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a b s t r a c t

In this paper, we introduce two alternative extensions of the classical univariate Conditional-Tail-
Expectation (CTE) in a multivariate setting. The two proposed multivariate CTEs are vector-valued mea-
sures with the same dimension as the underlying risk portfolio. As for the multivariate Value-at-Risk
measures introduced by Cousin and Di Bernardino (2013), the lower-orthant CTE (resp. the upper-orthant
CTE) is constructed from level sets ofmultivariate distribution functions (resp. ofmultivariate survival dis-
tribution functions). Contrary to allocation measures or systemic risk measures, these measures are also
suitable formultivariate risk problemswhere risks are heterogeneous in nature and cannot be aggregated
together. Several properties have beenderived. In particular,we show that the proposedmultivariate CTE-
s satisfy natural extensions of the positive homogeneity property, the translation invariance property and
the comonotonic additivity property. Comparison between univariate risk measures and components of
multivariate CTE is provided. We also analyze how these measures are impacted by a change in marginal
distributions, by a change in dependence structure and by a change in risk level. Sub-additivity of the pro-
posed multivariate CTE-s is provided under the assumption that all components of the random vectors
are independent. Illustrations are given in the class of Archimedean copulas.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

As illustrated by the recent financial turmoil, risks are strongly
interconnected. Consequently, risk quantification in multivariate
settings has recently been the subject of great interest. Much re-
search has been devoted to construction of risk measures that ac-
count both for marginal effects and dependence between risks.

In the literature, several generalizations of the classical uni-
variate Conditional-Tail-Expectation (CTE) have been proposed,
mainly using as conditioning events the total risk or some extreme
risks. These measures can be used as capital allocation rules for
financial institutions. The aim is to find the contribution of each
subsidiary (or risk category) to the total economic capital. As can
be seen in Scaillet (2004) and Tasche (2008), the Euler or Shapley–
Aumann allocation rule associated with a particular univariate risk
measure (such as VaR or CTE) involves the dependence structure
between marginal and aggregated risks. More formally, let X =
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(X1, . . . , Xd) represent the risk exposures of a given financial in-
stitution, where, for any i = 1, . . . , d, the component Xi denotes
the marginal risk (usually claim or loss) associated with the un-
derlying entity i (the latter could be, for instance, a subsidiary, an
operational branch or a risk category). Then, the sum S = X1 + · · ·

+ Xd corresponds to the company aggregated risk, whereas X(1) =

min{X1, . . . , Xd} andX(d) = max{X1, . . . , Xd} are the extreme risks.
In capital allocation problems, we are not only interested in the
‘‘stand-alone’’ risk measures CTEα(Xi) = E[Xi | Xi > QXi(α)],
whereQXi(α) = inf{x ∈ R+ : FXi(x) ≥ α} is the univariate quantile
function of Xi at risk level α, but also in

CTEsum
α (Xi) = E[Xi | S > QS(α)], (1)

CTEmin
α (Xi) = E[Xi | X(1) > QX(1)(α)], (2)

CTEmax
α (Xi) = E[Xi | X(d) > QX(d)(α)], (3)

for i = 1, . . . , d. The interested reader is referred to Cai and Li
(2005) for further details. An explicit formula for CTEsum

α (Xi) is pro-
vided in Landsman and Valdez (2003) in the case of elliptic distri-
bution functions, Cai and Li (2005) for phase-type distributions and
in Bargès et al. (2009) for Farlie–Gumbel–Morgenstern family of
copulas. Furthermore, we recall that CTEsum

α (Xi) corresponds to the
‘‘Euler allocation rule’’ associated with the univariate CTE (see, e.g.,
Tasche, 2008).

http://dx.doi.org/10.1016/j.insmatheco.2014.01.013
0167-6687/© 2014 Elsevier B.V. All rights reserved.
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Another problem which recently receives a great interest is the
construction of systemic risk measures. One of the proposed mea-
sure is the Marginal Expected Shortfall (MES) defined as the ex-
pected loss on its equity return (X) conditional on the occurrence
of a loss in the aggregated return of the financial sector (Y ), i.e.,
MESα(X) = E[X | Y > QY (α)], (4)
whereQY (α) is the (α)-th quantile of the distribution of Y . TheMES
of a financial institution aims at detecting which firms in the econ-
omy are the more vulnerable in case of a global financial distress.
Onmathematical grounds, this measure is similar to the allocation
measure CTEsum. The interested reader is referred to Acharya et al.
(2010) or Brownlees and Engle (2012) for more details. Cai et al.
(2013) propose a non-parametric estimator of the MES using ex-
treme value theory. The CoVaR (conditional VaR) of company i is
instead given by

CoVaRi
α(X) = VaRα (S | X ≥ VaRα(X)) . (5)

As opposed to theMES, the CoVaR (conditional VaR) is constructed
in order to identify which firms in the economy have a great im-
portance in terms of systemic risk (see Adrian and Brunnermeier,
2011 or Mainik and Schaanning, 2012).

However, the previous risk measures are not suitable for multi-
variate risk problem where risks are heterogeneous in nature and
thus cannot be aggregated together or even compared. This is the
case for instance for riskswhich are difficult to expressed under the
same numéraire or when one has to deal with non-monetary risks
or exogenous risks. The literature which deals with risk measures
for intrinsically multivariate problems can be divided in two cat-
egories. The first group of papers are interested in extending clas-
sical univariate axioms to different multivariate settings (see for
instance Jouini et al., 2004, Burgert and Rüschendorf, 2006,
Rüschendorf, 2006, Cascos and Molchanov, 2007, Hamel and
Heyde, 2010 andEkeland et al., 2012). One of the objectives is to de-
rive theoretical representation of risk measures. This is done with-
out proposing tractable constructions for the axiom-consistent
multivariate measures. Another group of papers investigates dif-
ferent generalizations of the concept of quantiles in a multivariate
setting. Unsurprisingly, the main difficulty regarding multivariate
generalizations of quantile-based risk measures (as the VaR and
the CTE) is the fact that vector preorders are, in general, partial
preorders. Then, what can be considered in a context of multidi-
mensional portfolios as the analogous of a ‘‘worst case’’ scenario
and a related ‘‘tail distribution’’? For example, Massé and Theodor-
escu (1994) define multivariate α-quantiles for bivariate distribu-
tion as the intersection of half-planes whose the distribution is at
least equal to α. Koltchinskii (1997) provides a general treatment
of multivariate quantiles as inversions of mappings. Another ap-
proach is to use geometric quantiles (see, for example, Chaouch
et al., 2009). Alongwith the geometric quantile, the notion of depth
function has been developed in recent years to characterize the
quantile of multidimensional distribution functions (for further
details see, for instance, Chauvigny et al., 2011). We refer to Ser-
fling (2002) for a review of multivariate quantiles.

When it turns to generalize the Value-at-Risk measure, Em-
brechts and Puccetti (2006), Nappo and Spizzichino (2009),
Prékopa (2012) use the notion of quantile curve but these papers
do not investigate whether these measures are compatible with
some desirable axioms. Moreover, the proposed risk measures are
hyperspaces and thus quantify a vector of risks with an infinite
number of points. Contrarily to the latter approach, the multivari-
ate Conditional-Tail-Expectation proposed in this paper quantifies
multivariate risks in a more parsimonious and synthetic way. This
feature can be relevant for operational applications since it can
ease discrimination between portfolio of risks. Lee and Prékopa
(2013) introduce a real-valuedmeasure ofmultivariate riskswhich
also bears on quantile curves but the proposed measure relies on a
somehow arbitrary convex combination.

