℎ , 1 ≤ ℎ ≤ 𝑀 , from the collection 𝐶, the new values  

𝑐𝑖
𝑛𝑒𝑤are calculated with the following formula: 

𝑐𝑖
𝑛𝑒𝑤 = 𝑐𝑖

𝑜𝑙𝑑 − 𝑤𝑤𝑘𝑑𝑘𝑖 (48) 

The new values 𝐷𝐼𝐹𝑘
𝑖 𝑛𝑒𝑤,1 ≤ 𝑘 ≤ 𝑁, are calculated after deleting of the document 𝑑ℎ , 

1 ≤ ℎ ≤ 𝑀 , with the following formula: 

𝐷𝐼𝐹𝑘
𝑖 𝑛𝑒𝑤 ≔ 𝐷𝐼𝐹𝑘

𝑖 𝑜𝑙𝑑 − (𝑤𝑖ℎ − 𝑤ℎ) ∗ 𝑑𝑀+1 𝑘(49) 

The algorithm to execute for calculation of TDV after deletion of term is same to the 
algorithm for calculation of TDV after insertion of term. But we must replace formula (46) by 
formula (48) in line (2) and formula (47) by formula (49) in line (8).  

Compute the new centroid 𝑐𝑛𝑒𝑤 involves computing all of its 𝑁 components. This requires a 

complexity. After computing the new centroid 𝐶, the computation of 𝑇𝐷𝑉 of each term 𝑡𝑖 

requires to calculate the sum of the 𝑁 values of 𝐷𝐼𝐹𝑘
𝑖 𝑛𝑒𝑤, 1 ≤ 𝑘 ≤ 𝑁.  This requires a 

complexity of 2𝑁. Therefore the complexity of algorithm (8) is 2𝑁2 + 𝑁.  The computation 

of  𝑇𝐷𝑉 of single term 𝑡𝑖 is 3𝑁. 



 

3.5. Complexity: 

The following table is the synthesis complexities of algorithms 5-8 for calculation of TDV of 
single and all terms.  

 Naïve method Centroid method Clustering method Dot product 
method  

Algorithm 2𝑀𝑁2 + 2𝑀𝑁 

 

2MN2 + 2MN + N 2MN2 + 2MN + N 2𝑁2 + 𝑁 

Table 2: Complexities of incremental methods.  

For incremental methods the complexity of the naive method is better than the complexity 

of the centroid method. This is due to the fact that in the centroid method, it is not only 

necessary to recalculate the centroid but it is also necessary to recalculate all the similarities 

between documents and the new centroid. Naive and clustering methods have the same 

complexity despite their differences. The dot Product method has a very good and the best 

complexity because it depends only in 𝑁 and 𝑁 is a small value compared to 𝑀.  

  



4. Integration in a NoSQL environment 

Since the calculation of TDVs is very computational, we need to distribute it in a NoSQL 
environment in order to scale it up. To achieve this, we need to model each needed 
structure in the different methods for the incremental algorithms. This chapter will focus on 
the data structures for documents which are used in the MongoDB database and which 
types of files will be loaded to compute the TDVs. Then, we will develop the Map-Reduce 
algorithms we have implemented to achieve this. 

The four methods are run on the same collection. However, they will give different 
intermediate results. That is why we will associate to each method different files to save 
these intermediate results.  

4.1. Data structure 

Data are saved in the JSon format on MongoDB. Two choices are possible to us, either to 
save a collection of documents or to save a collection of terms. 

The updates, which have to be made on the collection, are additions and deletions of 
documents. Save a collection of terms implies to send for each insertion or deletion to 
several requests to multiple clusters to change the index. This is why we choose to make a 
backup of a collection of documents. This is to facilitate updates. 

A document in collection is defined by an identifier 𝑑𝑜𝑐𝐼𝐷. It contains its weight 𝑑𝑜𝑐𝑊𝑒𝑖𝑔ℎ𝑡 
which is the sum of squares of weights of terms that compose it. The document contains 
also a list of terms that compose it. Each term is defined by its identifier 𝑡𝑒𝑟𝑚𝐼𝐷 and its 
weight 𝑇𝑒𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡. The weight of a term in a document may represent the number of its 
occurrences in this document. It may indicate the presence of this term in the document. It 
can also represent this TDV. It can finally represent the standardized TDV i.e. TDV of term 
divided by the sum of TDVs of all terms. 

The following figure is a document in the collection.  

 

Figure 1: Structure of a document of the collection    

4.2. Files                 

These files will save the results obtained when computing TDV of terms of given collection. 
These backups will allow recalculating values of TDV changed after changing the collection 



by minimizing the number of calculations to be redone. The changes that can be brought to 
a collection are adding and deleting document. 

These files will be initialized when calculating TDV of all vocabulary terms taking into account 
all documents in the collection. Adding and deleting document involve a change of values 
contained in these files. Update of these files is necessary every time the collection is 
changed.  

A set of files is associated with each method: 

4.2.1. Naïve method 

Two files are associated with this method: 

 File Q_naive: Used to save the density 𝑄 calculated with the naïve method.  

 File Qi_naive: Contains densities 𝑄𝑖, 1 < 𝑖 < 𝑁, calculated with the naive method. 

4.2.2. Centroid method 

The files that are associated with the centroid method are: 

 File centroid_centroid: Each value stored in this file represents the sum of weights of 
a term 𝑡𝑖. These values are used to calculate components of the centroid of the 
collection by dividing the values found in the file on the number of documents in the 
collection.     

 File Q_centroid: Used to store density 𝑄 calculated with the centroid method.  

 File Qi_centroid : Used to store densities 𝑄𝑖, 1 < 𝑖 < 𝑁 calculated with the centroid 
method. 

4.2.3. Clustering method 

The following files are associated with the clustering method: 

 File alpha_clustering: This file contains the sum of weights of each document. Inverse 
of each value represents a value 𝛼𝑖, 1 < 𝑖 < 𝑀.      

