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Abstract

This paper studies the multiple runway aircraft landing problem. The aim is to schedule
arriving aircraft to available runways at the airport. Landing times lie within predefined
time windows and safety separation constraints between two successive landings must be
satisfied. We propose a new approach for solving the problem. The method is based on
an approximation of the separation time matrix and on time discretization. It provides
lower bound or upper bound depending on the choice of the approximating matrix. These
bounds are used in a cut algorithm to, exactly or heuristically, solve the problem. Compu-
tational tests, performed on publicly available problems involving up to 500 aircraft, show
the efficiency of the approach.

Keywords: Aircraft landing problem, Mixed Integer Programming.

1 Introduction

This paper adresses the problem of sheduling aircraft landings at an airport. Given a set of
planes, the problem is one of assigning a runway and a landing time for each plane. Each
plane has to land within its predefined time window and safety separation distances have to
hold between any pair of planes. This problem, referenced in the literature as the Aircraft
Landing Problem (ALP), has been extensively studied. Beasley et al. [2] present a mixed
integer zero-one formulation of the problem. Each plane has a target landing time within its
time window. A cost is accounted when a plane lands after or before its target time. The
objective is to minimize the total cost of deviation from the target times. The problem is
solved optimally with a linear programming based tree search algorithm. An heuristic is also
proposed. Using a similar model, Ernst et al. [11] propose a different heuristic. When the
binary variables are fixed the remaining continuous linear problem is solved by a specialised
simplex method which evaluates the landing times very quickly. The method is used in a
space search heuristic as well as a branch and bound algorithm. Fahle et al. [12] present a
comparison of several modelizations and heuristics. They study a MIP program and an integer
linear program using time discretization introduced in [2]. They also compare two heuristic
algorithms, Hill Climbing and Simulated Annealing methods. A SAT (Satisfiability Problem)
formulation is proposed to decide if there exists a valid solution for the problem. In Hansen
paper [13], four genetic algorithms are tested for the problem. The authors introduce time
windows runway dependent. Computational results are given for small instances. Beasley et
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al. [4] use a population heuristic to solve a problem instance based on observations during
a busy period at London Heathrow airport. Diallo et al. [8] solve the problem for the single
runway case. Experiments based on real datasets of Léopold Sédar Senghor Airport of Dakar are
presented. Pinol and Beasley [15] consider extensions of the previous model given in [2]. Time
windows and separation distance between two successive aircraft are assumed to be runway
dependent. These new criterias involve respectively linear and quadratic constraints. Next,
two population heuristic approaches are applied to the problem. In order to consider airline
preferences for individual flights, a new objective function is introduced by Soomer and Franx in
[16]. Equity considerations lead to a convex piecewise linear function that has to be minimized.
The problem is solved by a local search heuristic. Artiouchine et al. [1] consider the case
where more than one time window is assigned to each plane. These time windows modelize
the mechanisms as vector spaces and holding patterns, used by air controllers to delay planes.
The separation criterias are not a constraint but the objective is to maximise the minimum
elapsed time between any two consecutive landings. The authors study the complexity of the
problem and identify polynomially solvable cases. For solving general problems, a branch and
cut framework is used. Bianco et al. [7] propose a job-shop scheduling model with sequence
dependent processing times. Jobs modelize planes. The paths of the planes in the terminal
area are decomposed into machines like runways. The processing times take into account the
separation distances between planes. The model is quite general and is suitable for arrivals and
departures. Several objectives are considered as average delays minimization, maximum delays
minimization and throughput (capacity) maximization. The problem is solved by a fast local
search heuristic. Bencheikh et al. [6] modelize the landing problem as a job-shop scheduling
problem. The problem is solved by a hybrid method combining genetic algorithms with Ant
Colony optimization algorithm. D’Ariano et al. [10] consider take-off and landing operations
at a busy terminal area. Scheduling and timing aircraft problem is modelized as a job shop
scheduling problem and is solved by a truncated branch and bound algorithm for fixed routes.
Aircraft rerouting is performed by a tabu search in order to improve the solution. The overall
algorithm is tested on practical instances from Rome Fiumicino airport. Diaz and Mena [9], van
Leeuwen et al. [14] have used Constraint Programming. These methods are well suited for small
instances. But quality of the provided solutions is less good for large instances. The dynamic
case of ALP is considered by Beasley et al. in [3]. Decisions must be taken in a dynamic fashion
as time passes. Each new decision must take into account the previous decision that was made.
The problem is solved using two heuristics.

