
A File By Any Other Name: Managing File Names with Metadata

Name1

Affiliation1

Email1

Name2

Affiliation2

Email2

Name3 Name4

Affiliation3

Email3/4

Abstract

File names are an ancient abstraction, a string of characters

to uniquely identify a file and help users remember the con-

tents of a file when they look for it later. However, they are

not an ideal solution for these tasks. Names often contain

useful semantic metadata provided by the user, but this meta-

data is opaque to the rest of the system. The formatting of

the file name is up to the user, and as a result, metadata in

file names is often error-prone, inconsistently formatted, and

hard to search for later. File names need to be more mean-

ingful and reliable, while simplifying application design and

encouraging users and applications to provide more meta-

data for search.

We describe our prototype file system, TrueNames, a

POSIX compliant file system which demonstrates an al-

ternate approach to naming and metadata, by providing

metadata-aware naming. Our approach is intended to be

complementary to non-hierarchical systems, while remain-

ing effective within a hierarchical context. TrueNames sep-

arates the task of uniquely identifying a file from the task of

helping the user remember its contents. It captures metadata

in a more useable format, and uses it to generate file names

which are correct, regenerable, and structured by design.

TrueNames simplifies application design by providing a con-

sistent interface for metadata aware naming, incurs minimal

overhead of approximately 15% under realistic workloads,

and can simplify a wide variety of data management tasks

for both applications and users.

1. Introduction

File names have existed since the earliest file systems, and

serve two important functions. First, they serve to uniquely

identify a file over time. Second, they serve to jog our mem-

ory, describing the contents of a file, and helping us to find

[Copyright notice will appear here once ’preprint’ option is removed.]

it or recognize it when we look at it later. In order to help

users to find and remember files, they often contain a bounty

of useful metadata about the file.

However current approaches to file names have flaws:

• They are unstructured semantic metadata which is opaque

to the system

• Formatting is up to the user, and is error prone and incon-

sistent, making it hard to find files later

• Changing a file name destroys information

Consider the following file name drawn from the experi-

ments for this paper:

createfiles_HDD_truenames_100000files_1threads.

data

Looked at in one light, this is a long, arbitrary, error prone

string of characters. In another light, it is a rich source of

semantic metadata about the contents of the file that could

be used for search and analysis. The challenge is to extract

that information.

To resolve these flaws, we propose to disassociate the two

functions of names, separating the task of uniquely identi-

fying a file for applications from helping users to identify

a file. As a proof of concept, we describe our new pro-

totype file system, TrueNames, a FUSE-based file system

which provides a durable unique identifier for a file which

can be used by applications, captures rich metadata in a

structured format, and uses it to dynamically generate user-

friendly file names using templates. These file names have

many advantages over conventional file names. They are cor-

rect, because they are continuously synchronized with the

file’s metadata. They are regenerable, allowing us to com-

press and recreate names at will without loss of information.

File names can be disambiguated using all available meta-

data, which reduces accidental data over-writes. The meta-

data which we capture is structured, making it readily avail-

able for search and data management. We describe these new

file names as metadata aware names.

TrueNames is designed to demonstrate the feasibility of

several goals. Metadata aware file naming can make naming

more reliable and less error prone. It can also prevent ac-

cidental overwriting of existing files by detecting collisions

between names, and adding additional metadata to disam-

biguate. Many applications already offer some form of auto-

1 2013/10/11

matic file naming, and by making that functionality part of

the file system, we can speed application development, and

prevent code duplication and the resulting proliferation of

bugs. Being able to regenerate file names allows us to port

files between file systems with differing constraints, gen-

erating a meaningful file name in each location, and then

reconstructing the original file name whenever needed. We

can easily move metadata between file names and directory

names, or store it for later use. And finally, by gently en-

couraging users and applications to share more metadata in

a structured fashion, we can make metadata more readily

available to improve the quality of file system search or sup-

port a non-hierarchical file system.

While TrueNames is a user space prototype file system,

it demonstrates the feasibility of doing metadata aware nam-

ing. It offers extensive new functionality, and incurs very low

overheads, less than 15% on realistic workloads. Much of the

additional cost is incurred by added kernel crossings, sug-

gesting that an in-kernel implementation would have negli-

gible performance impact, while significantly improving file

system search and data management.

2. Use Cases

Metadata aware naming can be used as a broadly applicable

framework for solving cross-cutting concerns. It can be used

by applications to simplify common tasks, and by scripts and

end-users to better manage files. It can even help to prevent

data loss caused by overwrites, and allow multiple applica-

tions to cooperatively name files. We describe a variety of

use cases for TrueNames, and explain how it can benefit

users and applications in each case.

2.1 Managing experimental data

One of the common problems a scientist faces is that of man-

aging experimental results. A scientist might run a series of

experiments, varying some parameters while holding oth-

ers constant, and outputting the results to a file, then decide

based on the results to vary other parameters. This is com-

monly managed by creating file names programmatically.

However, this approach has some drawbacks. For instance,

if the user wants to search the results by parameter, they will

need to use string matching or a regular expression, which

relies on consistent formatting, such as using the same field

separator and the same field order. Likewise, a metadata field

which contains the same character as the chosen field sepa-

rator (such as an underscore in a library name) can throw

a regular expression off. Finally, common queries such as

range searches require complex regular expressions to per-

form.

Another common problem occurs when rerunning exper-

iments while setting additional parameters. The user also

needs to remember to change the file name output to reflect

the new parameters, and older file names will not have the

new parameters, even if they were applicable. If the user for-

gets to change the code which generates file names for ex-

perimental results, they may overwrite existing results files,

wasting hours or days of compute time.