 File beta_clustering: Contains values that associated with the vocabulary. Each value 
represents the sum of weights of a term 𝑡𝑖 in documents that contain it. Inverse of 
values contained in the file represent 𝛽𝑗, 1 < 𝑗 < 𝑁 . 

 File delta_clustering: Contains values 𝛿𝑖, 1 < 𝑖 < 𝑀 . 𝛿𝑖 being the result of 
multiplying 𝛼𝑖 by the sum of multiplication of squares of weighs  of terms of 
document 𝑑𝑖 by 𝛽𝑗 associated to terms. 

4.2.4. Method dotProd:  

Two files are associated with dot Product method:  



 File centroid_dotProd: This file contains values associated with terms of vocabulary. 
Each value is associated to a term 𝑡𝑗. It represents the sum of multiplication of the 

weights of a term in documents that contain it by the weight of documents. Thus, 
these values represent the components of centroid of dot Product method  

 File difIK_dotProd: Values 𝐷𝐼𝐹𝑘
𝑖  1 < 𝑖 < 𝑁, 1 < 𝑘 < 𝑁, are saved in this file. 

4.3. Implementation: 

Each one of the four methods is implemented in Map-Reduce to calculate TDVs of 
vocabulary terms. These methods are implemented so as to be tested on a collection 
previously defined (Figure 1). Each one of the four methods is implemented in two ways: the 
complete calculation and incremental calculation. The complete calculation allows 
calculating TDVs of all terms after seizure of all documents of collection, in other words, for 
the complete calculation methods defined in section 2 are applied to the collection of 
documents. The incremental calculation is used to calculate values of 𝑇𝐷𝑉s changed after 
adding or deleting a document. For the incremental calculation of TDVs methods defined in 
Section 3 are applied to the collection.  

4.3.1. Centroid method: 

The centroid method is implemented as follow for the complete and incremental 
calculation. 

Complete calculation: 

 Computing vector 𝑐: 

The computing is done using the map-reduce function of the document collection to get all 
values of components the centroid. 

The map function is applied to the terms of a document. For each term of a document 
sending an emit with TermID as a key and termWeignt as value. This emit allows grouping for 
each term its weights in documents. 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑝()  

𝐹𝑜𝑟(𝑡𝑒𝑟𝑚 𝑖𝑛 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠)  

         𝑒𝑚𝑖𝑡(𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝐼𝐷,   

{𝑡𝑒𝑟𝑚𝐼𝑑: 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝐼𝐷, 𝑤𝑒𝑖𝑔ℎ𝑡: 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡}) 

Algorithm 9: Map function for computing vector c 

After calling the map function, a call is made to a reduce function that calculate amounts of 
emitted values with same keys. The components of vector c are obtained.  

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑑𝑢𝑐𝑒(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)  



𝑣𝑎𝑟 𝑠𝑢𝑚 = 0  

𝐹𝑜𝑟(𝑣𝑎𝑟 𝑖 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒𝑠)  

 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑣𝑎𝑙𝑢𝑒𝑠[𝑖]. 𝑤𝑒𝑖𝑔ℎ𝑡 

𝑟𝑒𝑡𝑢𝑟𝑛 {𝑡𝑒𝑟𝑚𝐼𝑑 ∶  𝑘𝑒𝑦, 𝑤𝑒𝑖𝑔ℎ𝑡: 𝑠𝑢𝑚}  

Algorithm 10: Reduce function for computing vector c 

 Calculating  𝑄: 

The function is called. It supports setting the centroid of the collection. For each document, 
it calculates the similarity between the document and the centroid and makes an emit with 
null as key and value of similarity as value. This emit allows to have similarities between 
documents and the centroid. 

𝐹𝑜𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑝()  

𝑣𝑎𝑟 𝑐𝑒𝑛𝑡𝑜𝑖𝑑 =  [𝑐ℎ𝑎𝑖𝑛𝑒𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑]  

𝑣𝑎𝑟 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑊𝑒𝑖𝑔ℎ𝑡  

𝑣𝑎𝑟 𝑠𝑖𝑚 = 0  

𝑓𝑜𝑟(𝑣𝑎𝑟 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠)  

 𝑠𝑖𝑚+= 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡 ∗ 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑[𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝐼𝐷] 

𝑠𝑖𝑚 = 𝑠𝑖𝑚/ (𝑡ℎ𝑖𝑠. 𝐷𝑜𝑐𝑊𝑒𝑖𝑔ℎ𝑡 ∗ 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑊𝑒𝑖𝑔ℎ𝑡)  

𝑒𝑚𝑖𝑡(𝑛𝑢𝑙𝑙, 𝑠𝑖𝑚)  

Algorithm 11: Map function for computing density 𝑄 

The reduce function called after map function calculate the sum of emitted values. It gives 
the density 𝑄. 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑑𝑢𝑐𝑒(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)  

𝑣𝑎𝑟 𝑠𝑢𝑚 = 0  

𝑓𝑜𝑟(𝑣𝑎𝑟 𝑖 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒𝑠)  

 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑣𝑎𝑙𝑢𝑒𝑠[𝑖]. 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑒 

𝑟𝑒𝑡𝑢𝑟𝑛 𝑠𝑢𝑚  

Algorithm 12: Reduce function for computing density Q 



 Calculating 𝑄𝑖: 

The map function is called. For each term, the similarity between the document and the 
centroid is calculated after removing the term. The identifier of the term is emitted as the 
key and the similarity as values. This emit allows to have for each term similarities between 
documents and the centroid by ignoring this term. 