In this research, we propose a new approach for solving the Aircraft Landing Problem. The
method is based on an approximation of the separation time matrix and on time discretization .
It provides lower bound or upper bound depending on the choice of the approximating matrix.
These bounds can be used in a cut algorithm to optimally solve the problem. They can also be
used in an heuristic method. In the next sections, we briefly recall the classical formulation of the
problem. Next, we present the approximation method, time discretization, the cut algorithm
and the heuristic method based on cuts. Computation results are reported and concluding
remarks follow.

2 Classical modelisation

Each aircraft entering within the radar range at its destination airport, receives instructions
from air traffic control. A landing time and a runway on which to land are assigned it. The
landing time must be between an earliest landing time and a latest landing time. The earliest
landing time corresponds to the time at which the aircraft can land if it flies at its fastest speed.
To delay the landing time, the speed of the aircraft can be decreased or the flight plan can be
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lenghtened by circling. The latest time corresponds to the maximum landing time achievable by
these delaying mechanisms. Within this time window, there is a target time which corresponds
to the time at which aircraft can land if it flies at its cruise speed. The target time is the
preferred landing time. Landing after or before this time causes disturbance at the airport.
Consequently, a cost can be incurred with each deviation (before or after) of the target time.
Safety distances between pair of successive planes must be respected. Separation distances are
converted into separation times using a fixed landing speed depending on the aircraft type.
Then, a minimal time must be elapsed between the landing of a plane and the landing of any
successive plane. Separation time holds between pair of planes landing on the same runway or
on different runways.
We give a modelisation of the Aircraft Landing Problem which is based on the one presented
in [2, 15].

The data are the following:

• P set of planes, R set of runways available for landing

• Ei the earliest landing time for plane i ∀i ∈ P

• Ti the target (preferred) landing time for plane i ∀i ∈ P

• Li the latest landing time for plane i ∀i ∈ P

• Sij ≥ 0 the minimum separation time between planes i and j where i lands before j on
the same runway

• sij ≥ 0 the minimum separation time between planes i and j where i lands before j on a
different runway

Sij is called longitudinal separation time between leading aircratf i and trailing aircraft j. sij
is the diagonal separation time (cf.[7]). We assume Sij > sij.

The decision variables are the following:

• δ1ij ∀i, j ∈ P (i 6= j) binary variable where δ1ij = 1 if and only if aircraft i lands before
aircraft j and on the same runway.

• δ2ij ∀i, j ∈ P (i 6= j) binary variable where δ2ij = 1 if and only if aircraft i lands before
aircraft j and on a different runway.

• zij ∀i, j ∈ P (i < j) binary variable where zij = 1 if and only if aircraft i and j land on
the same runway.

• yir ∀i ∈ P, r ∈ R binary variable where yir = 1 if and only if aircraft i lands on runway r.

• xi ≥ 0 the scheduled landing time for plane i ∀i ∈ P

The constraints are the following:
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xj ≥ xi + Sij + (1− δ1ij)(−Sij − Li + Ej),∀i 6= j ∈ P (1)

xj ≥ xi + sij + (1− δ2ij)(−sij − Li + Ej),∀i 6= j ∈ P (2)

δ1ij + δ1ji = zij,∀i < j ∈ P (3)

δ2ij + δ2ji = 1− zij ,∀i < j ∈ P (4)

zij ≥ yir + yjr − 1,∀i < j ∈ P ∀r ∈ R (5)

∑

r∈R yir = 1,∀i ∈ P (6)

Ei ≤ xi ≤ Li,∀i ∈ P (7)

δ1ij , δ
2
ij ∈ {0, 1} ,∀i 6= j ∈ P

zij ∈ {0, 1} ,∀i < j ∈ P, yir ∈ {0, 1} ,∀i ∈ P ∀r ∈ R

We give a slightly different formulation of the one given in [2, 15]. Constraints (1) are related
to planes landing on the same runway, while Constraints (2) are related to planes landing on
different runways. They ensure minimum separation time in each case if δ1ij = 1 or δ2ij = 1.
If δ1ij = 0 then (1) becomes xj ≥ xi − Li + Ej which is true by (7). The same holds for (2).
Hence for δ1ij = 0 and δ2ij = 0, these constraints are inactive. In [2, 15], conditions (1), (2) are
aggregated in a single set of constraints.
If planes i and j (i < j) land on the same runway i.e. zij = 1 , Constraint (3) becomes
δ1ij + δ1ji = 1 meaning that either aircraft i or j must land first. If planes i and j land on
different runways i.e. zij = 0 then δ1ij + δ1ji = 0 and Constraint (1) is inactive.
Constraints (4) and (2), relative to planes landing on different runways, are linked in the same
manner.
If yir = yjr = 1 i.e. planes i and j land on the same runway r then Constraint (5) ensures that
zij = 1 . Otherwise zij will be either equal to 0 or 1. The value zij = 0 will active Constraint
(2) which is less constraining than (1) since Sij > sij, and zero value will be preferred in an
optimization problem.
Constraint (6) ensures that each plane lands on exactly one runway.
Constraint (7) ensures that each plane lands within its time window . The remaining constraints
are integrality conditions.
Note that for a given runway assignment, the binary variables y and z are fixed. Further-
more, whenever y and z are fixed, for a given landing sequence i.e an ordering of the planes
(i1, i2, ..., i|P |) such that i1 lands before i2 which lands before i3 ... , the binary variables δ1, δ2