TrueNames simplifies creating file names and searching

for metadata. Rather than programmatically generating file

names, experiments can simply add metadata for all the ex-

periment parameters. File names can be generated using a

simple template, and then the template can be expanded by

the user as new parameters become relevant, which results

in both old and new files using the new template. File name

collision detection can help prevent overwriting by disam-

biguating files on the fly. The results files are easily search-

able by metadata field, regardless of the order fields occur

in the file name, or what characters occur in the field. Using

structured data allows both exact match and range queries,

and file names are an accurate reflection of their contents.

The authors used TrueNames to manage experimental re-

sults for this paper, and found it to be extremely helpful and

simple to use, allowing them to easily manage multiple ex-

periments and parameters, generate accurate and meaningful

file names, and then search their results later.

2.2 Managing research papers

Applications such as Mendeley [6] are designed to manage

a collection of research papers, making them easy to search.

Mendeley indexes all of the metadata fields of each publica-

tion, does full text indexing, and can manage directory struc-

tures and file names. Mendeley does not use a fixed format

for file names. Rather, they allow the user to pick the meta-

data fields and the order in which they should be used to gen-

erate a file name, much like TrueNames does. Applications

such as Mendeley can work symbiotically with TrueNames,

serving as an interface for extracting metadata and helping

the user generate templates, while allowing TrueNames to

do the work of keeping file names up to date.

2.3 Managing a music collection

Most modern MP3 players, in addition to playing music, also

perform metadata and file management. They can down-

load new music, organize music into folders, and assign

names to music based on its metadata (stored in ID3 tags.)

For instance, iTunes will place MP3s into folders based on

artist and album, and then generate a file name based on

a fixed template using the disc number, track number, and

song title. However, this means that music can only be man-

aged through the application. New music downloaded from

outside the application is unknown, and changes to mu-

sic’s metadata are not reflected in the file name unless done

through the application. Utilities such as MusicBrainz Picard

[7] can repair missing metadata and names, but require the

user to recreate their iTunes database to reimport the new file

names.

TrueNames, like iTunes, can manage file names based on

metadata, using whatever fields are desired. However, file

names will always be kept in sync with the latest metadata,

2 2013/10/11

regardless of the source of that metadata. New music can

automatically be given a name in the desired format, no

matter what application downloaded it. If the user prefers

a different name, they can choose a different format, and all

files of that type will automatically be renamed. By using

unique identifiers rather than file names, databases don’t

have to be recreated when file names change. If multiple files

are imported with the same name, rather than overwriting the

existing files, TrueNames can check the metadata to prevent

a collision which would result in losing one or more files.

2.4 Managing a photo collection

File names have lagged behind UIs in the photography

field, making it challenging to find and manage photo files.

While most applications offer sophisticated GUI photo man-

agement, many use the default file name generated by

the camera, which contains only a per-camera sequence

number, such as IMG 655.jpg, or perhaps a manufacturer

and sequence number, such as DSC 1967.jpg. File name

collisions are common. The latest version of iPhoto [4]

names photos using the camera’s generated name. Deriva-

tive files may be given a suffix based on size such as

IMG 655 1024.jpg, or, in the case of a facial recognition

thumbnail, an index corresponding to order of face discov-

ery, such as IMG 655 face1.jpg. Photo names cannot be

managed by the user, and offer very little information about

their contents. Higher end applications such as Aperture

[1] or Adobe Lightroom [5] allow the user to bulk rename

files during import and export, using metadata such as EXIF

fields and creation dates. However, these applications can-

not keep file names in sync if metadata changes, making it

difficult to manage photos in more than one application. For

instance, a user might want to use facial recognition from

iPhoto, while touching up photos in Lightroom. If the user

wants to find a retouched photo of a certain person, they can-

not search for it using metadata, and if they wish to put the

information in the file name, they must painstakingly name

the files manually.

TrueNames can significantly improve photo naming, by

taking metadata extracted by the application and automati-

cally constructing file names for photos based on metadata

such as where they were taken, who was in them, and what

size they are. If the metadata changes (such as a recognized

face, or the addition of geo-tagging data), TrueNames will

automatically update the file name to reflect the correct in-

formation. In addition, TrueNames allows multiple applica-

tions which can operate on the same files, such as iPhoto and

Lightroom, to share responsibility for generating a meaning-

ful name. Both applications can export metadata which can

be used for naming and search, and TrueNames can manage

the formatting and creation of file names, merging metadata

from both applications into a single meaningful description

of the file, something which is currently very difficult.

2.5 Recreating file names

One problem found in computing is that of file name porta-

bility. For instance, some file systems support longer names

and paths than others. When moving files from one system

to another, such as from primary to archival storage, or be-

tween two servers, file names can be truncated, losing impor-

tant information, and making it difficult to find a file, even if

it is brought back from archival. TrueNames can help with

this, by allowing a file name to be regenerated based on the

metadata. For instance, files being moved to archival storage

can be updated to use a different name template with fewer

fields, which fits within name constraints without truncat-

ing the file name at an arbitrary point. If the file is retrieved

from archival storage back to primary storage, the original

file name can be recreated without loss of data. Since struc-

tured metadata was stored and used to generate the origi-

nal name, it can also be retrieved to search the archive, or

help create meaningful directory names, in essence pivoting

metadata between file names and directory names as needed.

3. Architecture

Having file names which can change outside the control of

users and user applications poses a number of unique and in-

teresting challenges. One must choose a storage mechanism

for the metadata used for naming. There must be a way to de-

fine the structure of names, and what metadata they will use.