𝐹𝑜𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑝()  

𝑣𝑎𝑟 𝑐𝑒𝑛𝑡𝑜𝑖𝑑 = [𝑐ℎ𝑎𝑖𝑛𝑒𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑]  

𝑣𝑎𝑟 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑊𝑒𝑖𝑔ℎ𝑡   

𝑣𝑎𝑟 𝑠𝑖𝑚  

𝑣𝑎𝑟 𝑝1  

𝑣𝑎𝑟 𝑝2 = 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑊𝑒𝑖𝑔ℎ𝑡  

𝑣𝑎𝑟 𝑝3  

𝑓𝑜𝑟(𝑣𝑎𝑟 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠)  

 𝑠𝑖𝑚 = 0 

𝑝3 = 𝑝2  

 𝑓𝑜𝑟(𝑣𝑎𝑟 𝑡𝑒𝑟𝑚1 𝑖𝑛 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠) 

𝑖𝑓 𝑡𝑒𝑟𝑚 ! = 𝑡𝑒𝑟𝑚1                 

 

𝑠𝑖𝑚 =

 𝑠𝑖𝑚 + 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚1]. 𝑡𝑒𝑟𝑚𝑤𝑒𝑖𝑔ℎ𝑡 ∗

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑[𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚1]. 𝑡𝑒𝑟𝑚𝐼𝐷]  

  𝑒𝑙𝑠𝑒 

𝑝1 = 𝑡ℎ𝑖𝑠. 𝑑𝑜𝑐𝑊𝑒𝑖𝑔ℎ𝑡 –  𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚1]. 𝑡𝑒𝑟𝑚𝑤𝑒𝑖𝑔ℎ𝑡 ∗

𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚1]. 𝑡𝑒𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡                 

𝑝3 =

 𝑝2 − 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚1]. 𝑡𝑒𝑟𝑚𝑤𝑒𝑖𝑔ℎ𝑡 ∗

𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚1]. 𝑡𝑒𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡 

 𝑠𝑖𝑚 = 𝑠𝑖𝑚/ (𝑝1 ∗ 𝑝3)  

   𝑒𝑚𝑖𝑡(𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝐼𝐷,

{𝑡𝑒𝑟𝑚𝐼𝑑: 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝐼𝐷, 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑒: 𝑠𝑖𝑚}) 

 



Algorithm 13: Map function for computing densities 𝑄𝑖  

After calling the map function. The reduce function is called to calculate the amounts of 
values emitted with same cases. We obtain values of 𝑄𝑖s. 

𝐹𝑜𝑛𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑑𝑢𝑐𝑒(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)  

𝑣𝑎𝑟 𝑠𝑢𝑚 = 0  

𝑓𝑜𝑟(𝑣𝑎𝑟 𝑖 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒𝑠)  

 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑣𝑎𝑙𝑢𝑒𝑠[𝑖]. 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑒 

𝑟𝑒𝑡𝑢𝑟𝑛 {𝑡𝑒𝑟𝑚𝐼𝑑 ∶  𝑘𝑒𝑦, 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑒 ∶ 𝑠𝑢𝑚}  

Algorithm 14: Reduce function for computing densities 𝑄𝑖 

 Calculating 𝑇𝐷𝑉𝑖: 

 Once we obtained the values of 𝑄 and 𝑄𝑖s, by looping through all terms each value 𝑇𝐷𝑉𝑖 by 
the formula (𝑄𝑖 − 𝑄)/𝑄.  

Incremental calculation: 

The incremental calculation of 𝑇𝐷𝑉s with the centroid method needs four steps. The first 
and the last will run in central memory, the other two are map reduce functions.  

 Modify the vector c:    

Add the weight of each term of the document added to the value of component of the 
vector centroid whose index is the identifier of the term. Deduct the value of this term if the 
document is deleted. 

Once the centroid is changed the three next steps consist of: 

1. Calculating the density 𝑄 with algorithm. 
2. Calculating densities 𝑄𝑖 with algorithm. 

3. Calculating TDV of each term 𝑡𝑖 by application of formula (𝑄𝑖 − 𝑄)/𝑄 .  

4.3.2. Naive method 

In the following we present the details of the computation of integer and incremental 
calculation of 𝑇𝐷𝑉 with the naïve method. 

Complete calculation: 

TDVs are calculated using the formula (𝑄𝑖-𝑄/ 𝑄). They are calculated after obtaining density 
𝑄 and densities 𝑄𝑖. The density 𝑄 is obtained by summing similarities between all pairs of 



documents. A 𝑄𝑖 is obtained by summing similarities between all pairs of documents by 
ignoring the term 𝑡𝑖 in all documents.  

 Calculating similarities:  

Theses similarities are obtained through a method proposed by (Esayed and all, 2008) which 
is to apply a map-reduce to the collection and another on the obtained results. The two step 
are presented in following: 

Step 1: 

A map function is called. For each term of a document this function sends an emit with the 
Id of the term as key and an object as value. This object contains the Id of the document and 
value which is the division of the weight the term by the weight of the document.       

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑝()  

𝑣𝑎𝑟 𝑠𝑖𝑚 = 0  

𝑓𝑜𝑟(𝑣𝑎𝑟 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒𝑠)  

 𝑠𝑖𝑚 = 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡/𝑡ℎ𝑖𝑠. 𝑑𝑜𝑐𝑊𝑒𝑖𝑔ℎ𝑡 

𝑒𝑚𝑖𝑡(𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝐼𝐷,

{𝑡𝑒𝑟𝑚𝐼𝑑: 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝐼𝐷, 𝐶ℎ𝑎𝑖𝑛𝑒: {𝑑𝑜𝑐: 𝑡ℎ𝑖𝑠. 𝑑𝑜𝑐𝐼𝐷, 𝑂𝑐𝑐: 𝑠𝑖𝑚}})  

Algorithm 15: Map function in first step for computing similarities  

A reduce function is called. It groups objects emitted with same key in an array.  