are fixed. Hence, for a given landing sequence and runway assignment, the continuous landing
time variables x are the only remaining free variables.
Various objective functions can be defined for the problem. Two examples will be described in
Section 3.2 .

3 Modelisation in the ideal case

The modelisation is based on the decomposition of the separation time matrix S, as well as
s, into a rank two matrix, and on time discretization. First, we assume that the separation
matrix is a rank 2 matrix and describe the modelization in this case. In the next section, we
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will consider the general case. A time discretization approach was proposed in [2, 12] but here,
a different way is followed.

3.1 The single runway case

The entries of the separation matrix S give the minimal required times between any pair of
planes. Sij is the required separarion time between leading aircraft i and trailing aircraft j.
In fact, planes are partitioned into classes (for example, heavy, medium, light) and separation
times are given between pair of classes (see for instance [7]). For simplicity of the presentation,
we assume that the entries of S are indexed by planes.

Assume that S can be decomposed into the sum of a matrix with identical column-vectors a
(with nonnegative entries) and a matrix with identical row-vectors b (with nonnegative entries)
i.e. Sij = ai + bj with ai ≥ 0 and bj ≥ 0. Planes can be viewed as activities (non-preemptive
tasks) sharing a single resource that is the runway. An activity i is divided into 2 parts: the first
one of duration bi and the second one of duration ai. The landing time is just at the beginning
of the second part. The total duration is equal to ai + bi. Now, assume that aircraft i lands
before j (or activity i is scheduled before j). Then the separation time between i and j is at
least ai + bj . Figure 1 illustrates this point where xi and xj, landing times of planes i and j
respectively, are represented on the time axis t.

Figure 1: Safety time beetween leading aircraft i and trailing aircraft j

The planning horizon is discretized into time slots. For example, one hour is discretized into
3600 slots of one second and it is assumed that no event occurs between two consecutive time
slots. Figure 2 gives an example of plane i with ai = 2 and bi = 3 landing at t = 4. The plane
(activity) picks up the runway (resource) on time slots t = 1 to t = 5. On the next time slot
t = 6, the runway (resource) is free and an other aircraft (activity) can follow.

Figure 2: Aircraft i with landing time equals to 4

Note that ai must be at least equal to 1 in order that plane i can pick up the runway (re-
source) at its landing time slot. With this discretization process, we can modelize the problem
via a finite number of scenarios. Scenarios for a plane correspond to the different landing times
in its time window. Scenarios are data of the problem and the decision variables are concerned
by the choice of a scenario. The number of scenarios for a plane i is equal to the number of
time slots in its time window.
Let us define slotikj = 1 if the runway is occupied in the time slot j by plane i in the scenario
k and slotikj = 0 otherwise. In a scenario k of a plane i, the number of consecutive slots j
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such that slotikj = 1 is equal to ai + bi, and slotikj = 1 ∀j ∈ [tik − bi, tik + ai [ where tik is the
landing time of plane i in scenario k. Let H be the set of time slots of the planning horizon and
Scen(i) be the set of scenarios for plane i.
With these datas, the single runway aircraft landing problem is modelized by the following set
of constraints:



























∑

k∈Scen(i) λik = 1,∀i ∈ P (8)

∑

i∈P

∑

k∈Scen(i) slotikjλik ≤ 1,∀j ∈ H (9)

λik ∈ {0, 1} ∀i ∈ P,∀k ∈ Scen(i)

Constraints (8) ensure that one and only one scenario is chosen for each aircraft. Constraints
(9) ensure that the runway is occupied by at most one plane on each time slot of the planning
horizon. The remaining constraints are integrality conditions of the decision variables λik.

3.2 Objective

Time discretization and scenario formulation allow modelisation of quite general objective func-
tion. Let us define cik as the cost of the kth scenario of plane i and let us show, on two examples,
how cik can be computed.
Consider the linear deviation cost function used in [2] . Let Ti be the target (preferred) landing
time for plane i. gi (resp. hi) is the penalty cost per unit of time for landing before (resp. after)
the target time Ti for plane i. Let tik be the landing time of plane i in scenario k.