Applications require a durable way to reference files, in or-

der to maintain internal databases and repeatedly reference

files. There must be a way to prevent accidental data loss

through file name collisions. We discuss these challenges,

and the necessary modifications to support metadata-aware

naming throughout the file system and applications. The ar-

chitecture of our prototype is shown in Figure 1.

3.1 Storing metadata

Our goal was to store rich metadata for file names in a way

that was portable, did not significantly change the seman-

tics of the file system, and was easy to understand and man-

age. To that end, we selected the extended attribute interface

as being the most compatible with our goals. Extended at-

tributes provide a simple key-value interface, and are associ-

ated with the inode (either by a reference to a metadata block

or resource fork, or in the case of small metadata on ext4, di-

rectly stored in the inode), which means that files with hard

links, which contain the same data, will also share metadata

and names. (Soft links continue to offer the ability to have a

mix of automatic and manual names for a single file.) Many

applications already use extended attributes, they require no

additional libraries, and are supported by most modern file

systems, improving portability.

3.2 Managing names

Our file system assumes that file names have schemas, a set

of rich metadata which is broadly applicable to many differ-

3 2013/10/11

Ext4FUSE

LibFUSE

K
er
n
el

U
se
rs
p
ac

e

FUSE
Python

TrueNames
Users/

Programs

Files

Data and metadata

Directory

template
store

inode
mapping
cache

Da
ta
 an

d e
xte

nd
ed
 m
et
ad
at
a

Auto
matic fi

le na
mes

temporary
file name
generator

Figure 1: Architecture of TrueNames

ent files. However, not all files of the same type are assumed

to have the same schema. For instance, an PDF file may be

a scientific paper, a graph of experimental results, or an e-

book. A text file might be a configuration file, or a letter to a

relative. These will have different schemas that are appropri-

ate. Likewise, two files of different types, such as .jpg and

.gif files, may have a shared schema that is appropriate for

both. Thus, we allow a template to be assigned to a file. A

template defines the structure of a file name that is appro-

priate for that file, as shown in Example 1. Templates can

contain file extensions which serve as the default extension.

However, if the user supplies a file extension, it will override

the template extension, allowing different types of files to

share templates. For instance, .jpg and .gif files can share

a photo template.

Example 1 Template file

music {$artist}-{$album}-{$track}.mp3
photo {$seq}_{$date}_{$camera}_{$location}.jpg
paper {$author}_{$conference}${year}_${tags}.pdf
exp {$wkload}_{$files}files_{$threads}threads.data
manual_name {$user.file_name}

In our prototype, templates are stored on a global basis,

in a text configuration file, and loaded on file system startup,

but more sophisticated implementations are possible. This

file contains a list of template names and templates. Tem-

plates are associated with a file using an extended metadata

field called user.naming.type, which references the name

of a template. This field is not mandatory, making it possible

to mix manually and automatically named files throughout

the file system. If a user or application wishes to rename the

file, they can change the value of the attribute to the name of

a different template, adding additional metadata as needed.

If a user wishes to manually manage a name, they can re-

move the current template from the file’s metadata, or not

choose a template during file creation.

As metadata is added or updated by users and applica-

tions, the file name is updated to reflect the current state of

the file. This entails storing the extended metadata, looking

up the template, re-calculating the file name, and then re-

naming the file. It may also entail updating the inode cache,

and handling file name collisions caused by the rename.

If not all of the metadata is available at any point in time,

TrueNames makes a best effort to update the file name, pop-

ulating all of the fields that are known, and marking fields

that are missing with a default value (in our prototype, un-

known fields are marked with a ??). In our photo exam-

ple, that might result in a file name of DSC1967_7-21-13_

NikonD50_{$location}??.jpg for a photo that has not

yet been geotagged.

3.3 Programming with changing file names

One complication created by automatically named files is

that the file name can change between accesses or modifi-

cations. For instance, when metadata is being added to the

file, each new metadata item which is used by the template

will trigger a rename. In these cases, the user or application

needs a durable way to reference the file they are updating.

TrueNames allows you to reference files either by name, or

using a unique identifier which serves as a durable reference.

4 2013/10/11

In our prototype, we use the inode to guarantee unique-

ness of references. To guarantee that the inode has not been

freed and reused, we will add the inode’s generation number

in the next version, similarly to how NFS handles stale file

handles [17]. Unfortunately, most file systems do not pro-

vide a convenient way to look up and reference a file by its

inode number. By contrast, we allow files to be referenced

either by file name or directly by inode number, as if the

inode number were a file name.

To reference a file in a directory by its inode number

rather than by name, it can be opened using a reference to

<dirname>/.inode/<inodenumber>, as shown in Exam-

ple 2. This allows programs and scripts to create an automat-

ically named file, call fstat on the file handle to acquire a

durable reference, and then add metadata, all without need-

ing to know the file’s name.

Example 2 Reference by inode

$ curl http://indyband.org/1.mp3 > template=music
$ ls -i
13146 {$artist}??-{$album}??-{$track}??nozwZ8.mp3
$ setfattr -n user.artist -v"Indy Band" .inode/13146
$ setfattr -n user.track -v"So Obscure" .inode/13146
$ setfattr -n user.tracknum -v"1" .inode/13146
$ ls
Indy Band-{$album}??-So Obscure.mp3

Under a typical file system such as ext4, accessing a file

by its inode number requires searching the system for a file

which has a matching inode number and then resolving it to

a name, which can be prohibitively expensive. While we al-

ready reduce the cost by reducing the search space to a single

directory, this still requires an linear scan over the directory

inode. To get acceptable performance, we further reduced

this cost by adding an inode cache map to TrueNames, which

allows us to look up a file name in constant time given an in-

ode number. This is similar to the name cache used by the

Linux VFS, although the lookups occur from inode to name,

rather than vice versa. The inode map is populated from the

directory inode on first access, and then caches all inodes in

that directory up to some threshold (ten thousand files in our

experiments.)