We propose two vector-valued extensions of the univariate
Conditional-Tail-Expectation. The lower-orthant CTE of a random
vector X (introduced byDi Bernardino et al., 2013 in a bivariate set-
ting) is defined as the conditional expectation of X given that the
latter is located in the α-upper level set of its distribution function.
The upper-orthant CTE of X is defined as the conditional expecta-
tion of X given that the latter is in the (1− α)-lower level set of its
survival function. Several properties have been derived. We pro-
vide an integral representation of the proposed measures in terms
of the multivariate VaR introduced in Cousin and Di Bernardino
(2013) and we show that the proposed multivariate CTE-s satisfy
natural extensions of the positive homogeneity property, the trans-
lation invariance property and the comonotonic additivity prop-
erty. We show that the proposed measures are sub-additive for
independent vectors with independent components. We also pro-
vide comparisons between univariate risk measures and compo-
nents of the proposed multivariate CTE. We analyze how these
measures are impacted by a change in marginal distributions, by
a change in dependence structure and by a change in risk level.

The paper is organized as follows. In Section 2, we give the def-
inition of the lower-orthant and the upper-orthant Conditional-
Tail-Expectation measures. We then show that these measures
satisfy multivariate extensions of Artzner et al. (1999)’s invariance
properties (see Section 2.1). Illustrations in some Archimedean
copula cases are presented in Section 2.2. We also compare the
components of these multivariate CTE measures with the associ-
ated univariate VaR, the associated univariate CTE and with the
multivariate lower-orthant and upper-orthant VaR previously in-
troduced by Cousin and Di Bernardino (2013) (see Section 2.3). The
behavior of our CTE-swith respect to a change inmarginal distribu-
tions, a change in dependence structure and a change in risk level
α is discussed respectively in Sections 2.4–2.6. The conclusion dis-
cusses open problems and possible directions for future work.

2. Multivariate generalization of the Conditional-Tail-
Expectation measure

As in the univariate case, the multivariate VaR introduced in
Cousin and Di Bernardino (2013) does not give any information
regarding the upper tail of the loss distribution function and espe-
cially its degree of thickness above the VaR threshold. In an uni-
variate setting, the problem has been overcome by considering
for instance the Conditional-Tail-Expectation (CTE) risk measure,2
which is defined as the conditional expectation of losses given that
the latter exceed VaR. Following Artzner et al. (1999), the CTE at
level α for a distribution function F (or survival function F ) is given
by
CTEα(X) := E[X | X ≥ VaRα(X)], (6)
where VaRα(X) is the univariate Value-at-Risk defined by
VaRα(X) := inf {x ∈ R : F(x) ≥ α}

= inf

x ∈ R : F(x) ≤ 1 − α


.

Since the sets {X ≥ VaRα(X)}, {F(X) ≥ α} and {F(X) ≤ 1 − α}

correspond to the same event in a univariate setting, the CTE can
alternatively be defined3 as

CTEα(X) := E[X | F(X) ≥ α] = E[X | F(X) ≤ 1 − α]. (7)
The CTE can then be viewed as the conditional expectation of X
given that X falls into the α-lower-level set of its distribution func-
tion L(α) := {x ∈ R+ : F(x) ≥ α} or equivalently in the (1 − α)-
upper-level set of its survival function L(α) := {x ∈ R+ : F(x) ≤

2 This measure is also called Tail Conditional Expectation. As far as continuous
distribution functions are considered, the CTE measure is coherent in the sense of
Artzner’s axioms and it coincides with the Expected Shortfall or Tail VaR.
3 Note that this definition does not depend on VaR.
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1 − α}. This definition can naturally be extended in higher di-
mension, keeping in mind that the two previous sets L(α) and
L(α) are different in general as soon as the dimension d of the un-
derlying risk vector is greater or equal to 2. In analogy with Em-
brechts and Puccetti (2006) notations, we will denote by CTE the
lower-orthant Conditional-Tail-Expectation based on level sets of
the underlying distribution function (distribution function mea-
sures mass of probabilities in lower-orthant regions) and by CTE
the upper-orthant Conditional-Tail-Expectation based on level sets
of the underlying survival function (survival function measures
mass of probabilities in upper-orthant regions).

Assumption 2.1. In the following, we will consider non-negative
absolutely-continuous random vector4 X = (X1, . . . , Xd) (with
respect to Lebesgue measure λ on Rd) with partially increasing
multivariate distribution function5 F and such that E(Xi) < ∞, for
i = 1, . . . , d. These conditions will be called regularity conditions.

Definition 2.1 (Multivariate Lower-Orthant and Upper-Orthant
Conditional-Tail-Expectation). Consider a random vector X = (X1,
. . . , Xd) with distribution function F and survival function F , such
that E[Xi] is finite for all i = 1, . . . , d. For α ∈ (0, 1), we define the
lower-orthant Conditional-Tail-Expectation at probability level
α by

CTEα(X) = E[X | F(X) ≥ α] =

E[X1 | F(X) ≥ α]

...
E[Xd | F(X) ≥ α]

 ,

and the upper-orthant Conditional-Tail-Expectation at probability
level α by

CTEα(X) = E[X | F(X) ≤ 1 − α] =

E[X1 | F(X) ≤ 1 − α]

...

E[Xd | F(X) ≤ 1 − α]

 .

Remark that the lower-orthant CTE is amultivariate generaliza-
tion of the bivariate Conditional-Tail-Expectation previously intro-
duced in Di Bernardino et al. (2013).

From now on, we denote by CTE1
α(X), . . . , CTEd

α(X) the com-
ponents of the vector CTEα(X) and by CTE

1
α(X), . . . , CTE

d
α(X) the

components of the vector CTEα(X).
Note that if X is an exchangeable random vector, CTEi

α(X) =

CTEj
α(X) and CTE

i
α(X) = CTE

j
α(X) for any i, j = 1, . . . , d. Further-

more, given a univariate random variable X , E[X | FX (X) ≥ α] =

E[X | FX (X) ≤ 1− α] = CTEα(X), for all α in (0, 1). Hence, lower-
orthant and upper-orthant Conditional-Tail-Expectation coincide
with the usual CTE in the particular case where d = 1.

Let us remark that, under the regularity assumption, the mul-
tivariate lower-orthant (resp. upper-orthant) Conditional-Tail-
Expectation can be represented as an integral transformation of
the multivariate lower-orthant VaR (resp. upper-orthant VaR) in-
troduced by Cousin and Di Bernardino (2013), i.e.,

CTEi
α(X) =

1
1 − K(α)

 1

α

VaRi
γ (X)K ′(γ )dγ , (8)

4 We restrict ourselves to Rd
+

because, in our applications, components of
d-dimensional vectors correspond to random losses and are then valued in R+ .
5 A function F(x1, . . . , xd) is partially increasing on Rd

+
\ (0, . . . , 0) if the

functions of one variable g(·) = F(x1, . . . , xj−1, ·, xj+1, . . . , xd) are increasing.
About properties of partially increasingmultivariate distribution functionswe refer
the interested reader to Rossi (1973) and Tibiletti (1991).

and

CTE
i
α(X) =

1K(1 − α)

 1

α

VaR
i
γ (X)K ′(1 − γ )dγ , (9)

where K is the Kendall distribution of X , i.e., K(x) = P (F(X) ≤ x),
for all x in (0, 1) andK is its ‘‘upper-orthant’’ Kendall distribution,
i.e.,K(x) = P


F(X) ≤ x


, for all x in (0, 1). Formula (8) and (9) will

be useful in Proposition 2.8 and Corollary 2.3 below.
Remark that the existence of the density K ′ andK ′ that appears

in Eqs. (8)–(9) is guaranteed by the regularity conditions (for further
details, see Proposition 1 in Imlahi et al., 1999 or Proposition 4 in
Chakak and Ezzerg, 2000). The interested reader is also referred to
Cousin and Di Bernardino (2013).