Then :

cik =

{

(Ti − tik)gi if Ti ≥ tik
(tik − Ti)hi otherwise

(10)

The objective is to landing planes as close to their preferred landing time as possible. Hence,
the problem is to minimize the overall cost: min

λ

∑

i∈P

∑

k∈Scen(i)

cikλik

Consider the non-linear deviation cost function used in [15]. As above, let Ti be the target
(preferred) landing time for plane i, and let tik be the landing time of plane i in scenario k.

Then :

cik =

{

(Ti − tik)
2 if Ti ≥ tik

−(tik − Ti)
2 otherwise

(11)

A plane landing after its target time is penalised. On the contrary, a plane landing before
its target time is preferred. The objective is to landing planes as earlier as possible. Hence, the
problem is to maximize the overall plane contribution: max

λ

∑

i∈P

∑

k∈Scen(i)

cikλik

Other objective functions of the litterature can be modelized. For instance, coefficients cik
can easily handle the scaled objective function used in [16].

3.3 Multiple runway case

We now consider the multiple runway case. Our approach is unchanged. The multiple runway
case only increases the number of scenarios for each plane. The number of scenarios for plane
i is now equal to the number of time slots in its time window multiplied by the number of
runways. We define slotikrj = 1 if runway r on time slot j is occupied by plane i in its kth

scenario, and slotikrj = 0 otherwise.
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In the multiple runway case, separation time between planes landing on different runways
must be respected. sij is the required separation time between leading plane i and trailing
plane j when these planes land on different runways. As for matrix S in Section 3.1, rank two
decomposition of matrix s is assumed i.e. sij = αi + βj with αi ≥ 0 and βj ≥ 0.
A fictive runway f is added to take into account this diagonal separation time constraint. We
define slotikfj = 1 if plane i in its kth scenario picks up the fictive runway f on time slot j, and
slotikfj = 0 otherwise.
If plane i in scenario k lands on runway r, the number of consecutive slots j such that slotikrj = 1
is equal to ai+bi and the number of consecutive slots j such that slotikf j = 1 is equal to αi+βi.
More precisely, slotikrj = 1 ∀j ∈ [tik − bi, tik + ai [ and slotikfj = 1 ∀j ∈ [tik − βi, tik + αi [
where tik is the landing time of plane i in scenario k.
Figure 3 illustrates how longitudinal and diagonal separation time constraints are taken into
account.

Figure 3: Fictive runway for taking into account diagonal separation times

Planes i, j land on runway r1, plane k on runway r2. Let xi, xj , xk be the landing times
of planes i, j, k respectively. The longitudinal separation contraint on r1 is satisfied since
xj − xi ≥ ai + bj = Sij. The diagonal separation constraints are modelized on the fictive
runway. They are: xk − xi ≥ αi + βk = sik, xj − xi ≥ αi + βj = sij, xj − xk ≥ αk + βj = skj.
The separation time constraint between i and j is accounted twice, on runway r1 and on the
fictive runway, but this last one is dominated by the first one since Sij > sij and, in fact, is
inactive.
Dependent runway datas can be easily taken into account. In [15], runway dependent separation
times are considered. Sr

ij is the required separation time between i and j landing on runway
r. Assuming rank two decomposition of matrices Sr, this situation can be easily modelized in
the scenario approach. Note that modelizing this case in the classical model, involves quadratic
constraints (cf. [15]). Runway dependent cost function, runway dependent earliest, target,
latest times and runway restrictions (cf.[13, 15]) can also be easily modelized.
Finally, under the rank two assumption of separation time matrices S and s, the general model
for the aircraft landing problem can be stated as the following 0-1 linear problem:
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∑

k∈Scen(i) λik = 1,∀i ∈ P (12)

∑

i∈P

∑

k∈Scen(i) slotikrjλik ≤ 1,∀r ∈ R ∪ {f} ,∀j ∈ H (13)

λik ∈ {0, 1} ∀i ∈ P,∀k ∈ Scen(i)

Constraints (12) ensure that one and only one scenario is chosen for each aircraft. Con-
straints (13) ensure that each runway, fictive or not, is occupied by at most one plane on each
time slot of the planning horizon. For r ∈ R, these constraints modelize longitudinal separation
time. For the fictive runway r = f , they modelize diagonal separation time requirements. Note
that if no diagonal constraint is considered (i.e. sij = 0,∀i, j ∈ P ), these constraints are vacant.
The remaining constraints are integrality conditions of the decision variables λik.