By encouraging applications to use a static reference,

while allowing the name to vary, users can modify file names

at will to create more user-friendly names, without breaking

existing application references. In addition, references by

inode will work for all files, not just automatically named

ones, so even manually named files can benefit from this

feature.

3.4 File creation with automatic names

In order to create a file, we need a way to signal two things

to the operating system. First, we must signal what direc-

tory we are creating a file in. Second, we need to signal

what template we would like to use. Additionally, we must

make sure that the file name we are creating is unique, to

prevent overwriting an existing file. Finally, none of the ex-

tended attributes for the file are yet available, so we can-

not use them to generate the initial file name. This is sim-

ilar to the problems faced by mkstmp() and related func-

tions. However, our goal was to maintain existing semantics

as much as possible, and require minimal rewrite of existing

code, which ruled out adding an additional system call. We

therefore overrode the semantics of open(), creat(), and

mknod(), such that if a file is created with a name which

ends in template=X, where X matches the name of a known

template, the name is managed by the file system, and a

new file is generated with an automatically generated unique

file name. The initial file name is composed of the template

contents, followed by a unique alphanumeric suffix such as

GzyH07, and finally, any file extension, as shown in Exam-

ple 2. We use atomic file creation with O EXCL internally, to

prevent race conditions, as well random back-off retries if

we receive EEXIST during initial file creation. Once the file

is created, metadata can be added to populate the file name.

Since metadata must be added one field at a time, there is

a possibility of a temporary name collision during metadata

addition, which we attempt to detect and handle.

Alternatively, the application can create a file name using

any name it wishes (including one given by the user), and

then set the template and metadata fields after file creation.

The original file name can be stored in metadata, and then

reapplied later, or used for resolving collisions.

3.5 Handling collisions

One problem that can arise with automatic naming is that

two files in the same directory may be different in content

and metadata, but share all the fields that are currently refer-

enced in the template. During rename, we check to see if the

new metadata results in two files with the same name. If so,

we check to see if any metadata differs. If disambiguating

metadata is available, we add the first available metadata to

the file name which will disambiguate the files, along with

its extended metadata key. If not, then and only then, do we

overwrite the existing file. In the future, we plan to explore

more user-friendly strategies for disambiguation.

3.6 Application level support

A file system which requires extensive changes to applica-

tions is unlikely to see adoption. By maintaining POSIX

compliance, TrueNames makes adoption easier. Existing ap-

plications which don’t wish to take advantage of the added

functionality can run on TrueNames without any modifica-

tions, and see very little change in performance. In order to

take advantage of the new functionality, applications simply

need to create a template, and begin exporting metadata for

each new file. Optionally, they can begin referencing files

using an inode reference. We describe below the changes to

semantics in our prototype, and how they affect applications.

5 2013/10/11

open()/creat()/mknod() As noted above, if these calls are

invoked using a directory path followed by a template

name, they will create an automatically named file using

the template as a name, followed by a unique suffix and

and an extension, and set user.naming.type to the

template name. If the path supplied does not end in a

template, they will create a file in the normal fashion.

setxattr()/removexattr() In addition to setting and remov-

ing extended attributes, these calls now additionally trig-

ger a recalculation of the file name. If the attribute set

or removed is one present in the file template, then the

file will be renamed. Additionally, these can be used to

change the template, or even remove the file from the set

of dynamically named files and freeze the current name,

by setting or removing the user.naming.typeextended

attribute.

rename() This operation can be used in a variety of ways.

• If the supplied target path contains a different direc-

tory, but the same file name, the file is moved to the

new directory using its current file name.

• If the target path contains a different file name which

is the name of an existing template, we update the file

to use the new template.

• If the target path contains a different file name which

is not the name of an existing template, we assume

the user wishes to manually control the file name.

We rename the file to the new file name, and remove

user.naming.type from the file’s metadata.

• In all cases, if a new inode is created during rename

(for instance, if the file is migrated between file sys-

tems to a file system which supports extended at-

tributes), all the extended metadata is copied to the

new inode.

link()/Calls which use hard links Under our prototype, a

hard link shares an inode, and therefore all extended

metadata, with the path it links to. Therefore, files which

are hard links to an automatically named file will share

a name with the file they link to. If a file is dynamically

named, a hard link in in the same directory is not feasible,

since it has the same name as the target. An attempt to

create a hard link in the same directory will fail with

EEXIST. Otherwise, hard links function as expected. This

is a limitation of our prototype. In future work, we plan to

create a semantically complete method for automatically

managing both hard and soft links.

symlink()/Calls which use soft links Soft links work as be-

fore, and can target either a file name, or an inode path,

depending on the desired behavior. Soft links can be used

to supply multiple names in the same directory, such as an

automatic name and a manual name. Due to restrictions

on extended attributes, soft links cannot be automatically

named in our prototype.

Every file now has at least two names: its human readable

name, either auto-generated or assigned by a human, and its

inode number preceded by its directory path. It may have

additional names via hard and soft links. Human readable

names and inode references are interchangeable in all file

system calls. A reference by inode can be opened, linked,

have metadata set or gotten, and so on. However, .inode/

itself is not a real directory on disk, and cannot be opened or

have its directory entries iterated over.