2.1. Invariance properties

In the present section, the aim is to analyze the lower-orthant
and the upper-orthant CTE introduced in Definition 2.1 in terms of
classical invariance properties of risk measures (we refer the in-
terested reader to Artzner et al., 1999). In analogy with Section 2.1
in Cousin and Di Bernardino (2013), we now introduce the follow-
ing results (Proposition 2.1 and Corollary 2.1) that will be useful in
order to prove invariance properties of our risk measures.

Proposition 2.1. Let the function h be such that h(x1, . . . , xd) =

(h1(x1), . . . , hd(xd)).
– If h1, . . . , hd are non-decreasing functions, then the following

relations hold

CTEi
α(h(X)) = E[hi(Xi) | FX(X) ≥ α], i = 1, . . . , d

and

CTE
i
α(h(X)) = E[hi(Xi) | FX(X) ≤ 1 − α], i = 1, . . . , d.

– If h1, . . . , hd are non-increasing functions, then the following
relations hold

CTEi
α(h(X)) = E[hi(Xi) | FX(X) ≥ α], i = 1, . . . , d

and

CTE
i
α(h(X)) = E[hi(Xi) | FX(X) ≤ 1 − α], i = 1, . . . , d.

Proof. FromDefinition 2.1, CTEi
α(h(X)) = E[hi(Xi) | Fh(X)(h(X)) ≥

α], for i = 1, . . . , d. Since

Fh(X)(y1, . . . , yd) =



FX(h−1(y1), . . . , h−1(yd)),
if h1, . . . , hd are non-decreasing
functions,

FX(h−1(y1), . . . , h−1(yd)),
if h1, . . . , hd are non-increasing
functions,

then we obtain the result. �

Finally, we can state the following result that proves positive
homogeneity and translation invariance for our measures.

Proposition 2.2. For α ∈ (0, 1), the multivariate upper-orthant
and lower-orthant Conditional-Tail-Expectation satisfy the following
properties:

Positive Homogeneity: ∀ c = (c1, . . . , cd)′ ∈ Rd
+
,

CTEα(c1X1, . . . , cdXd) =

c1CTE1

α(X), . . . , cdCTEd
α(X)

′
CTEα(c1X1, . . . , cdXd) =


c1CTE

1
α(X), . . . , cdCTE

d
α(X)

′

.

Translation Invariance: ∀ c ∈ Rd
+
,

CTEα(c + X) = c + CTEα(X), CTEα(c + X) = c + CTEα(X).

The proof comes down from Proposition 2.1.
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Remark 1. (i) In the univariate aswell in themultivariate setting,
a risk measure may be interpreted as the riskiness of a portfo-
lio or the amount of capital that should be added to a portfolio
with a given loss, so that the portfolio can then be deemed ac-
ceptable. In this respect, the translation invariance property for
(multivariate) risk measures are necessary if the risk-capital
interpretation we stated above is to make sense. The homo-
geneity property is often motivated by a change of currency
argument: the amount of required capital in order to manager
risks should be independent of the currency in which it is ex-
pressed (e.g. see Artzner et al., 1999). For these reasons, the
invariance properties proved in Proposition 2.2 play a central
role in practical applications.

(ii) It is straightforward to show that the capital allocation mea-
sures presented in (1)–(3) do not satisfy the invariance prop-
erties stated in Proposition 2.2 as soon as the components of
c = (c1, . . . , cd) are all different. In that sense, these mea-
suresmaynot be suitable for intrinsicallymultivariate problem
where risks cannot be expressed under the same numéraire.

Remark 2. For α = 0, using Definition 2.1, we obtain

CTE0(X) = CTE0(X) =

E[X1]

...
E[Xd ]

 = E[X].

Then, as in the univariate case, the multivariate lower-orthant and
upper-orthant CTE-s are equal to the expected value of the under-
lying random vector for α = 0.

Since these two new measures are not the same in general for
dimension greater or equal to 2, we also provide some connections
between CTE and CTE. From Proposition 2.1 one can obtain the
following property which links the multivariate upper-orthant
Conditional-Tail-Expectation and the lower-orthant one.

Corollary 2.1. Let h be a linear function such that h(x1, . . . , xd) =

(h1(x1), . . . , hd(xd)).

– If h1, . . . , hd are non-decreasing functions then it holds that

CTEα(h(X)) = h(CTEα(X)) and

CTEα(h(X)) = h(CTEα(X)).

– If h1, . . . , hd are non-increasing functions then it holds that

CTEα(h(X)) = h


E[X]

1 −K(α)
−

K(α)

1 −K(α)
CTE1−α(X)


and

CTEα(h(X)) = h


E[X]

K(1 − α)
−

1 − K(1 − α)

K(1 − α)
CTE1−α(X)


,

where K(x) = P (F(X) ≤ x) and K(x) = P

F(X) ≤ x


, for all

x ∈ (0, 1).

Example 1. If X = (X1, . . . , Xd) is a random vector with uniform
margins and if, for all i = 1, . . . , d, we consider the functions hi
such that hi(x) = 1− x, x ∈ [0, 1], then from Corollary 2.1, we get

CTE
i
α(X) =

1K(1 − α)


1
2

−

1 −K(1 − α)


×

1 − CTEi

1−α(1 − X)


(10)

for all i = 1, . . . , d, where 1−X = (1−X1, . . . , 1−Xd). Note thatK
is theKendall distribution function associatedwith the vector1−X.

Additionally, if X and 1 − X have the same distribution function,
then X is invariant in law by central symmetry and the following
relation holds:

CTE
i
α(X) =

1
K(1 − α)


1
2

− (1 − K(1 − α))

×

1 − CTEi

1−α(X)


. (11)

For instance, this property is satisfied for vector X which follows
an elliptical or a Frank copula structure.

We now show that, as in the univariate setting, the lower-orth-
ant and the upper-orthant CTE-s are additive for π-comonotonic
couple of randomvectors as defined in Puccetti and Scarsini (2010).

Definition 2.2. Acouple (X, Y)of d-dimensional randomvectors is
said to be π-comonotonic if there exists a d-dimensional random
vector Z = (Z1, . . . , Zd) and non-decreasing functions f1, . . . , fd,
g1, . . . , gd such that

(X, Y)
d
= ((f1(Z1), . . . , fd(Zd)), (g1(Z1), . . . , gd(Zd))) .

Proposition 2.3. Let (X, Y) be a π-comonotonic couple of random
vectors, then

CTEα(X + Y) = CTEα(X) + CTEα(Y),

CTEα(X + Y) = CTEα(X) + CTEα(Y).

