PLS regression for multivariate functional data

Cristian Predaa,* and Gilbert Saporta b

aUniversit\`e Lille 1, Villeneuve d’Ascq, France
bCNAM, Paris, France

\textbf{Keywords:} multivariate functional data, PLS, regression

\section*{Introduction}

Functional data or data represented by curves, is generally considered as sample paths of a real-valued stochastic process with continuous time, \(X = \{ X(t) \}_{t \in [0,T]} \). Most of the approaches dealing with functional data consider the univariate case, i.e. \(X(t) \in \mathbb{R}, \forall t \in [0,T] \), a path of \(X \) being represented by a single curve. Despite its evident interest, the multivariate case, \(X(t) = (X_1(t), \ldots, X_p(t)) \in \mathbb{R}^p, \ p \geq 2 \)
is, curiously, rarely considered in literature. In this case a path of \(X \) is represented by a set of \(p \) curves. The dependency between the \(p \) measures provides the structure of \(X \). One finds in [1] a brief example of bi-dimensional functional data, \(X(t) = (X_1(t), X_2(t)) \in \mathbb{R}^2 \), as a model for gait data (knee and hip measures) used in the context of functional principal analysis as an extension of the univariate case. For a more theoretical framework, we must go back to the pioneer works of [2] on random variables with values into a general Hilbert space. In [3] the author provides a complete analysis of multivariate functional data from the point of view of factorial methods (principal components and canonical analysis). Recently, [4] considered model-based clustering for multivariate functional data and [5] introduced linear tools, similar to principal component analysis, for analysing such data.

In this paper we consider the linear regression model with multivariate functional random variable predictor and vectorial response,

\begin{equation}
\mathbb{E}(Y | X = x) = \int_0^T \sum_{i=1}^p \beta_i(t)x_i(t) dt, \quad Y \in \mathbb{R}^q, \beta_i \in (L^2([0,T]))^q, \forall i = 1, \ldots, p.
\end{equation}

As an extension of the PLS approach for the functional linear regression model proposed in [6] for univariate functional data, we develop the PLS estimation in the case of multivariate functional predictor. The Tucker criterion provides the PLS components as eigen-vectors of the product of the Escoufier’s operators associated to the response and the predictor.

We present the PLS estimation when the predictor is approximated in a finite dimensional space of functions. A simulation study illustrates our methodology.

\section*{References}

*Corresponding author. E-mail: cristian.preda@polytech-lille.fr, Université de Lille 1, Villeneuve d’Ascq, France.