If multiple applications manage the same files, then there

is the possibility of both applications attempting to manage

the template and metadata. Adding additional metadata to

file names and templates allows richer search, and can im-

prove generated names, but applications may wish to prompt

the user before changing the template or removing fields

from it.

4. Experimental Design

We have demonstrated how new functionality can be added

to the file system to make it more searchable, to make file

names more correct and structured, and how this functional-

ity can easily integrate into existing file systems. However,

a file system’s functionality must also be balanced against

its performance. We describe how we evaluated the per-

formance of TrueNames. In order to effectively benchmark

such a file system, we need to answer questions on how it af-

fects basic file system operations, such as file creation, dele-

tion, and renaming. We also need to describe the effect on

extended metadata operations. In order to evaluate our file

system, we compared it against two other file systems, one

comparable Python FUSE file system, as well as a raw ext4

file system in order to characterize the overhead of FUSE

and Python versus the overhead of our file system.

• xmp is the example file system which ships with fuse-

python. We added support for extended attributes, using

the same library, py-xattr, as used for TrueNames. Oth-

erwise, it is a vanilla FUSE file system with no additional

functionality.

• As a point of reference, we also include file system per-

formance on a raw ext4 file system.

In the case of both TrueNames and xmp, we ran in single

threaded mode, since xmp does not support multiple threads

by default, and we wanted to modify it as little as possible.

TrueNames will support multiple threads in the future. We

disabled the inode cache, and set the entry timeout to 0

in order to prevent stale file name entries. The only other

modification to xmp was a fix for a bug which caused all

writes to occur in append mode.

We ran two batches of experiments, one using an SSD,

and one using a hard disk drive. Our SSD experiments were

run on a 100 GB Intel 330 Series SSD, in an 8 core Intel

Xeon CPU E3-1230 V2 @ 3.30GHz with 16 GB of RAM.

Our HDD experiments were run on a 7200 RPM 500 GB

6 2013/10/11

Seagate Constellation drive, in an 8 core Intel Xeon CPU

E5620 @ 2.40GHz and 24 GB of RAM. In both cases, we

ran on Fedora with a 3.9.10-200.fc18.x86 64 kernel, and an

ext4 file system as our backing store.

5. Results and Analysis

TrueNames is a proof of concept user space prototype, not a

production file system, but even so, it has very low over-

head, demonstrating that automatic naming can be added

to production file systems with minimal performance im-

plications. We tested TrueNames under a variety of micro

benchmarks and macro benchmarks, in order to analyze its

performance under extreme conditions as well as realistic

workloads. TrueNames is noticeably slower under our micro

benchmarks, as expected, but the performance penalty can

be measured in fractions of a millisecond, and TrueNames

exhibits no scaling issues under high load. Under normal file

system loads, such as in our macro benchmarks, TrueNames

performs with only a minimal overhead, much of it due to

being Python and single-threaded. In addition, TrueNames

shows no impact on operations other than file creation and

extended metadata operations. In aggregate, these numbers

suggest that an production implementation of these ideas can

serve as an replacement for many other file systems, large

and small alike, adding useful new functionality at little to

no performance cost.

5.1 Microbenchmarks

There are a number of benchmarks designed to exercise

metadata. However, these are generally aimed towards file

system metadata, such as performing high-speed updates to

modification times. Tools such as Filebench [2], while quite

flexible, do not offer the ability to modify extended attributes

out of the box. By contrast, we needed to evaluate our sys-

tem’s impact on extended metadata performance. In order to

do this, we wrote a benchmark designed to add, update, and

delete extended attributes continuously. In effect, if the file

is of an automatically named type, this results in TrueNames

continuously renaming the file.

In order to focus as much as possible on the metadata

speed, we pre-created a file set of size n. We then iterated

over the file set until all n files had been touched, setting a

single extended attribute on each file, calculating the latency

of each operation and collecting statistics. Ext4 stores small

metadata attributes in the inode, so files with a very large

number of extended attributes will show lower performance

than our benchmarks. One potential optimization is to ensure

that metadata attributes relevant to the name are kept in the

inode, since they are likely to be small, and not numerous.

Once the add benchmark completed, we ran similar

benchmarks to update an attribute, and finally, to delete an

attribute. This allowed us to exercise the new code paths con-

tinuously, highlighting any performance differences from

our baseline file systems.

We ran this benchmark for both automatically named

file types, and files which were not automatically named,

in order to quantify the overhead incurred both with and

without using the new features. We ran the metadata add,

update and delete benchmarks for file sets from 10,000 to

1,000,000 files, which is comparable to modifying every file

on a modern laptop at once. We then repeated each test forty

times, in order to smooth noise and calculate a standard

deviation.

Microbenchmarks are the most intensive tests, so it is

unsurprising that they show the largest difference between

the file systems. If we examine the difference between auto-

matically named files and manually named files, as seen in

Figure 2, we can see that automatic naming incurs a 100%

penalty over metadata operations which do not affect the

name, across all operations and both disk types. However,

even at a 100% penalty, the additional cost can be measured

in fractions of a millisecond. Looking at the difference be-

tween the baseline fuse system xmp, and TrueNames with-

out name templates, we can see that there is approximately

a 30% overhead, primarily due to checking every time if the

file has a template, which requires retrieving extended meta-

data, and therefore both an additional kernel crossing and

potentially a disk access. In total, TrueNames adds four ex-

tra kernel crossings per one file creation. The additional ker-

nel crossings are a performance issue specific to FUSE, and

would not occur in an in-kernel file system.