Proof. We focus on the lower-orthant CTE. Similar arguments ap-
ply for the upper-orthant CTE. Let X = (X1, . . . , Xd) and Y = (Y1,
. . . , Yd) be twoπ-comonotonic randomvectors. There exists a ran-
dom vector Z = (Z1, . . . , Zd) such that, for any i = 1, . . . , d,
Xi = fi(Zi) and Yi = gi(Zi) where fi and gi are non-decreasing func-
tions. Let f be the function defined by f (x1, . . . , xd) = (f1(x1), . . . ,
fd(xd)), g be the function defined by g(x1, . . . , xd) = (g1(x1), . . . ,
gd(xd)) and h be the function defined by h(x1, . . . , xd) = (h1(x1),
. . . , hd(xd)) where hi := fi + gi, i = 1, . . . , d. The function hi, i =

1, . . . , d are non-decreasing as a sum of non-decreasing functions
and X + Y = h(Z). We obtain from Proposition 2.1 that, for any
i = 1, . . . , d, CTEi

α(X + Y) = E[hi(Zi) | FZ(Z) ≥ α] = E[fi(Zi) |

FZ(Z) ≥ α] + E[gi(Zi) | FZ(Z) ≥ α] where FZ denotes the distri-
bution function of Z. Eventually, E[fi(Zi) | FZ(Z) ≥ α] = E[fi(Zi) |

Ff(Z)(f(Z)) ≥ α] = CTEi
α(X) and E[gi(Zi) | FZ(Z) ≥ α] = E[gi(Zi) |

Fg(Z)(g(Z)) ≥ α] = CTEi
α(Y), which concludes the proof. �

Remark 3. The previous proposition also holds for the lower-
orthant VaR and the upper-orthant VaR introduced in Cousin and
Di Bernardino (2013).

We now prove that the proposed multivariate measures are
subadditive for independent random vectors with independent
components.

Proposition 2.4. Let X and Y be two d-dimensional independent
random vectors with finite expectations for each marginal. If all
components in X and Y are independent, then the lower-orthant
Conditional-Tail-Expectation CTE is such that

CTEα(X + Y) ≤ CTEα(X) + CTEα(Y), for α ∈ (0, 1).

The same result holds for the lower-orthant Conditional-Tail-
Expectation CTE.

Proof. It is equivalent to prove that, for all i = 1, . . . , d and for all
α ∈ (0, 1),

E[Xi + Yi | FX+Y(X + Y) ≥ α] ≤ E[Xi | FX(X) ≥ α]

+ E[Yi | FY(Y) ≥ α]. (12)
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Eq. (12) can be written as:

E[Xi + Yi, FX+Y(X + Y) ≥ α]

P[FX+Y(X + Y) ≥ α]
≤

E[Xi, FX(X) ≥ α]

P[FX(X) ≥ α]

+
E[Yi, FY(Y) ≥ α]

P[FY(Y) ≥ α]
.

Note that Xi + Yi and Xj + Yj are independent for all i, j = 1, . . . , d,
with i ≠ j. Then all denominators of the terms above are the
same, i.e., the survival Kendall distribution K(α) associated to the
d-dimensional independence copula structure. As a result, we have
then to prove that, for all i = 1, . . . , d and for all α ∈ (0, 1),

E[Xi + Yi, FX+Y(X + Y) ≥ α] ≤ E[Xi, FX(X) ≥ α]

+ E[Yi, FY(Y) ≥ α].

Let us denote byU = (U1, . . . ,Ud) the randomvectorwith compo-
nents Uj := FXj+Yj(Xj + Yj), j = 1, . . . , d and by V = (V1, . . . , Vd)
the random vector with components Vj := FXj(Xj), j = 1, . . . , d.
As the components of X + Y are independent, we get:

E[Xi + Yi, FX+Y(X + Y) ≥ α] = E[Xi + Yi, FXi+Yi(Xi + Yi) ≥ α̃i]

where

α̃ :=
α

d
j=1,j≠i

Uj

.

Using the sub-additivity of the univariate Conditional-Tail-
Expectation (see for instance Denuit et al., 2005), the following re-
lation holds

E

Xi + Yi, FXi+Yi(Xi + Yi) ≥ α̃ | Uj,j≠i


≤ E


Xi, FXi(Xi) ≥ α̃ | Uj,j≠i


+ E


Yi, FYi(Yi) ≥ α̃ | Uj,j≠i


. (13)

Note that the vector (U1, . . . , Xi, . . . ,Ud) has the same distribution
as the vector (V1, . . . , Xi, . . . , Vd) since they both share the same
marginals and the same dependence structure (the independent
copula). As a result,E


Xi, FXi(Xi) ≥ α̃ | Uj,j≠i


= E [Xi, FX(X) ≥ α |

Vj,j≠i

. Using the same argument for the second term in the right

hand side of (13), the result follows from the law of iterated
expectation. �

Remark 4. Note that the previous subadditivity property does not
hold in general. Lee and Prékopa (2013) provide a counterexample
in the case where the underlying random vectors follow particular
discrete distributions.

2.2. Archimedean copula case

In this section, we focus on multivariate random vectors
distributed as particular Archimedean copulas. Note that, since
Archimedean copulas are exchangeable, all components of the in-
troducedmultivariate riskmeasures are the same, when applied to
random vectors with such distributions. We show that analytical
expressions can be obtained for the lower-orthant and the upper-
orthant CTE, which allows us to illustrate the behavior of the pro-
posed risk-measures. In the next sections, the presented properties
will be investigated more formerly.

We restrain ourself to random vectors with uniformmarginals.
In that case, the multivariate VaR-s introduced in Cousin and Di
Bernardino (2013) can be expressed as an integral transformation
of the Archimedean generator.

Definition 2.3. A d-dimensional Archimedean copula C with gen-
erator φ is a distribution function on (0, 1)d defined by

C(u1, . . . , ud) = φ−1 (φ(u1) + · · · + φ(ud)) ,

where φ−1 is a d-monotone function from [0, ∞) to [0, 1].

Proposition 2.5. Let X be a d-dimensional random vector which
follows an Archimedean copula with generator φ, then, for any i =

1, . . . , d,

VaRi
α(X) = 1 −

 1

α


1 −

φ(u)
φ(α)

d−1

du, (14)

VaR
i
α(1 − X) =

 1

1−α


1 −

φ(u)
φ(1 − α)

d−1

du. (15)

Proof. This comes down from Corollary 8 in Cousin and Di
Bernardino (2013). �

Consequently, by using representations (8)–(9) and relations
(14)–(15), the following integral expressions hold for any i =

1, . . . , d

CTEi
α(X) =

1
1 − K(α)

×

 1

α


1 −

 1

γ


1 −

φ(u)
φ(γ )

d−1

du


× K ′(γ )dγ , (16)

CTE
i
α(1 − X) =

1
K(1 − α)

×

 1

α

 1

1−γ


1 −

φ(u)
φ(1 − γ )

d−1

du


× K ′(1 − γ )dγ , (17)

where K is the Kendall distribution function associated with X .
Using (16), we are able to give analytical expressions of CTEα(X)
for some particular families of Archimedean copulas. Additionally,
from Example 1, analogous expressions can be obtained for the
upper-orthant CTE of the vector 1 − X = (1 − X1, . . . , 1 − Xd)
given that the Kendall distribution K of X is known. One can use
either formula (17) or the following relation

CTE
i
α(1 − X) =

1
K(1 − α)


1
2

− (1 − K(1 − α))

×

1 − CTEi

1−α(X)


(18)

which comes downs fromEq. (10). In Table 1, we provide analytical
expressions of the Kendall distribution function K(α) for bivariate
Gumbel, Frank, Clayton and Ali–Mikhail–Haq families.