4 Solving the problem in general case

In previous Section 3, we assumed rank 2 decomposition of separation time matrices. We
now consider the general case. We follow the previous scheme with approximated matrices. We
approximate the longitudinal separation time matrix S and the diagonal separation time matrix
s by rank 2 matrices. The way we approximate leads to exact or heuristic algorithms. If we use
lower bounding approximations, the separation times are too short and we have to correct them
with the exact durations. For doing this, we use constraints of classical model PB presented in
Section 2. This leads to a cut algorithm. Other approximations provide heuristic solutions. In
this case, it is natural to use the best approximation. In the next sections, we explore these
schemes.

4.1 Separation time matrix approximation

In this section, we explain how separation time matrices are approximated. We consider the
longitudinal separation time matrix S. But the results extend to diagonal separation matrix.
The planes are partitioned into categories and the separation times are not given for each pair
of planes but for each pair of plane categories (see [7]). The matrix S is indexed by plane
categories and Sij is the minimum separation time between a plane of category i and a plane
of category j when the first one lands before the second one. For example 3 categories, heavy,
medium, light, lead to 3× 3 entries matrix. This is an important point for the approximation
process. Let C be the set of aircraft classes.
For any separation time matrix, an approximation by a rank two matrix is always possible.
There are a lot of ways to approximate the matrix S. We explore the linear fashion. The
problem can be stated as follows:

(P) min
a,b,e+,e−

∑

i,j∈C

e+ij + e−ij s.t.



























ai + bj + e+ij = Sij + e−ij ,∀i, j ∈ C (14)

ai ≥ 1, bi ≥ 0,∀i ∈ C (15)

e+ij ≥ 0, e−ij ≥ 0,∀i, j ∈ C

Sij is approximated by ai+ bj in Constraint (14). (P) minimizes
∑

i,j∈C |ai + bj − Sij| since

in any optimal solution e+ij > 0 ⇒ e−ij = 0 and conversely. Hence, this linear program gives the
best rank 2 approximation of matrix S.
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Constraints (15) ensure that block lenghts modelizing planes of category i (∀i ∈ C) are non
negative. Moreover, the block lenght ai cannot be equal to zero (see Section 3.1) .
For our time discretization process, we need to have ai and bi integer. The constraints of linear
problem (P) are totally unimodular and integrality conditions are not necessary. S is supposed
to have integer entries.
If we set e+ij = 0 then (14) gives ai + bj ≥ Sij. In this case, the program provides an upper

bounding rank 2 approximation. If we set e−ij = 0 then (14) gives ai+ bj ≤ Sij . Then we obtain
a lower bounding rank 2 approximation. Note that in this case, (P) may be infaisible by reason
of the inequalities ai ≥ 1 ∀i ∈ C.

We denote by :

• SLB rank 2 matrix lower bounding S

• Sbest best rank 2 approximation of matrix S

• SUB rank 2 matrix upper bounding S

Note that the set of feasible solutions of (P) does not cover the entire set of rank 2 matrices,
even with ai ≥ 1 ∀i ∈ C relaxed to ai ≥ 0 ∀i ∈ C and the set of rank 2 matrices restricted to
rank 2 matrices with non negative entries.

4.2 Exact solution

Lower bounding separation matrices provide relaxation of the separation time constraints, and
then lower bound of the aircraft landing problem in minimization case (upper bound in max-
imization case). The idea is to use it in a cut algorithm. We use separation time constraints
(1), (2) of model PB and add them as cuts in Psc. We have to link variables of model PB with
variables of problem Psc. This is done by defining new datas.
Landing times depend on scenarios and appear in Psc as data. Let tik be the landing time of
plane i in scenario k. The variable xi is now easily achieved by xi = sumk∈Scen(i)tikλik .
The runway where a plane is landing depends on scenario. Let us define the data runwikr = 1
if plane i, in scenario k, lands on runway r, runwikr = 0 otherwise. The variables yir can be
easily modelized with these new datas. We have yir = sumk∈Scen(i)runwikrλik .
The remaining variables δ1ij , δ

2
ij , zij are linked to yir by Constraints (3), (4), (5). Then, Con-

straints (1), (2) and related Constraints (3), (4), (5) can be expressed with variables λik, and
δ1ij , δ

2
ij, zij . They are introduced in Psc.

The number of constraints may be important in case of a big number of planes. Moreover, these
constraints involve binary variables. So, we use a cut algorithm and introduce only constraints
that are necessary for finding the optimal solution. The algorithm can be stated as follows:

1. let (PB)=Psc(SLB , sLB) be the initial problem built with lower bounding matrices.

2. solve (PB). Let λ be the solution.