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑑𝑢𝑐𝑒(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)  

𝑣𝑎𝑟 𝑐ℎ𝑎𝑖𝑛𝑒 = []  

𝑓𝑜𝑟(𝑣𝑎𝑟 𝑖 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒𝑠)  

 𝑐ℎ𝑎𝑖𝑛𝑒. 𝑝𝑢𝑠ℎ(𝑣𝑎𝑙𝑢𝑒[𝑖]) 

𝑟𝑒𝑡𝑢𝑟𝑛 {𝑡𝑒𝑟𝑚𝐼𝑑: 𝑘𝑒𝑦, 𝐶ℎ𝑎𝑖𝑛𝑒: 𝑐ℎ𝑎𝑖𝑛𝑒}  

Algorithm 16: Reduce function in first step for computing similarities 

Step 2: 

A map function is called. For each document of the collection obtained after the first step 
this function perform for each pair of objects “Chaine” that contained by this document a 
multiplication between values Occ these objects and send and emit with a combination of 
values doc of these objects as key and the results of the multiplication as value.   



𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑝()  

𝑣𝑎𝑟 𝑠𝑖𝑚 = 0  

𝑖𝑓 𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝐶ℎ𝑎𝑖𝑛𝑒[0]  

𝑓𝑜𝑟(𝑣𝑎𝑟 𝑑 𝑖𝑛 𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝐶ℎ𝑎𝑖𝑛𝑒)  

𝑓𝑜𝑟(𝑣𝑎𝑟 𝑑1 𝑖𝑛 𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝐶ℎ𝑎𝑖𝑛𝑒)  

𝑖𝑓 𝑑 < 𝑑1  

                 𝑠𝑖𝑚 =  𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝐶ℎ𝑎𝑖𝑛𝑒[𝑑]. 𝐶ℎ𝑎𝑖𝑛𝑒. 𝑂𝑐𝑐 

∗ 𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝐶ℎ𝑎𝑖𝑛𝑒[𝑑1]. 𝐶ℎ𝑎𝑖𝑛𝑒. 𝑂𝑐𝑐 

𝑒𝑚𝑖𝑡({𝐼𝑑1: 𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝐶ℎ𝑎𝑖𝑛𝑒[𝑑]. 𝐶ℎ𝑎𝑖𝑛𝑒. 𝑑𝑜𝑐,

𝐼𝑑2: 𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝐶ℎ𝑎𝑖𝑛𝑒[𝑑]. 𝐶ℎ𝑎𝑖𝑛𝑒. 𝑑𝑜𝑐 },

{𝐼𝑑𝑠: {𝐼𝑑1: 𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝐶ℎ𝑎𝑖𝑛𝑒[𝑑]. 𝐶ℎ𝑎𝑖𝑛𝑒. 𝑑𝑜𝑐,

𝐼𝑑2: 𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝐶ℎ𝑎𝑖𝑛𝑒[𝑑]. 𝐶ℎ𝑎𝑖𝑛𝑒. 𝑑𝑜𝑐}, 𝑆𝑖𝑚: 𝑠𝑖𝑚})  

 

Algorithm 17: Map function in second step for computing similarities  

The following reduce function is called to calculate amounts of values emitted with same 
keys.    

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑑𝑢𝑐𝑒(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)  

𝑣𝑎𝑟 𝑠𝑢𝑚 = 0  

𝑓𝑜𝑟(𝑣𝑎𝑟 𝑖 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒𝑠)  

 𝑠𝑢𝑚 = 𝑣𝑎𝑙𝑢𝑒𝑠[𝑖]. 𝑆𝑖𝑚 

𝑟𝑒𝑡𝑢𝑟𝑛 {𝐼𝑑𝑠: 𝑘𝑒𝑦, 𝑆𝑖𝑚: 𝑠𝑢𝑚}  

Algorithm 18: Reduce function in second step for computing similarities 

 Calculating  Q: 

Density Q is computed by summing all similarities obtained.  

 Calculating  𝑄𝑖s: 

After calculating the density 𝑄. Each density 𝑄𝑖 is calculated by applying to the collection in 
the first step a map-reduce similar to that of the second step by adding a condition in the 



map function to ignore the term 𝑡𝑖. This map-reduce is applied N times such that N is the 
number of the vocabulary terms.  

The following function map execute the same job that the function of algorithm (17) by 
ignoring the term which 𝑡𝑖 as Id. 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑝()  

𝑣𝑎𝑟 𝑠𝑖𝑚 = 0  

𝑣𝑎𝑟 𝑣𝑒𝑐 = [𝑐ℎ𝑎𝑖𝑛𝑒𝑇𝑒𝑟𝑚𝑠]  

𝑣𝑎𝑟 𝑖𝑛𝑑𝑒𝑥 = 𝑖  

𝑖𝑓(𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝑡𝑒𝑟𝑚𝐼𝐷 ! = 𝑣𝑒𝑐[𝑖𝑛𝑑𝑒𝑥])  

𝑖𝑓 𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝐶ℎ𝑎𝑖𝑛𝑒[0]  

𝑓𝑜𝑟(𝑣𝑎𝑟 𝑑 𝑖𝑛 𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝐶ℎ𝑎𝑖𝑛𝑒)  

𝑓𝑜𝑟(𝑣𝑎𝑟 𝑑1 𝑖𝑛 𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝐶ℎ𝑎𝑖𝑛𝑒)  

𝑖𝑓 𝑑 < 𝑑1  

 𝑠𝑖𝑚 =  𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝐶ℎ𝑎𝑖𝑛𝑒[𝑑]. 𝐶ℎ𝑎𝑖𝑛𝑒. 𝑂𝑐𝑐 

∗ 𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝐶ℎ𝑎𝑖𝑛𝑒[𝑑1]. 𝐶ℎ𝑎𝑖𝑛𝑒. 𝑂𝑐𝑐 

     𝑒𝑚𝑖𝑡({𝐼𝑑1: 𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝐶ℎ𝑎𝑖𝑛𝑒[𝑑]. 𝐶ℎ𝑎𝑖𝑛𝑒. 𝑑𝑜𝑐,

𝐼𝑑2: 𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝐶ℎ𝑎𝑖𝑛𝑒[𝑑]. 𝐶ℎ𝑎𝑖𝑛𝑒. 𝑑𝑜𝑐 },

{𝐼𝑑𝑠: {𝐼𝑑1: 𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝐶ℎ𝑎𝑖𝑛𝑒[𝑑]. 𝐶ℎ𝑎𝑖𝑛𝑒. 𝑑𝑜𝑐,

𝐼𝑑2: 𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝐶ℎ𝑎𝑖𝑛𝑒[𝑑]. 𝐶ℎ𝑎𝑖𝑛𝑒. 𝑑𝑜𝑐}, 𝑆𝑖𝑚: 𝑠𝑖𝑚})  

 

Algorithm 19: Map function for computing similarities by ignoring a term 𝑡𝑖  

The reduce function is called to sum values emitted with same keys.   