As a matter of example, we now focus on Clayton and Gumbel
copula families.
Clayton family illustration

Let us now consider the Clayton family of bivariate copulas. This
family is interesting since it contains the counter-monotonic, the
independence and the comonotonic copulas as particular cases.
Clayton copulas are associatedwith generatorφ of the formφ(u) =
1
θ


u−θ

−1

, u ∈ (0, 1)with a dependence parameter θ . Let (X, Y )

be a random vector distributed as a Clayton copula with parameter
θ ≥ −1. Then, X and Y are uniformly-distributed on (0, 1) and the
joint distribution function Cθ of (X, Y ) is such that

Cθ (x, y) = (max{x−θ
+ y−θ

− 1, 0})−
1
θ ,

for θ ≥ −1, (x, y) ∈ [0, 1]2. (19)
We obtain in Table 2 a closed-formexpression for themultivari-

ate lower-orthant CTE in that case.

Interestingly, one can readily show that
∂CTEiα,θ

∂α
≥ 0 and

∂CTEiα,θ

∂θ
≤ 0, for θ ≥ −1 and α ∈ (0, 1). This proves that, for Clayton-
distributed random vectors, the components of our CTE are in-
creasing functions of the risk level α and decreasing functions of
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Table 1
Kendall distribution in some classical bivariate Archimedean copulas.

Copula θ ∈ Kendall distribution K(α, θ)

Gumbel [1, ∞) α

1 −

1
θ
lnα


Frank (−∞, ∞) \ {0} α +

1
θ


1 − eθα


ln


1−e−θ α

1−e−θ


Clayton [−1, ∞) \ {0} α


1 +

1
θ


1 − αθ


Ali–Mikhail–Haq [−1, 1) α −1+θ+(1−θ+θα)(ln(1−θ+θ α)+lnα)

θ−1

Table 2
CTEi

α,θ (X, Y ), i = 1, 2, for different copula dependence structures.

Copula θ CTEi
α,θ (X, Y )

Clayton Cθ (−1, ∞) 1
2

θ
θ−1

θ−1−α2(1+θ)+2α1+θ

θ−α(1+θ)+α1+θ

Counter-monotonicW −1 1
4

1−α2
+2 lnα

1−α+lnα

Independent Π 0 1
2

(1−α)2

1−α+α lnα

Π

Σ−Π
1 1

2
1+α2(2 lnα−1)

(1−α)2

Comonotonic M ∞
1+α
2

the dependence parameter θ . Note also that, in the comonotonic
case, our CTE corresponds to the vector composed of the univari-
ate CTE associated with each component. These properties are il-
lustrated in Fig. 1 (left panel) where CTEi

α,θ (X, Y ) is plotted as a
function of the risk level α for different values of θ . Observe that
an increase of the dependence parameter θ tends to lower the
CTE up to the perfect dependence case where CTEi

α,θ=+∞
(X, Y ) =

CTEα(X) =
1+α
2 . The previous empirical behaviors will be formally

investigated in next sections.
In the same framework, using Eq. (18), one can readily show

that ∂CTEiα,θ

∂α
≥ 0 and ∂CTEiα,θ

∂θ
≥ 0, for θ ≥ −1 and α ∈ (0, 1). This

proves that, for random couples with uniform margins and Clay-
ton survival copula, the components of our multivariate CTE are
increasing functions both of the risk level α and of the dependence
parameter θ . Note also that the multivariate CTE in the comono-
tonic case corresponds to the vector composed of the univariate
CTE associated with each component. These properties are illus-
trated in Fig. 1 (right panel)where CTE

i
α,θ (1−X, 1−Y ) is plotted as

a function of the risk level α for different values of the parameter θ .
Observe that, contrary to the lower-orthant CTE, an increase of the
dependenceparameter θ tends to increase theCTE. Then in the case
of upper-orthant CTE, the upper bound is represented by the per-
fect dependence case where CTE

1
α,θ=+∞

(X, Y ) = CTEα(X) =
1+α
2 .

The latter empirical behaviors will be formally confirmed in next
sections.
Gumbel family illustration

Gumbel copulas are associated with a generator φ of the form
φ(u) = (− log(u))θ , u ∈ (0, 1) with a dependence parameter
θ ≥ 1. The bivariate family of copulas is such that

Cθ (x, y) = e−((− ln x)θ +(− ln y)θ )
1
θ
,

for θ ∈ [1, ∞), (x, y) ∈ [0, 1]2 (e.g., see Section 3.3.1 in Nelsen,
1999) and X , Y standard uniform marginals. For θ = 1 we have
the independent copula C1(x, y) = Π(x, y) = x y; for θ = ∞ the
Fréchet bound M(x, y) = min{x, y} (comonotonic random vari-
ables). Again, in this case, analytical expressions of CTEα(X, Y ) and
CTE

1
α,θ (1−X, 1−Y ) can be derived. As in the Clayton case, it can be

proved that
∂CTE1α,θ

∂α
≥ 0,

∂CTE1α,θ

∂θ
≤ 0, ∂CTE1α,θ

∂α
≥ 0 and ∂CTE1α,θ

∂θ
≥ 0,

for θ ≥ 1 and α ∈ (0, 1). Fig. 2 plots one component of the pro-
posed measures in the Gumbel case (all components are the same
by exchangeability), as a function of the risk level α and for differ-
ent dependence parameter θ . We can see that the behavior of the

upper-orthant and the lower-orthant CTE are similar to the one ex-
hibited in Fig. 1 for the Clayton case.

2.3. Comparison with other risk measures

Wenowdiscusswhether the components of CTE and CTE can be
compared with univariate VaR and CTE applied to the correspond-
ing marginal risks and under which condition components of CTE
and CTE are more conservative that the components of VaR and
VaR.

Proposition 2.6. Consider a d-dimensional random vector X. As-
sume that its multivariate distribution function F is quasi concave.6
Then, for any i = 1, . . . , d, the following inequality holds:

VaRα(Xi) ≤ CTEi
α(X), for i = 1, . . . , d. (20)

Proof. Let α ∈ (0, 1). From the definition of the accumulated
probability, it is easy to show that ∂L(α) is inferiorly bounded by
the marginal univariate quantile functions. Moreover, recall that
L(α) is a convex set in Rd

+
from the quasi concavity of F (see Sec-

tion 2 in Tibiletti, 1995). Then, for all x = (x1, . . . , xd) ∈ L(α), x1 ≥

VaRα(X1), . . . , xd ≥ VaRα(Xd) and trivially, CTEi
α(X) is greater than

VaRα(Xi), for i = 1, . . . , d. Hence the result. �

Proposition 2.6 states that the multivariate lower-orthant CTEα

is more conservative than the vector composed of the classical
univariate α-Value-at-Risk of marginal distributions. Such a result
is not true for the upper-orthant CTE as can be seen in left panel of
Figs. 1–2.