3. compute xi = sumk∈Scen(i)tikλik ∀i ∈ P

4. find a violated longitudinal separation time constraint (1), i.e. find a pair of planes i, j
landing on the same runway with xi ≤ xj and xi + Sij > xj .

5. find a violated diagonal separation time constraint (2), i.e. find a pair of planes i, j landing
on different runways with xi ≤ xj and xi + sij > xj .
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6. if violated inequalities have been found, express these constraints in variables λik , δ1ij , δ
2
ij ,

zij , add them to (PB) and reiterate (go to 2); otherwise stop, the problem is solved.

The algorithm terminates with a solution satisfying all separation time constraints. Hence,
it is an optimal solution.

4.3 Heuristic solution in large planning horizon

In previous Section 4.2, we have used rank 2 matrices lower bounding separation time matrices
S and s, to exactly solve the problem. Now, we use the best rank 2 approximation of matrices
S and s in order to obtain heuristic solutions.
First, we solve Psc(Sbest, sbest). We obtain a landing sequence and runway assignment. Next,
we compute optimal landing times relative to the landing sequence and runway assignment
previously found. In this scheme, the first phase can be improved by adding cuts (1), (2) of model
PB as in the algorithm presented in Section 4.2. Here, we can limit the number of iterations
since we look at an heuristic solution. Note that even without limiting iteration number, the
algorithm provides an heuristic solution because approximating matrices Sbest and sbest are not
lower bounds of separation time matrices S and s. Some entries of the approximating matrices
may be greater than the original ones. Best approximating matrices being as close to the original
matrices as possible, this effect is limited.
Time discretization of a large planning horizon may induce a huge number of time slots which
can cause serious troubles in using the problem Psc. One way to bypass this drawback is the
following. We choose a larger unit width time period i.e. we discretize planning horizon in
less time slots. For example, if the initial width time period is one , we choose d > 1 width
time period and the total number of time slots is divided by d. We compute all the data
according to the new width time period. L, E, T are divided by d, unitary costs are multiplied
by d. Fractionnal values encountered in the division of L, E, T are converted into the first
lower integer. Entries of separation time matrices S and s are divided by d. Fractionnal values
encountered in the division of S and s are converted into the first upper integer. Sc and sc

denote respectively the new matrices S and s obtained by this contraction process. Best rank
2 approximation of matrices Sc and sc are computed.

Then, we solve Psc. We obtain a landing sequence and an assignment of planes to runways.
Next, we go back to the initial datas, L, E, T , unitary costs, and matrices S, s, and we compute
the landing times corresponding to this landing sequence and runway assignment.
Hence, the computation is decomposed into two phases. First, we compute the landing sequence
of aircraft and runway assignment in 1

d
-contracted planning horizon. Next, we compute the

landing times in the real planning horizon. The algorithm can be stated as in Algorithm1 for
the first phase and Algorithm2 for the second one.

Algorithm 1 phase 1: solve the problem in 1
d
-contracted planning horizon

Require: Sc
best (resp. s

c
best) best rank 2 approximation of 1

d
-contracted matrix Sc (resp. sc),

(PB) = Psc(S
c
best, s

c
best) initial problem built with Sc

best and scbest,
L = ⊘;

1: repeat
2: Solve (PB)
3: Add the landing sequence and runway assignment found in list L
4: Find violated separation time inequalities and add them to (PB)
5: until no violated inequality is found or maximum iteration number is reached
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Algorithm 2 phase 2: compute landing times in real planning horizon

Require: L=list of solutions (landing sequences and runway assignments) found in the previous
phase

1: for landing sequence and associate runway assignment ∈ L do
2: compute optimal landing times for the chosen objective
3: end for
4: output the best solution found

In phase 2, landing times computation depends on the chosen objective. We discuss two
cases : linear one and non-linear one.
For the linear objective function (10), it is possible to use PB . As mentioned in Section 2, for
a given landing sequence and runway assignment, PB contains only continuous landing time
variables x. Then, computing optimal landing times is a linear problem which can be solved
very quickly (see [2, 15]).
For the non-linear objective (11), with the close − up property i.e. each plane is as close to
its earliest time as can be achieved by separation constraints, it is possible to compute optimal
landing times using a polynomially bounded algorithm. See [15].
One may notice that our heuristic can lead to infaisible solution. Indeed, the runway assignment
and landing sequence found in the first phase are computed with approximating separation time
matrices. In the second phase, the exact separation time matrices are used whose entries may
be greater than the approximating separation times involved in the initial phase . To avoid this
difficulty, one can use upper bounding separation time matrices SUB, sUB in the first phase.
Then, if the first phase problem has a faisible solution, we obtain a faisible solution with the
exact separation time matrices in the second phase. Nevertheless, there is no garantee obtaining
a faisible solution in the first phase. Note that the problem of finding a faisible solution is NP-
complete as mentioned in [16].