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑑𝑢𝑐𝑒(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)  

𝑣𝑎𝑟 𝑠𝑢𝑚 = 0  

𝑓𝑜𝑟(𝑣𝑎𝑟 𝑖 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒𝑠)  

 𝑠𝑢𝑚 = 𝑣𝑎𝑙𝑢𝑒𝑠[𝑖]. 𝑆𝑖𝑚 

𝑟𝑒𝑡𝑢𝑟𝑛 {𝐼𝑑𝑠: 𝑘𝑒𝑦, 𝑆𝑖𝑚: 𝑠𝑢𝑚}  

Algorithm 20: Reduce function for computing similarities by ignoring a term 𝑡𝑖  



Incremental calculation:    

The formula for calculating 𝑇𝐷𝑉 of each term 𝑡𝑖is (𝑄 − 𝑄𝑖)/𝑄. After adding or deleting a 
document value 𝑄 and values 𝑄𝑖 are modified. Functions map “algorithm (11)” and reduce 
“algorithm (12)” are used to compute the new value of density 𝑄 by replacing centroid by 
inserted or deleted document and adding (or subtracting) obtained result to the value of 𝑄 
saved in file Q_naive. By inserted or deleted document functions map “algorithm (13)” and 
reduce “algorithm (14)” are used to compute new values of 𝑄𝑖. Each value obtained is added 
(or subtracted) to value that which corresponds to it in file Qi_naive. Then, we can compute 
new values of TDV.  

4.3.3. Clustering Method: 

We will detail in that follows the implementation of the integer and incremental calculations 
whit the clustering method. 

Complete calculation:  

The calculation of 𝑇𝐷𝑉 values is divided into for distributed computations, the first 
computation is for calculating vector 𝛼, the second is for calculating vector 𝛽, the third is for 
calculating vector 𝛿 and the last is for calculating 𝑇𝐷𝑉 values which depend on the tree 
vectors. 

 Calculating the inverse of 𝛼𝑖s: 

The map function will be applied to all the terms of documents of the collection. At each call 
of the map function serval emit are sent. Each emit has 𝑑𝑜𝑐𝐼𝐷 as key and 𝑡𝑒𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡 as 
value. This function is called to have for each document weights of terms that compound it. 

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑝()  

𝑓𝑜𝑟 (𝑣𝑎𝑟 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠)  

 𝑒𝑚𝑖𝑡(𝑡ℎ𝑖𝑠. 𝑑𝑜𝑐𝐼𝐷, {𝑑𝑜𝑐𝐼𝑑: 𝑡ℎ𝑖𝑠. 𝑑𝑜𝑐𝐼𝐷, 𝑤𝑒𝑖𝑔ℎ𝑡: 𝑡𝑒𝑟𝑚. 𝑡𝑒𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡}) 

Algorithm 21: Map function for computing vector 𝛼 

The reduce function is called after calling the map function. This function calculates the sums 

of values emitted with same keys. This reduce function gives components of 𝛼. 

𝐹𝑜𝑛𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑑𝑢𝑐𝑒(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)  

𝑓𝑜𝑟(𝑣𝑎𝑟 𝑖 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒𝑠)  

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑣𝑎𝑙𝑢𝑒𝑠[𝑖]. 𝑤𝑒𝑖𝑔ℎ𝑡  

𝑟𝑒𝑡𝑢𝑟𝑛 {𝑑𝑜𝑐𝐼𝑑 ∶  𝑘𝑒𝑦, 𝑤𝑒𝑖𝑔ℎ𝑡 ∶ 𝑠𝑢𝑚}   

Algorithm 22: Reduce function for computing vector 𝛼 



 Calculating inverses of 𝛽𝑗s: 

A call the map function is performed for each document. This function is applied to all terms 

of documents. The key of each emit is 𝑡𝑒𝑟𝑚𝐼𝐷 and its value is 𝑡𝑒𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡. This function is 

called to group for each term its weight in documents. 

𝐹𝑜𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑝() 

𝑓𝑜𝑟(𝑣𝑎𝑟 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠) 

 𝑒𝑚𝑖𝑡(𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]𝑡𝑒𝑟𝑚𝐼𝐷, {𝑡𝑒𝑟𝑚𝐼𝑑: 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝐼𝐷  

, 𝑤𝑒𝑖𝑔ℎ𝑡: 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡}) 

Algorithm 23: Map function for computing vector 𝛽 

A reduce function is called. It calculates the sums of values emitted with same key. This 

function gives components of vector 𝛽. 

𝐹𝑜𝑛𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑑𝑢𝑐𝑒(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)  

𝑓𝑜𝑟(𝑣𝑎𝑟 𝑖 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒𝑠)  

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑣𝑎𝑙𝑢𝑒𝑠[𝑖]. 𝑤𝑒𝑖𝑔ℎ𝑡  

𝑟𝑒𝑡𝑢𝑟𝑛 {𝑡𝑒𝑟𝑚𝐼𝑑 ∶  𝑘𝑒𝑦, . 𝑤𝑒𝑖𝑔ℎ𝑡 ∶ 𝑠𝑢𝑚}   

Algorithm 24: Reduce function for computing vector 𝛽 

 Calculating the vector  𝛿: 

The map function is called for each document of the selection. This function takes the vector 

“chaineBeta” which contain 𝛽𝑗s as parameter. The map function is applied all terms 𝑡𝑗 of 

documents of the collection by multiplying the square of the weight of the term by 𝛽𝑗 

emitting the obtained value with the key 𝑡𝑒𝑟𝑚𝐼𝐷. This function allows grouping for each 

term squares of its weight in documents multiplied by the component of the vector 𝛽 

corresponding to this term.  