It is interesting to remark that, for comonotonic random
vectors, the proposed multivariate CTE-s coincide with the vector
composed of univariate CTE-s of the corresponding marginals. For
the sake of clarity, we firstly recall the definition of comonotonicity
for a randomvector (see e.g., Definition 1.9.1. inDenuit et al., 2005).

Definition 2.4. A random vector X = (X1, . . . , Xd) is comonotonic
if and only if there exists a random variable Z and increasing
functions g1, . . . , gd such that X is equal to (g1(Z), . . . , gd(Z)) in
distribution.

Proposition 2.7. Consider a comonotonic non-negative d-dimensio-
nal random vector X. Then, for all α ∈ (0, 1), it holds that

CTEi
α(X) = CTEα(Xi) = CTE

i
α(X), for i = 1, . . . , d.

Proof. From Definition 2.4, we write the distribution of vector X
as FX(x) = FZ


mini=1,...,d{g−1

i (xi)}

and FX(x) = F Z


maxi=1,...,d

{g−1
i (xi)}


so that FX(X) = FZ (Z) = FXi(Xi) and FX(X) = F Z (Z) =

FXi(Xi) for all i = 1, . . . , d. The result follows immediately. �

Let us now compare the multivariate lower-orthant and upper-
orthant CTE introduced in Definition 2.1 with the multivariate
lower-orthant and upper-orthant VaR defined by Cousin and Di
Bernardino (2013).

Proposition 2.8. Consider a d-dimensional random vector X satisfy-
ing the regularity conditions. If VaRi

α(X) is a non-decreasing function
of α, then it holds that

CTEi
α(X) ≥ VaRi

α(X), for all α ∈ (0, 1).

6 A function F is quasi concave if for any x, y, F (px + (1 − p)y) ≥ min(F(x),
F(y)) for all p ∈ (0, 1). Note that a function F is quasi concave if and only if its
upper level sets of are convex. Tibiletti (1995) points out families of distribution
functions which satisfy the property of quasi concavity. For instance, multivariate
elliptical distributions and Archimedean copulas are quasi concave functions.
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Fig. 1. Behavior of CTE1
α,θ (X, Y ) = CTE2

α,θ (X, Y ) (left) and CTE
1
α,θ (1−X, 1−Y ) = CTE

2
α,θ (1−X, 1−Y ) (right) with respect to risk level α for different values of dependence

parameter θ . The random vector (X, Y ) follows a Clayton copula distribution with parameter θ . The horizontal line corresponds to E[X] =
1
2 . Note that this limit is reached

(right panel) for the upper-orthant CTE in the counter-monotonic case, i.e., CTE
1
α,θ=−1(1 − X, 1 − Y ) =

1
2 .

Fig. 2. Behavior of CTE1
α,θ (X, Y ) = CTE2

α,θ (X, Y ) (left) and CTE
1
α,θ (1−X, 1−Y ) = CTE

2
α,θ (1−X, 1−Y ) (right) with respect to risk level α for different values of dependence

parameter θ . The random vector (X, Y ) follows a Gumbel copula distribution with parameter θ . The horizontal line corresponds to E[X] =
1
2 .

If VaR
i
α(X) is a non-decreasing function of α, then it holds that

CTE
i
α(X) ≥ VaR

i
α(X), for all α ∈ (0, 1).

Proof. From Eq. (8), since VaRi
γ (X) is assumed to be non-decrea-

sing with respect to γ , we obtain

CTEi
α(X) ≥

1
1 − K(α)

 1

α

VaRi
α(X)K ′(γ )dγ

=
K(1) − K(α)

1 − K(α)
VaRi

α(X) = VaRi
α(X).

From Eq. (9), if VaR
i
γ (X) is assumed to be non-decreasing with re-

spect to γ , we obtain

CTE
i
α(X) ≥

1K(1 − α)

 1

α

VaR
i
α(X)K ′(1 − γ )dγ

=

K(1 − α) −K(0)K(1 − α)
VaR

i
α(X) = VaR

i
α(X).

Hence the result. �

This property holds for instance for any random vector which
admits anArchimedean copula. It is indeed proved in Cousin andDi

Bernardino (2013) that VaRα(X) and VaRα(X) are non-decreasing
functions of the risk level α for such dependence structures.

2.4. Behavior of multivariate CTE with respect to marginal distribu-
tions

In this section we study the behavior of the multivariate lower-
orthant and upper-orthant Conditional-Tail-Expectation with re-
spect to a change in marginal distributions. Results presented
below provide a natural multivariate extension of classical results
in a univariate setting (see, e.g., Denuit and Charpentier, 2004).

Proposition 2.9. Let X and Y be two d-dimensional random vector
satisfying the regularity conditions andwith the same copula structure
C. If Xi

d
= Yi, then it holds that

CTEi
α(X) = CTEi

α(Y), for all α ∈ (0, 1),

and

CTE
i
α(X) = CTE

i
α(Y), for all α ∈ (0, 1).

Proof. From Proposition 2.6 in Cousin and Di Bernardino (2013),
we know that VaRi

α(X) = VaRi
α(Y) and VaR

i
α(X) = VaR

i
α(Y). The

demonstration comes down from representation (8) and (9). �
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Table 3
CTEα(X, Yi), for i = 1, . . . , 5, with the same copula Clayton copula with parameter 1, X ∼ Exp(1) and Y1 ∼ Exp(2); Y2 ∼ Burr(2, 1); Y3 ∼ Exp(1); Y4 ∼ Fréchet(4);
Y5 ∼ Burr(4, 1). This table provides an illustration of Propositions 2.9–2.10.

α CTEα(X, Y1) CTEα(X, Y2) CTEα(X, Y3) CTEα(X, Y4) CTEα(X, Y5)

0.10 (1.188, 0.594) (1.188, 1.838) (1.188, 1.188) (1.188, 1.315) (1.188, 1.229)
0.24 (1.449, 0.724) (1.449, 2.218) (1.449, 1.449) (1.449, 1.431) (1.449, 1.366)
0.38 (1.727, 0.864) (1.727, 2.661) (1.727, 1.727) (1.727, 1.555) (1.727, 1.506)
0.52 (2.049, 1.025) (2.049, 3.235) (2.049, 2.049) (2.049, 1.704) (2.049, 1.667)
0.66 (2.454, 1.227) (2.454, 4.074) (2.454, 2.454) (2.454, 1.902) (2.454, 1.876)
0.80 (3.039, 1.519) (3.039, 5.591) (3.039, 3.039) (3.039, 2.219) (3.039, 2.202)
0.90 (3.768, 1.884) (3.768, 8.175) (3.768, 3.768) (3.768, 2.675) (3.768, 2.665)
0.99 (6.102, 3.059) (6.102, 26.59) (6.102, 6.102) (6.102, 4.813) (6.102, 4.811)

In particular, when one component of the underlying risk vec-
tor changes, it does not affect the other components of the multi-
variate CTE-s as far as the dependence structure is unchanged. In
the following, we analyze how our multivariate measures behave
when the marginal risks increase with respect to the first-order
stochastic dominance (e.g., see Definition 3.3.1. in Denuit et al.,
2005). We recall below the definition of the first-order stochastic
dominance.

Definition 2.5 (First-Order Stochastic Dominance). Let X and Y be
two random variables. Then X is said to be smaller than Y in first-
order stochastic dominance, denoted as X ≼st Y , if the inequality

QX (α) ≤ QY (α) is satisfied for all α ∈ (0, 1),

where QX (α) (resp. QY (α)) is the α-th quantile of the distribution
of X (resp. of Y ).