Even at this high operation rate, and for a million files,

we can see from the latencies that the disk cache is rarely

saturated. This performance will occur in a small fraction of

operations, usually during file creation, and the additional

latency will be masked under most normal workloads, as

we discuss in the next section. TrueNames shows a fixed

overhead without scaling bottlenecks up to a million files,

making it suitable for fairly large workloads.

5.2 Macrobenchmarks

While micro benchmarks can be useful for setting an upper

bound on performance, they are often an unrealistic assess-

ment of how a file system will perform in practice. In the

real world, file systems are experiencing a variety of opera-

tions from many different sources. In order to simulate the

performance in a realistic environment, we chose a standard

benchmark, Filebench [2]. This benchmark does not exercise

the extended metadata functionality, and is therefore compa-

rable to the statically named files experiments from section

5.1. We ran two different benchmark suites, the fileserver

suite, which is designed to simulate the behavior of a typ-

ical file server, by performing a series of creates, deletes,

appends, reads, writes and attribute operations on a direc-

tory tree. Mean directory size is 20 files, and the mean file

size is 128kB. The workload generated is somewhat similar

to SPECsfs [3]. We also ran the createfiles benchmark,

which creates a specified number of files in a directory tree,

with an average directory size of 100 files. File sizes are cho-

7 2013/10/11

0 2 4 6 8 10
Hundreds of thousands of files

0.00

0.05

0.10

0.15

0.20

0.25

0.30
(m

s/
o
p
)

raw
TrueNames: statically named files

TrueNames: autonamed files
xmp

(a) HDD: Adding metadata

0 2 4 6 8 10
Hundreds of thousands of files

0.00

0.05

0.10

0.15

0.20

(m
s/
o
p
)

raw
TrueNames: statically named files

TrueNames: autonamed files
xmp

(b) SSD: Adding metadata

0 2 4 6 8 10
Hundreds of thousands of files

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(m
s/
o
p
)

raw
TrueNames: statically named files

TrueNames: autonamed files
xmp

(c) HDD: Updating metadata

0 2 4 6 8 10
Hundreds of thousands of files

0.00

0.05

0.10

0.15

0.20

(m
s/
o
p
)

raw
TrueNames: statically named files

TrueNames: autonamed files
xmp

(d) SSD: Updating metadata

0 2 4 6 8 10
Hundreds of thousands of files

0.00

0.05

0.10

0.15

0.20

0.25

(m
s/
o
p
)

raw
TrueNames: statically named files

TrueNames: autonamed files
xmp

(e) HDD: Deleting metadata

0 2 4 6 8 10
Hundreds of thousands of files

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

(m
s/
o
p
)

raw
TrueNames: statically named files

TrueNames: autonamed files
xmp

(f) SSD: Deleting metadata

Figure 2: Latency and standard deviation per operation, for 40 runs of the extended metadata operations benchmarks. We tested

TrueNames where the file either does or does not have an automatically named type, and on two baseline file systems, xmp and

a raw ext4 system.

8 2013/10/11

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Avg latency for 1 threads

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

0.0

0.5

1.0

1.5

2.0

2.5
Avg latency for 4 threads

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

0

1

2

3

4

5

(m
s)

Avg latency for 8 threads

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

(%
 d
if
fe
re
n
ce

 x
m
p
 v
e
rs
u
s
Tr
u
e
n
a
m
e
s)

0

2

4

6

8

10
Avg latency for 16 threads

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

0 2 4 6 8 10
Hundreds of thousands of files

0

5

10

15

20

25
Avg latency for 32 threads

0 2 4 6 8 10
Hundreds of thousands of files

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

createfile1 latencies in milliseconds xmp
truenames
raw

(a) HDD

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Avg latency for 1 threads

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Avg latency for 4 threads

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.0

0.5

1.0

1.5

2.0

2.5

(m
s)

Avg latency for 8 threads

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

(%
 d

if
fe

re
n
ce

 x
m

p
 v

e
rs

u
s

Tr
u
e
n
a
m

e
s)

0
1
2
3
4
5
6

Avg latency for 16 threads

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

0 2 4 6 8 10
Hundreds of thousands of files

0
2
4
6
8

10
12

Avg latency for 32 threads

0 2 4 6 8 10
Hundreds of thousands of files

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

createfile1 latencies in milliseconds xmp
truenames
raw

(b) SSD

Figure 3: File creation times and standard deviation for 40 runs of the createfiles benchmark, on TrueNames and on two baseline

file systems, xmp and a raw ext4 system. We also show the percentage difference between xmp and TrueNames.

sen according to a gamma distribution with a mean size of

16kB. We varied each of these from 1 to 32 threads, and

from 100,000 to 1,000,000 files. We then repeated each test

forty times, in order to smooth noise and generate a standard

deviation.

In both Figures 3 and 4, which show file creation perfor-

mance, TrueNames has performance that is highly compara-

ble with that of xmp, at about 15% overhead. Other typical

operations, such as writing a file, deleting a file, or calling

stat on a file, had insignificant overhead, meaning that Tru-

eNames is suitable for all but the most create-intensive work-

loads. This demonstrates that most of the fixed overhead of

TrueNames is masked by normal operation latencies.

6. Related Work

Automatically naming files is an under-explored area. The

most similar areas of research are those of application-

generated names, web search snippets, and non-hierarchical

file systems, each of which we discuss.

6.1 Application-generated names

As discussed in Section 2, many applications such as iTunes

[9], iPhoto [4], and Mendeley [6] currently generate file

names, either for their own use or that of the user. How-

ever, none of them offers a generalized framework for file

naming, and do not reflect outside changes to metadata. By

contrast, TrueNames offers automatic naming as a service

which any application can use, simplifying application de-

velopment, keeping names synchronized with metadata re-

gardless of source, and encouraging developers to export

structured metadata.