𝐹𝑜𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑝() 

𝑣𝑎𝑟 𝑠𝑢𝑚 = 0 

𝑣𝑎𝑟 𝑏𝑒𝑡𝑎 = [𝑐ℎ𝑎𝑖𝑛𝑒𝐵𝑒𝑡𝑎] 

𝑓𝑜𝑟(𝑡𝑒𝑟𝑚 𝑖𝑛 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠) 

 𝑠𝑢𝑚 =  𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝑤𝑒𝑖𝑔ℎ𝑡 ∗  𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡 /

 𝑏𝑒𝑡𝑎[𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝐼𝐷] 



𝑒𝑚𝑖𝑡(𝑡ℎ𝑖𝑠. 𝑑𝑜𝑐𝐼𝐷 , {𝑑𝑜𝑐𝐼𝑑: 𝑡ℎ𝑖𝑠. 𝑑𝑜𝑐𝐼𝐷, 𝑆𝑢𝑚: 𝑠𝑢𝑚})  

Algorithm 25: Map function for computing vector 𝛿 

The reduce function is called to calculate the sums of values emitted by map function with 

the same key and multiply them by 𝛼𝐾𝑒𝑦. Components of vector 𝛿 are obtained with this 

function.  

𝐹𝑜𝑛𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑑𝑢𝑐𝑒(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) 

𝑣𝑎𝑟 𝑎𝑙𝑝ℎ𝑎 = [𝑐ℎ𝑎𝑖𝑛𝑒𝐴𝑙𝑝ℎ𝑎] 

𝑣𝑎𝑟 𝑠𝑢𝑚 = 0 

𝐹𝑜𝑟𝑒𝑎𝑐ℎ(𝑣𝑎𝑟 𝑖 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒𝑠) 

 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑣𝑎𝑙𝑢𝑒𝑠[𝑖]. 𝑆𝑢𝑚 

𝑠𝑢𝑚 =  𝑠𝑢𝑚/𝑎𝑙𝑝ℎ𝑎[𝑘𝑒𝑦] 

𝑅𝑒𝑡𝑢𝑟𝑛 {𝑑𝑜𝑐𝐼𝑑 ∶  𝑘𝑒𝑦, 𝑆𝑢𝑚 ∶ 𝑠𝑢𝑚}  

Algorithm 26: Reduce function for computing vector 𝛿 

 Calculating 𝑇𝐷𝑉𝑖: 

The map function is called. It takes vectors 𝛼, 𝛽 and 𝛿 as parameters. For each term 𝑡𝑙  of a 

document 𝑑𝑖 the value 𝛿𝑖 − 𝛼𝑖
𝑙 ∗ (

𝛿𝑖

𝛼𝑖
− 𝑑𝑖𝑙

2 ∗ 𝛽𝑙) is calculated and emitted with 𝑡𝑙   as key. 

Calling this function allows to have multiple groups of values. The sum of vales of each group 

gives 𝑇𝐷𝑉 a given term. 

𝐹𝑜𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑝() 

𝑣𝑎𝑟 𝑎𝑙𝑝ℎ𝑎 = [𝑐ℎ𝑎𝑖𝑛𝑒𝐴𝑙𝑝ℎ𝑎] 

𝑣𝑎𝑟 𝑏𝑒𝑡𝑎 = [𝑐ℎ𝑎𝑖𝑛𝑒𝐵𝑒𝑡𝑎] 

𝑣𝑎𝑟 𝑑𝑒𝑙𝑡𝑎 = [𝑐ℎ𝑎𝑖𝑛𝑒𝐷𝑒𝑙𝑡𝑎] 

𝑣𝑎𝑟 𝑣𝑎𝑙 = 0 

𝑓𝑜𝑟(𝑣𝑎𝑟 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠) 

𝑣𝑎𝑙 = 𝑐ℎ𝑎𝑖𝑛𝑒𝐷𝑒𝑙𝑡𝑎[𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝐼𝐷] − (1/(𝑎𝑙𝑝ℎ𝑎[𝑡ℎ𝑖𝑠. 𝑑𝑜𝑐𝐼𝐷]

−  𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡) ∗ (𝑑𝑒𝑙𝑡𝑎[𝑡ℎ𝑖𝑠. 𝑑𝑜𝑐𝐼𝐷]

∗  𝑎𝑙𝑝ℎ𝑎[𝑡ℎ𝑖𝑠. 𝑑𝑜𝑐𝐼𝐷] − (𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡

∗ 𝑡𝑒𝑟𝑚. 𝑡𝑒𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡/𝑏𝑒𝑡𝑎[𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝐼𝐷])) 



 𝑒𝑚𝑖𝑡 (𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]: 𝑡𝑒𝑟𝑚𝐼𝐷, {𝑡𝑒𝑟𝑚𝐼𝑑 ∶

𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]: 𝑡𝑒𝑟𝑚𝐼𝐷, 𝑡𝑑𝑣: 𝑣𝑎𝑙}) 

Algorithm 27: Map function for computing TDV 

A reduce function is called after the calling of map function. It calculates the sums of values 

emitted with same key. This reduce function gives values of TDVs. 