Proposition 2.10. Let X and Y be two d-dimensional random vectors
satisfying the regularity conditions andwith the same copula structure
C. If Xi ≼st Yi as in Definition 2.5, then it holds that

CTEi
α(X) ≤ CTEi

α(Y), for all α ∈ (0, 1),

and

CTE
i
α(X) ≤ CTE

i
α(Y), for all α ∈ (0, 1).

Proof. From Proposition 2.7 in Cousin and Di Bernardino (2013),
we know that, if Xi ≼st Yi then VaRi

α(X) ≤ VaRi
α(Y) and VaR

i
α(X)

≤ VaR
i
α(Y). The result comes down from representation (8) and

(9). �

Example 2. In this example, we provide an illustration of Propo-
sitions 2.9–2.10 above. We consider the case of lower-orthant
Conditional-Tail-Expectation (the upper-orthant case is com-
pletely analogous). The obtained results are gathered in Table 3.

We consider five different bivariate random vectors (X, Yi), for
i = 1, . . . , 5, with the same bivariate Clayton copula with param-
eter 1. Let

X ∼ Exp(1), Y1 ∼ Exp(2), Y2 ∼ Burr(2, 1),
Y3 ∼ Exp(1), Y4 ∼ Fréchet(4) and Y5 ∼ Burr(4, 1).

We calculate CTEα(X, Yi), for i = 1, . . . , 5 (see Table 3). As proved
in Proposition 2.9 we obtain an invariant property on the first co-
ordinate of all CTEα(X, Yi), for i = 1, . . . , 5. Furthermore, since
(X, Y3) is an exchangeable continuous random vector, then CTE1

α

(X, Y3) = CTE2
α(X, Y3). Moreover, as QX (α) = 2QY1(α), then CTE1

α

(X, Y1) = 2 CTE2
α(X, Y1), for α ∈ (0, 1) (see Table 3).

By in Proposition 2.10, since Y1 ≼st Y5 ≼st Y4 ≼st Y2, then,

CTE2
α(X, Y1) ≤ CTE2

α(X, Y5) ≤ CTE2
α(X, Y4)

≤ CTE2
α(X, Y2), for any level α ∈ (0, 1).

Analogously, we also obtain CTEα(X, Y1) ≤ CTEα(X, Y3) ≤ CTEα

(X, Y2), for any level α ∈ (0, 1).

Conversely Y3, Y4 and Y3, Y5 are not ordered in stochastic dom-
inance sense.

In the following proposition, we investigate the effect of a
mean-preserving change in marginal risks.

Proposition 2.11. Let X and Y be two d-dimensional random vectors
satisfying the regularity conditions andwith the same copula structure
C. Let us assume that E[Xi] ≤ E[Yi] and that the ith components
of the lower-orthant VaR of X and Y satisfy the following single-cut
condition: there exists a real c in [0, 1) such that VaRi

α(X) ≥ VaRi
α(Y)

for all α < c and VaRi
α(X) ≤ VaRi

α(Y) for all α ≥ c. Then,

CTEi
α(X) ≤ CTEi

α(Y), for all α ∈ (0, 1).

The same result holds CTE.

Proof. Let us consider the function ∆ defined by

α → ∆(α) = (1 − K(α)) (CTEi
α(Y) − CTEi

α(X))

=

 1

α

(VaRi
γ (Y) − VaRi

γ (X))K ′(γ ) dγ .

Then ∆(0) = (1 − K(0))(E[Yi] − E[Xi]) ≥ 0, ∆(1) = 0 and
∆′(α) = (VaRi

α(X) − VaRi
α(Y))K ′(α) is positive for all α < c and

negative for allα ≥ c thanks to the single-cut condition. As a result,
the function ∆ remains positive on [0, 1] and the result holds. �

This result is similar to the consistency property of univariate
CTE with respect to the less dangerous order, i.e., for univariate
random variables X and Y such as X ≼D Y , then, for any α in [0, 1],
CTEα(X) ≤ CTEα(Y ).

Example 3. We provide here an illustration of Proposition 2.11.
Firstly we remark in Example 2 that E[Y3] < E[Y5]. However, the
single-cut condition of Proposition 2.11 for VaR2

α(X, Y3) and VaR2
α

(X, Y5) is not satisfied and from Table 3 one can see that CTE2
α

(X, Y3), CTE2
α(X, Y5) are not ordered for any level α ∈ (0, 1).

We now define X := (X, Z1) and Y := (X, 1
2 (Z1 + Z2)). Let

X a continuous random variable. Let Z1, Z2 be two independent
random variables such that Z1 ∼ Z2 ∼ Exp(2), then Z1 + Z2 ∼

Erlang(2, 2) distribution. Assume that X and Y have both the same
independent copula C . One can show thatE[

1
2 (Z1+Z2)] = E[Z1] =

1
2 and there exists a real c in [0, 1) such that VaR2

α(Y) ≥ VaR2
α(X)

for all α < c and VaR2
α(Y) ≤ VaR2

α(X) for all α ≥ c (see Fig. 3, left).
The interested reader is also referred to Section 7.3 in Denuit et al.
(2005).

Then, using Proposition 2.11 we obtain CTE2
α(Y) ≤ CTE2

α(X),
for all α ∈ (0, 1). This property is illustrated in Fig. 3 (right).

2.5. Behavior of multivariate CTE with respect to the dependence
structure

In this section we study the behavior of our CTE generalizations
with respect to a variation of the dependence structure, with un-
changed marginal distributions.
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Fig. 3. Left: VaR2
α(X) (full line) and VaR2

α(Y) (dashed line). We also represent the associated univariate VaR, i.e. VaRα(Z1) (squared line) and VaRα( 1
2 (Z1 + Z2)) (dotted line).

Remark that VaR2
α(X) and VaR2

α(Y) verify the single-cut condition in Proposition 2.11. Right: CTE2
α(X) (full line) and CTE2

α(Y) (dashed line).

Proposition 2.12. Let X and X∗ be two d-dimensional continuous
random vectors satisfying the regularity conditions and with the same
margins FXi and FX∗

i
, for i = 1, . . . , d, and let C (resp. C∗) denote

the copula function associated with X (resp. X∗) and C (resp. C
∗
) the

survival copula function associated with X (resp. X∗).
Let Ui = FXi(Xi),U∗

i = FXi∗(X
∗

i ),U = (U1, . . . ,Ud) and U∗
=

(U∗

1 , . . . ,U∗

d ).

If [Ui | C(U) ≥ α] ≼st[U∗

i | C∗(U∗) ≥ α]

then CTEi
α(X) ≤ CTEi

α(X∗).

Let Vi = FXi(Xi), V ∗

i = FXi∗(X
∗

i ), V = (V1, . . . , Vd) and V∗
=

(V ∗

1 , . . . , V ∗

d ).

If [Vi | C(V) ≤ 1 − α] ≼st[V ∗

i | C
∗
(V∗) ≤ 1 − α]

then CTE
i
α(X) ≥ CTE

i
α(X∗).