6.2 Naming on the web

File naming can be thought of as analogous to the problem of

disambiguating search results on the web. Web search, like

file system search, has a huge number of files, (many with

the same name, such as index.html), and when returning

results the search engine must help the user choose between

them. On the web, the historical assumption is that the user

is retrieving textual information, and the common approach

is to reveal a snippet from the page containing the search

terms in context. Newer search types, such as video, rely

9 2013/10/11

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Avg latency for 1 threads

0.00

0.05

0.10

0.15

0.0

0.5

1.0

1.5

2.0

2.5
Avg latency for 4 threads

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

0
1
2
3
4
5
6

(m
s)

Avg latency for 8 threads

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

(%
 d
if
fe
re
n
ce

 x
m
p
 v
e
rs
u
s
Tr
u
e
n
a
m
e
s)

0
2
4
6
8

10
12

Avg latency for 16 threads

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

0 2 4 6 8 10
Hundreds of thousands of files

0

5

10

15

20

25
Avg latency for 32 threads

0 2 4 6 8 10
Hundreds of thousands of files

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

createfile1 latencies in milliseconds xmp
truenames
raw

(a) HDD

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Avg latency for 1 threads

0.00

0.05

0.10

0.15

0.0

0.5

1.0

1.5

2.0

2.5
Avg latency for 4 threads

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

0
1
2
3
4
5
6

(m
s)

Avg latency for 8 threads

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

(%
 d
if
fe
re
n
ce

 x
m
p
 v
e
rs
u
s
Tr
u
e
n
a
m
e
s)

0
2
4
6
8

10
12

Avg latency for 16 threads

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

0 2 4 6 8 10
Hundreds of thousands of files

0

5

10

15

20

25
Avg latency for 32 threads

0 2 4 6 8 10
Hundreds of thousands of files

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

createfile1 latencies in milliseconds xmp
truenames
raw

(b) SSD

Figure 4: File creation times and standard deviation for 40 runs of the fileserver benchmark, on TrueNames and on two baseline

file systems, xmp and a raw ext4 system. We also show the percentage difference between xmp and TrueNames.

on a title and key frame. However, in the file system arena,

these approaches are not feasible. Many files are in opaque

data formats, and no text snippet is available. Command line

interfaces do not lend themselves to key frames, and many

files do not offer them. Thus, we rely on file type-specific

metadata to help the user identify their files.

6.3 Non-hierarchical and semantic file systems

The problem of naming directories has been a subject of

interest for some time. In particular, semantic file systems

[8, 11, 12, 14, 15, 20] present directory names based on

the metadata of files, allowing the user to navigate and se-

lect files using their metadata. For instance, the original Se-

mantic File System (SFS) [11] treats all directory names

as queries. If the user enters a query containing an un-

bound field name (such as user:), SFS will return /jones,

/root, /smith and so on as subdirectories, automatically

generating names based on lists of attributes and values, or,

in the case of the Linking File System [8], links.

Similarly, The Logic File System (LISFS) [15] estab-

lishes a taxonomy of attributes, such that some attributes sub-

sume others. If the results to a query contain one or more at-

tributes which are subsumed, only the higher level attribute

will be displayed as a directory name, and only attributes

which distinguish between the query results are shown. This

is more similar to our disambiguation method. However, we

rely on the template for a name, and add metadata only when

required by a name collision.

However, none of these focus on the file names them-

selves, instead focusing on naming directories as a way to

create queries over documents. Our approach is designed to

complement non-hierarchical systems, allowing files to be

easily recognized regardless of context, and allowing non-

hierarchical systems to disambiguate file names if needed,

by adding additional metadata.

The most similar work is to what we propose is that of

Jones et al. [13], who proposed a non-hierarchical HPC file

system with automatically generated file names, chosen by

examining the distribution of metadata fields. By contrast,

our work uses a more robust and less complex scheme which

puts the user and application in control of which metadata is

used, and allows them to select attributes which are most

appropriate for the file’s semantic type, rather than relying

on statistical techniques.

10 2013/10/11

Our work on collision detection and disambiguation also

has implications for systems with very large directories,

making it similar to systems such as Giga+ [16]. One of

the challenges for scalable directories is being able to create

a large number of unique names, and in future work, we

will examine ways to make TrueNames scale to very large

distributed directories.

7. Future Work

TrueNames was designed with non-hierarchical file systems

in mind. In the future, we intend to extend TrueNames to

a non-hierarchical context, where metadata is used to find

files and display them. In a search context, TrueNames can

help disambiguate search results, provide additional meta-

data, and potentially expand or collapse file names dynami-

cally, based on a list of useful fields provided by the user. We

are particularly interested in the potentials of object storage.

We note that some minor modifications to the POSIX spec-

ification, allowing a user or application to simultaneously

create a file and add metadata, and get a file name and file

handle back as the return value, would be significantly sim-

pler and more robust, reducing the possibility of collisions

and improving performance. Bulk metadata addition would

also improve performance and stability.

We would like to see wide spread adoption of a system

like TrueNames. In the future, we plan to make it more ro-

bust, adding support for multi-threading and other perfor-

mance and stability enhancements, as well as porting it to

additional platforms. We will add support for templates on

a per-user basis in addition to global templates. This al-

lows users and applications to define more personalized tem-

plates, as well as providing a higher degree of privacy around

metadata fields. Templates will be stored and accessed based

on the uid of the calling application, and user templates will

override global templates of the same name. We will also

investigate ways of providing more flexibility for naming

hard-linked files, such as associating templates with direc-

tories. We are considering ways of setting a default template

for an entire directory, such as an images folder.