𝐹𝑜𝑛𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑑𝑢𝑐𝑒(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) 

𝑣𝑎𝑟 𝑠𝑢𝑚 = 0 

𝑓𝑜𝑟(𝑣𝑎𝑟 𝑖 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒𝑠) 

 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑣𝑎𝑙𝑢𝑒𝑠[𝑖]. 𝑡𝑑𝑣 

𝑟𝑒𝑡𝑢𝑟𝑛 {𝑡𝑒𝑟𝑚𝐼𝑑 ∶  𝑘𝑒𝑦, 𝑣𝑎𝑙 ∶ 𝑠𝑢𝑚}  

Algorithm 28: Reduce function for computing TDV 

Incremental calculation: 

When adding or deleting a document some 𝑇𝐷𝑉 will change. It is very difficult to know what 
values of TDV will modified, that is why we will recalculate 𝑇𝐷𝑉 of all terms. To recalculate 
𝑇𝐷𝑉s four steps are needed, three will be in main memory: 

 Calculate the value 𝛼𝑀+1 that is the sum of weights of terms of the document 𝑑𝑀+1 
and add it to alpha_clustering file if the modification of collection is adding a 
document. Remove 𝛼𝑖 from alpha_clustering file if the modification of the collection 
is deleting a document 𝑑𝑖. 

 Modify 𝛽𝑗for all terms 𝑡𝑗 of the document added or deleted document and save them 

in beta_cluetering file. 

 Add 𝛿𝑀+1 if the modification of collection is adding a document. Remove 𝛿𝑖 if the 
modification of collection is deleting a document. Modify values of 𝛿 associated with 
documents that contains some of terms of document added or deleted.    

Once the new values of vectors 𝛼, 𝛽 and 𝛿 are obtained and the new values of 𝑇𝐷𝑉 can be 
recalculated using the map function defined by algorithm (27) and the reduce function 
defined by algorithm (28). 

4.3.4. Dot Product method: 

We will see in the following the details of the implementation of integer and incremental 
calculations of TDV with Dot Product method. 

Complete calculation: 



The calculations of TDV need steps that are map reduce functions that are computing of 
vector 𝑐  and computing of matrix 𝐷𝐼𝐹 and one step that will be executed on central 
memory that is computing of 𝑇𝐷𝑉 values. 

 Computing vector 𝑐: 

To compute centroid’s components of dot Product method, the map function is called. For 
each term of a document is associated an emit that has the identifier of the term as key and 
its weight as value. Calling of this allows grouping for each term its weights in documents 
divided by weights of documents. 

𝐹𝑜𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑝() 

𝑣𝑎𝑟 𝑠𝑢𝑚 

𝑓𝑜𝑟 (𝑣𝑎𝑟 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠)  

         𝑠𝑢𝑚 =  𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡/𝑡ℎ𝑖𝑠. 𝑑𝑜𝑐𝑊𝑒𝑖𝑔ℎ𝑡 

                      𝑒𝑚𝑖𝑡(𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝐼𝐷,

{𝑡𝑒𝑟𝑚𝐼𝑑: 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝐼𝐷, 𝑤𝑒𝑖𝑔ℎ𝑡: 𝑠𝑢𝑚}) 

Algorithm 29: Map function for computing vector 𝑐 of dot Product method 

The reduce function is called after the map function. It calculates amounts of weights issued 
with the same keys.  The components of the vector 𝑐 are then obtained. 

𝐹𝑜𝑛𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑑𝑢𝑐𝑒(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) 

𝑣𝑎𝑟 𝑠𝑢𝑚 = 0; 

𝐹𝑜𝑟𝑒𝑎𝑐ℎ(𝑣𝑎𝑟 𝑖 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒𝑠) 

 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑣𝑎𝑙𝑢𝑒𝑠[𝑖]. 𝑤𝑒𝑖𝑔ℎ𝑡; 

𝑟𝑒𝑡𝑢𝑟𝑛 {𝑡𝑒𝑟𝑚𝐼𝑑 ∶  𝑘𝑒𝑦, 𝑤𝑒𝑖𝑔ℎ𝑡: 𝑠𝑢𝑚};  

Algorithm 30: Reduce function for computing vector 𝑐 of dotProd method 

 Computing matrix 𝐷𝐼𝐹 : 

A map function is called it send for each document 𝑑𝑗, for each pair of terms {𝑡𝑖, 𝑡𝑘} an emit 

with the key 𝑡𝑖, 𝑡𝑘} and the value (𝑤𝑖𝑗 − 𝑤𝑗) ∗ 𝑑𝑗𝑘  where 𝑤𝑗 is the weight of the document 

𝑑𝑗, 𝑤𝑖𝑗 is the weight of the document 𝑑𝑗 without 𝑡𝑖 and 𝑑𝑗𝑘  is the weight of the term 𝑡𝑘 in 

the document 𝑑𝑗. Calling this function allows to have multiple groups of values. The sum of 

each group gives a box of the matrix “dif”. 

 



𝐹𝑜𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑝() 

𝑣𝑎𝑟 𝑣𝑎𝑙 

𝑓𝑜𝑟 (𝑣𝑎𝑟 𝑡𝑒𝑟𝑚 𝑖𝑛 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠)  

𝑓𝑜𝑟 (𝑣𝑎𝑟 𝑡𝑒𝑟𝑚1 𝑖𝑛 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠)    

𝑣𝑎𝑙 = (1/(𝑡ℎ𝑖𝑠. 𝑑𝑜𝑐𝑊𝑒𝑖𝑔ℎ𝑡 − 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡

∗ 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡) − 1/𝑡ℎ𝑖𝑠. 𝑑𝑜𝑐𝑊𝑒𝑖𝑔ℎ𝑡)

∗ 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚1]. 𝑡𝑒𝑟𝑚𝑊𝑒𝑖𝑔ℎ𝑡 

𝑒𝑚𝑖𝑡({𝐼𝑑1: 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝐼𝐷, 𝐼𝑑2: 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚1]. 𝑡𝑒𝑟𝑚𝐼𝐷},  

{𝐼𝑑𝑠: {𝐼𝑑1: 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚]. 𝑡𝑒𝑟𝑚𝐼𝐷, 𝐼𝑑2: 𝑡ℎ𝑖𝑠. 𝑡𝑒𝑟𝑚𝑠[𝑡𝑒𝑟𝑚1]. 𝑡𝑒𝑟𝑚𝐼𝐷}, , 𝑤𝑒𝑖𝑔ℎ𝑡: 𝑣𝑎𝑙}) 

Algorithm 31: Map function for computing collection dif:  

After the calling to map function, a reduce function is called, it sum values that corresponds 

to same keys. The collection “dif” is obtained after the calling of this function. 