Proof. We recall that U1 ≼st U2 if and only if E[f (U1)] ≤ E[f (U2)],
for all non-decreasing function f , such that the expectations exist
(see Denuit et al., 2005, Proposition 3.3.14).We now choose f (u) =

QXi(u), for u ∈ (0, 1). Then we obtain

E[QXi(Ui) | C(U) ≥ α] ≤ E[QXi(U
∗

i ) | C∗(U∗) ≥ α].

But the right-hand side of the previous inequality is equal to
E[QX∗

i
(U∗

i )|C∗(U∗) ≥ α] sinceXi andX∗

i have the samedistribution.
Finally, we obtain CTEi

α(X) ≤ CTEi
α(X∗). For the second point

of the statement we choose the non-decreasing function f (u) =

−F
−1
Xi (u), for u ∈ (0, 1). Since Xi and X∗

i have the same distribution,
we obtain the result. �

We now provide an illustration of Proposition 2.12 in the case
of bivariate Archimedean copulas.

Corollary 2.2. Consider a 2-dimensional random vector X, satisfying
the regularity conditions, with marginal distributions FXi , for i =

1, . . . , d, copula C and survival copula C.

If C belongs to one of the bivariate family of Archimedean copulas
introduced in Table 1, an increase of the dependence parameter θ
yields a decrease in each component of CTEα(X).
If C belongs to one of the bivariate family of Archimedean copulas
introduced in Table 1, an increase of the dependence parameter θ
yields an increase in each component of CTEα(X).

Proof. In the bivariate Archimedean case, the joint distribution of
(U, C(U, V )) can be obtained analytically by using a change of vari-
able transformation7 from (U, V ) to (U, C(U, V )):

F(U,C(U,V ))(u, α) = α −
φ(α)

φ′(α)
+

φ(u)
φ′(α)

, 0 < α < u < 1. (21)

Then, thanks to formula (21), we can obtain the joint survival prob-
ability

h(u, α) := P[U ≥ u , C(U, V ) ≥ α]

= 1 − u +
φ(u)
φ′(α)

for 0 < α < u < 1. (22)

Note that 1 − K(α) = P[C(U, V ) ≥ α] = h(α, α). Let Cθ and
Cθ∗ be two bivariate Archimedean copulas of the same family with
generator φθ and φθ∗ such that θ ≤ θ∗. Given Proposition 2.12
and by exchangeability, we only have to check that the relation
[U∗

|Cθ∗(U∗, V ∗) ≥ α] ≼st[U|Cθ (U, V ) ≥ α] holdwhere (U, V ) and
(U∗, V ∗) are distributed according to (resp.) Cθ and Cθ∗ . Given for-
mula (22), the previous relation can be restated as

h∗(u, α)

h∗(α, α)
≤

h(u, α)

h(α, α)
, for 0 < α < u < 1, (23)

where, from (22), h(u, α) = 1 − u + φθ (u)/φ′

θ (α) and h∗(u, α) =

1 − u + φθ∗(u)/φ′

θ∗(α). Eventually, we have checked that, for all
Archimedean family introduced in Table 1, Eq. (23) is indeed sat-
isfied when θ ≤ θ∗. We then immediately obtain from Proposi-
tion 2.12 that each component of CTEα(X) is a decreasing function
of θ . Analogously one can prove the result for CTEα(X). �

Then, for copulas in Table 1, themultivariate lower-orthant CTE
(resp. the upper-orthant CTE) is non-increasing (non-decreasing)
with respect to the dependence parameter θ .

In particular, this means that limit behaviors of dependence
parameters are associated with bounds for CTE and CTE within the
same family of Archimedean copulas.

2.6. Behavior of multivariate CTE with respect to risk level

We now study the behavior of the multivariate lower-orthant
and upper-orthant Conditional-Tail-Expectation with respect to
risk-level α. In particular we obtain the following result.

7 In the book by Nelsen (1999, Corollary 4.3.5), a geometrical argument is used
instead to obtain the distribution function of (U, C(U, V )).
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Corollary 2.3. Consider a d-dimensional random vector X satisfying
the regularity conditions.

1. If VaRi
α(X) is a non-decreasing function of α, then CTEi

α(X) is a
non-decreasing function of α.

2. If VaR
i
α(X) is a non-decreasing function of α, then CTE

i
α(X) is a

non-decreasing function of α.

Proof. Let us consider the ith coordinate CTEi
α(X). From (8) we

have

d
dα

CTEi
α(X) =

K ′(α)

1 − K(α)


CTEi

α(X) − VaRi
α(X)


.

Using Proposition 2.8 the latter expression is non-negative for any
level α ∈ (0, 1). The second point of Corollary 2.3 comes down
analogously. �

The following result proves that assumptions of Corollary 2.3
are satisfied in the large class of d-dimensional Archimedean
copulas.

Corollary 2.4. Consider a d-dimensional random vector X, satisfying
the regularity conditions with copula C and survival copula C.

1. If C is a d-dimensional Archimedean copula, then CTEi
α(X) is a

non-decreasing function of α.
2. If C is a d-dimensional Archimedean copula, then CTE

i
α(X) is a

non-decreasing function of α.

Proof. The demonstration of this result comes down from Corol-
lary 2.5 in Cousin and Di Bernardino (2013). �

In the univariate setting, the Conditional-Tail-Expectation con-
tains a safety loading i.e., CTEα(X) ≥ E[X], ∀ α ∈ (0, 1) (see Sec-
tion 2.4.3.3 in Denuit et al., 2005). The safety loading should cover
the fluctuations of loss experience. Corollary 2.5 below provides a
similar property also for our multivariate lower-orthant ad upper-
orthant CTE.

Corollary 2.5. Under assumptions of Corollary 2.3, it holds that

CTEi
α(X) ≥ E[Xi], CTE

i
α(X) ≥ E[Xi],

for all α ∈ (0, 1).

Conclusion and perspectives

In this paper, we provide two extensions of the Conditional-
Tail-Expectation to a multivariate setting. The lower-orthant CTE
and the upper-orthant CTE can be viewed as natural counterparts
of the lower-orthant VaR and upper-orthant VaR introduced in
Cousin and Di Bernardino (2013). These measures transform risk
vectors into real-valued vectorswith the same dimension. The pro-
posed multivariate CTE measures incorporate the entire extreme
quadrant part of the underlying distribution contrary to their mul-
tivariate VaR counterparts. They are well-suited for intrinsically
multivariate risk problems where, for instance, risks cannot be ag-
gregated together or even compared. We have shown that most
properties satisfy by the aforementioned multivariate VaR-s also
hold for the studied multivariate CTE-s. In particular, the proposed
CTE-s satisfy multivariate version of the positive homogeneity and
the translation invariance property, which is not the case for in-
stance for the classical Euler allocation measures recalled in the
introduction of this paper. We show that these measures are ad-
ditive for π-comonotonic couple of random vectors and we pro-
vide an evidence of the sub-additivity property in the independent
case. Unsurprisingly, the behavior of the lower-orthant CTE (resp.
upper-orthant CTE) with respect to a change inmarginal risks or to

a change in dependence structure tends to be the same as for the
lower-orthant VaR (resp. upper-orthant VaR).

Extension of discrete distributions can be done by adapting
the work by Lee and Prékopa (2013). However this interesting
topic goes beyond the scope of the present paper. Another sub-
ject of future research should be to compare our multivariate
Conditional-Tail-Expectations with existing multivariate general-
izations of thesemeasures presented in the introduction, both the-
oretically and experimentally.
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