Additionally, we intend to explore the implications of us-

ing TrueNames in distributed file systems such as Lustre [10]

and Ceph [19], where file names and extended metadata are

stored on multiple servers, adding interesting new challenges

around scalability and metadata management. Large scale

systems for science can benefit greatly from better metadata

and file name management.

8. Conclusions

Metadata aware file naming provides a set of abstractions

for easily managing file names and metadata. It is designed

to ease file management by automating the process of file

naming, and giving files truthful, structured, and automat-

ically updated file names. It also gently encourages users

and applications to supply more searchable metadata. Us-

ing metadata aware file naming can not only benefit users

and application developers in the short term, it can ease the

migration path to non-hierarchical file systems and improve

search. By separating unique system identifiers from human

readable file names, we enable file systems and users to work

together to manage data more effectively.

We have demonstrated the generality of metadata aware

file naming by describing a variety of use cases in existing

software which could be simplified by using our prototype

filesystem, TrueNames. We have shown how it can simplify

application development, reduce data loss, and make it eas-

ier for users and applications to find and manage files. Addi-

tionally, we have found TrueNames to be an extremely use-

ful tool during the writing of this paper, and will be porting

it to OS X in the near future in order to take advantage of it

on more of our machines. Finally, we have shown that un-

der a variety of workloads, TrueNames adds a minimal 15%

overhead with the possibility of further optimizations, while

adding useful new capabilities to the file system.

References

[1] Aperture. http://www.apple.com/aperture/what-is.

html.

[2] Filebench. http://sourceforge.net/projects/

filebench/.

[3] Filebench wiki: Pre-defined personalities. http:

//sourceforge.net/apps/mediawiki/filebench/

index.php?title=Pre-defined_personalities.

[4] iPhoto. http://www.apple.com/ilife/iphoto/.

[5] Lightroom Help: The Filename Template Editor and Text

Template Editor. http://helpx.adobe.com/lightroom/

help/filename-template-editor-text-template.

html.

[6] Mendeley add & organize. http://www.mendeley.com/

features/add-and-organize/.

[7] Musicbrainz picard. https://musicbrainz.org/doc/

MusicBrainz_Picard/Documentation.

[8] AMES, S., BOBB, N., GREENAN, K. M., HOFMANN, O. S.,

STORER, M. W., MALTZAHN, C., MILLER, E. L., AND

BRANDT, S. A. LiFS: An attribute-rich file system for storage

class memories. In Proceedings of the 23rd IEEE / 14th

NASA Goddard Conference on Mass Storage Systems and

Technologies (College Park, MD, May 2006), IEEE.

[9] APPLE INC. iTunes. http://www.apple.com/itunes/

overview/, Jan 2010.

[10] BRAAM, P. J. The Lustre storage architecture. http://www.

lustre.org/documentation.html, Cluster File Systems,

Inc., Aug. 2004.

[11] GIFFORD, D. K., JOUVELOT, P., SHELDON, M. A., AND

O’TOOLE, JR., J. W. Semantic file systems. In Proceedings

of the 13th ACM Symposium on Operating Systems Principles

(SOSP ’91) (Oct. 1991), ACM, pp. 16–25.

[12] GOPAL, B., AND MANBER, U. Integrating content-based ac-

cess mechanisms with hierarchical file systems. In Proceed-

11 2013/10/11

ings of the 3rd Symposium on Operating Systems Design and

Implementation (OSDI) (Feb. 1999), pp. 265–278.

[13] JONES, S., STRONG, C., PARKER-WOOD, A., HOLLOWAY,

A., AND LONG, D. D. E. Easing the Burdens of HPC File

Management. In Proceedings of the 6th Parallel Data Storage

Workshop (PDSW ’11) (Nov. 2011).

[14] OLSON, M. A. The design and implementation of the In-

version file system. In Proceedings of the Winter 1993

USENIX Technical Conference (San Diego, California, USA,

Jan. 1993), pp. 205–217.

[15] PADIOLEAU, Y., AND RIDOUX, O. A logic file system. In

Proceedings of the 2003 USENIX Annual Technical Confer-

ence (San Antonio, TX, June 2003), pp. 99–112.

[16] PATIL, S., AND GIBSON, G. Scale and concurrency of

GIGA+: File system directories with millions of files. In Pro-

ceedings of the 9th USENIX Conference on File and Storage

Technologies (FAST) (Feb. 2011).

[17] SHEPLER, S., CALLAGHAN, B., ROBINSON, D., THUR-

LOW, R., SUN MICROSYSTEMS, I., BEAME, C., LTD.,

H., EISLER, M., NOVECK, D., AND NETWORK APPLI-

ANCE, I. Network file system (nfs) version 4 proto-

col. http://www.citi.umich.edu/projects/nfsv4/

rfc/rfc3530.txt, April 2003.

[18] VINGE, V. True Names, vol. 5 of Binary Star. Dell, 1981.

[19] WEIL, S. A., BRANDT, S. A., MILLER, E. L., LONG,

D. D. E., AND MALTZAHN, C. Ceph: A scalable, high-

performance distributed file system. In Proceedings of the 7th

Symposium on Operating Systems Design and Implementation

(OSDI) (Nov. 2006).

[20] XU, Z., KARLSSON, M., TANG, C., AND KARAMANOLIS,

C. Towards a semantic-aware file store. In Proceedings of the

9th Workshop on Hot Topics in Operating Systems (HotOS-IX)

(May 2003).

12 2013/10/11