5 Computational results

Computational tests run on a PC-Windows computer, processor Intel(R) Core(TM) i5-2520M
(2.5 GHz) with 4Go of RAM. Algorithms and mathematical models were implemented using
FICO-Xpress Mosel language and problems were solved with FICO-Xpress Optimizer (version
7.0) software.
Computational tests have been performed on 13 instances publicly available from OR-library
[5] involving from 10 to 500 aircraft. For each instance, the number of runways varies in the
same range used in [15]. We consider two objectives, linear and non linear ones, described in
Section 3.2. The instances are partitioned into two sets: small instances involving from 10 to
50 aircraft and large instances involving from 100 to 500 aircraft. For small instances the cut
algorithm described in 4.2 is used to exactly solve the problem. For large instances, the problem
is heuristicaly solved. As the planning horizon is large, the heuristic method described in 4.3 is
used.
In all instances, time datas are integer and diagonal separation times are equal to zero. The
given longitudinal separation time matrix S is indexed by planes. After analyzing matrix S,
we have deduced the number of aircraft categories. The number of categories depends on the
instances and is equal to 2 or 4 except for the instance with 50 aircraft which involves 34
categories. The separation time matrix between aircraft categories is then approximated by a
rank two matrix (see Section 4.1). The required computation time is negligible. For 50 aircraft
instance where a huge number of categories is encountered, computing SLB, rank two matrix
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lower bounding S, leads to an infaisible problem (P). So, we cannot use our cut algorithm to
exactly solve this instance. Despite of this, we use the best rank two approximation of matrix
S in the cut algorithm described in Section 4.3 with d = 1 (i.e. without time contraction). This
provides an heuristic solution. For large instances, the best rank two approximation of matrix
S is used in the same heuristic method but with d > 1. The value of d depends on the number
of planes of the instance.

The results for small instances with linear objective are given in Table 1. The description of
the instances is reported with P=number of planes, R=number of runways, and optimal value
of each instance. This table gives the number of iterations and CPU time required by our cut
algorithm, and LP value (continuous relaxation) of the initial problem Psc. For comparison,
the results given in [2] are reported. In [2], the problem is solved using MIP formulation. This
MIP is tighten each time an improved faisible solution is found. LP value reported is the best
LP value found in this improvement process. CPU time is the total time taken to solve the
problem. Beasley et al. use an heuristic algorithm and when this algorithm gives a solution
value of zero, the optimal solution is found (i.e. all planes land on target). In this case, results
concerning MIP are not reported.
We observe that LP value of our method is greater than LP value of improved Beasley et al.’s
MIP, except for problem with 44 aircraft and one runway. This lower bound is not always very
tight but it is sufficient for solving the problem within a short CPU time. When the lower
bound is too weak as for 44 aircraft and one runway instance, the problem cannot be solved in
an acceptable time.

Instance Our exact method Beasley et al.’s MIP
P R Opt value iter CPU time LP value CPU time LP final value

10 1 700 3 1.1 550 0.4 321.16
2 90 1 0.5 90 0.6 0
3 0 1 0.8 0 - -

15 1 1480 6 5.1 1110 5.2 430
2 210 1 0.7 210 1.8 0
3 0 1 1.3 0 - -

20 1 820 3 1.7 610 2.7 449.40
2 60 1 0.9 60 3.8 0
3 0 2 3.5 0 - -

20 1 2520 5 3.1 2450 220.4 924.37
2 640 3 3.7 600 1919.9 0
3 130 4 7.1 120 2299.2 0
4 0 1 2.6 0 - -

20 1 3100 8 6.0 3030 922.0 964.83
2 650 3 4.3 530 11510.4 0
3 170 6 13.1 90 1655.3 0
4 0 2 5.4 0 - -

30 1 24442 4 61.0 5807 33.1 5393.25
2 554 4 82.0 390 1568.1 0
3 0 3 58.8 0 - -

44 1 1550 - - 89 10.6 184
2 0 1 15.7 0 - -

Table 1: Small instances - Linear objective

The results for small instances with non-linear objective are given in Table 2. The description
of the instances is reported with P=number of planes, R=number of runways, and optimal value
of each instance. This table gives the number of iterations and CPU time required by our cut
algorithm, and LP value of the initial problem Psc. For comparison, the results given in [15] are
reported. Pinol and Beasley consider two population heuristic algorithms. We have reported
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the best result with respect to quality of solution. The column Gap gives their best gap (in
percent) against the optimal value, that is Gap = heuristic value−optimal value

optimal value
× 100.