𝑅𝑒𝑑𝑢𝑐𝑒 𝑚𝑎𝑝() 

𝑣𝑎𝑟 𝑠𝑢𝑚 

𝑓𝑜𝑟 (𝑣𝑎𝑟 𝑖 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒𝑠)  

𝑠𝑢𝑚+= 𝑣𝑎𝑙𝑢𝑒[𝑖]. 𝑑𝑖𝑓  

𝑟𝑒𝑡𝑢𝑟𝑛 {𝐼𝑑𝑠: 𝑘𝑒𝑦, 𝑑𝑖𝑓: 𝑠𝑢𝑚}   

Algorithm 32: Map function for computing collection “dif”:  

 Computing TDV:  

For computing TDV of each term, a map function is called, it sends for each document of the 
collection “dif” (matrix “dif”) an emit with the first part of the id of the document as the key 
and the addition of the value “dif” and the multiplication of the number two by of the 
component of centroid which corresponds to the second part of the id of the document.  

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑚𝑎𝑝()  

𝑣𝑎𝑟 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 = [𝑐ℎ𝑎𝑖𝑛𝑒𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑]  

𝑣𝑎𝑟 𝑠𝑢𝑚  

𝑠𝑢𝑚 =  𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝑑𝑖𝑓 ∗ (𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝑑𝑖𝑓 + 2 ∗ 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑[𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝐼𝑑𝑠. 𝐼𝑑2])  

𝑒𝑚𝑖𝑡( 𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝐼𝑑𝑠. 𝐼𝑑1 , { 𝑡𝑒𝑟𝑚𝐼𝐷: 𝑡ℎ𝑖𝑠. 𝑣𝑎𝑙𝑢𝑒. 𝐼𝑑𝑠. 𝐼𝑑1 , 𝑡𝑑𝑣: 𝑠𝑢𝑚}) 



Algorithm 33: Map function for computing TDV in dotProd method 

A reduce function is called for summing values emitted with same keys. TDVs are then 
obtained.  

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑟𝑒𝑑𝑢𝑐𝑒()  

𝑣𝑎𝑟 𝑠𝑢𝑚 = 0  

𝑓𝑜𝑟 (𝑣𝑎𝑟 𝑖 𝑖𝑛 𝑣𝑎𝑙𝑢𝑒𝑠)  

𝑠𝑢𝑚 = 𝑣𝑎𝑙𝑢𝑒𝑠[𝑖]. 𝑡𝑑𝑣  

𝑟𝑒𝑡𝑢𝑟𝑛 {𝑡𝑟𝑒𝑚𝐼𝐷: 𝑘𝑒𝑦 , 𝑡𝑑𝑣: 𝑠𝑢𝑚}  

Algorithm 34: Reduce function for computing TDV in dot product method 

Incremental method: 

After adding or deleting a document changing 𝑇𝐷𝑉 values will be in main memory. The 
operation of loading the vector centroid and the matrix 𝐷𝐼𝐹 and modify the changed values. 
This will allow recalculate 𝑇𝐷𝑉 values. Three steps are then needed to recalculate 𝑇𝐷𝑉 
values:  

 Recalculate modified components of centroid. These components are terms of 
document added or deleted. To change a component consists to add to the current 
value the value of division of the weight of the term in document added by the 
weight of document and deduct the value of this division from the current value in 
the case of deletion.  

 Modify for each vector 𝐷𝐼𝐹𝑖  cases 𝑘 that correspond to terms contained by added or 
deleted document.  

 Recalculate values of 𝑇𝐷𝑉s.   

 

 

 

 

 

 

 

 



5. Experiments 

The experiments will be performed on a dataset that represents all of the publications of 
FiND system in November 2010. These data are available on file in ".csv" format. It is from 
this data that MongoDB databases of different sizes are generated. 

The experiments will be performed on machines of the "salles des marchées 2" which is a 
pratical works room in CNAM . This room supports thirty machines called  samar31, 
samar32, ..., samar60. In order to compare the different methods we will do locally and 
distributed tests. To make distributed tests the machine samar32 is designed as mongos 
server, machines samar33, samar34, and samar35 are designed as configuration servers and 
other machines are the shards. 

Experiments on a single server: 

Experiments on multiple servers: 

6. Conclusion 

The amount of data that is generated by the web requires the adaptation of different 
platforms to enable scaling. The FiND platform should store millions of items and use of very 
expensive calculations in terms of memory and time. This is why these calculations have to 
be optimized and distributed. 

 To enable this scaling, we used NoSQL databases and Map-Reduce framwork. Different 
methods were implemented to run on NoSQL data. To enable the distribution, these 
methods use functions Map-Reduce. 

The DBMS that was adopted is MongoDB, this system perfectly meets our requirement that 
is to have NoSQL data distributed across multiple clusters. A data structure has been 
proposed and the implementation of the methods has been carried out taking account of 
the structure. 

The first experiments carried out confirm that the naive method is the most expensive 
method and that must be avoided in a real context. These experiments indicate that dot 
Product method is poorly distributable despite its good complexity in theory. The centroid 
and clustering methods are the most interesting, but the centroid method gives accurate 
results and clustering method gives approximate results. 

We have seen this work find the system performances can be improved by minimizing the 
time of calculation  of TDV values but there's many ways to improve this work. 

We can achieve more experiences especially in a distributed environment to see the 
behavior of these methods when run on a large number of clusters. We can also make tests 
with larger data to approximate a real context. We choose to use the DBMS MongoDB but 
we can explore ways to backup data and show if it improve performances. 
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