We observe that LP value of our method is a good upper bound (recall it is a maximization
problem), except for two problems 44 aircraft, one runway and 30 aircraft, one runway. In the
first case, gap between LP and optimal value, is huge and the problem cannot be solved. In the
second instance, the gap is quickly closed and the problem is solved. The problems are solved in
a reasonable CPU time. These times may be greater than those of Pinol and Beasley algorithm
but recall that our algorithm is an exact method.

Instance Our exact method Pinol, Beasley best heuristic
P R Opt value iter CPU time LP value CPU time Gap

10 1 4849 4 2.5 5719 6.0 0
2 5924 5 4.5 6105 6.0 0
3 6185 2 2.1 6237 8.0 0
4 6237 1 1.3 6237 9.0 0

15 1 18337 5 6.0 19178 8.0 0
2 19948 4 4.0 19966 8.0 0
3 20078 2 2.9 20078 10.0 0

20 1 35632 6 11.0 37277 9.0 0.28
2 38524 3 3.9 38559 10.0 0
3 38664 2 3.8 38664 12.0 0

20 1 20001 5 7.5 20837 70.0 0.59
2 22888 3 4.8 23453 9.0 0
3 23659 5 9.5 23865 11.0 0
4 23955 5 13.3 24140 12.0 0
5 24140 3 9.7 24140 13.0 0

20 1 19381 8 54.5 22654.7 71.0 1.03
2 26021 4 5.3 26213 11.0 0
3 26495 4 7.4 26563 11.0 0
4 26699 5 13.7 26732 12.0 0
5 26732 4 14.0 26732 13.0 0

30 1 -2 847013 3 27.5 -325773 15.0 0
2 -8943 5 121.0 -3826 15.0 0
3 0 6 140.2 0 14.0 0

44 1 -23266 - - 584904 24.0 0
2 644749 1 15.6 644749 21.0 0
3 646432 1 25.8 646432 21.0 0

Table 2: Small instances - Non-linear objective

The results for the instance with 50 planes are given in Table 3 . The description of the
instance is reported with P=number of planes, Lin/NLin=linear/non-linear objective function,
R=number of runways and best known value. The value found by our heuristic method is
reported with the associated gap (in percent) against the best known value. CPU time and
required iteration number are also given. For comparison, Pinol and Beasley results given in
[15] are reported. As above, their best results, with respect to quality of solution, are reported.
The column Gap gives their gap (in percent) against the best known value.
Our heuristic method provides good solutions (i.e. with low gap) except for the linear case with
2 runways. The computation does not require a lot of iterations. Hence, CPU times are low
except for the non-linear instance with one runway.

The results for large instances with linear objective are given in Table 4. The description
of the instances is reported with P=number of planes, R=number of runways and best known
value of each instance (column Best value). This table gives the value found by our heuristic
method and required CPU time. Gap (in percent) is calculated with reference to the best known
value as heuristic value−best known value

best known value
× 100. When our heuristic method ameliorates the best
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Instance P = 50 Our heuristic method Pinol, Beasley best heuristic
Lin/NLin R Best value Value CPU time Gap iter CPU time Gap

Lin 1 1950 1950 9.7 0 3 287 36.15
2 135 165 15.9 22.22 3 121 0
3 0 0 34.0 0 4 139 0

NLin 1 728837 714067 362.0 2.02 7 122 4.65
2 797116 792609 40.2 0.56 4 22 0
3 799417 799417 13.1 0 2 24 0

Table 3: Small instance with 50 planes

known solution, the corresponding gap is negative. Our heuristic is the one described in Section
4.3. The maximum number of iterations is set to 4. First iteration result and best result among
the four iterations are reported. Each iteration of our algorithm is assigned a maximum CPU
run time which is fixed to 120s. Total required CPU times are reported. For comparison, the
best results, with respect to quality of solution, given in [15] are reported. The column Gap
gives the best gap (in percent) of Pinol and Beasley heuristic, against the best known solution
value.
The initial solution (first iteration) of our method is generally good. The quality of the solution is
improved with a few number of additional iterations. Our heuristic method gives better solution
than Pinol and Beasley heuristic on 14 instances among 24. Moreover, it ameliorates the best
known solution of 9 instances. The average of our best gaps is equal to 10.41 percent. Note
that in this average, we have excluded 200 planes, 5 runways instance whose gap is undefined.
Indeed, the value returned by our heuristic is 1.73 and the best known value is equal to zero.
For comparison, the best average of Pinol and Beasley heuristics is equal to 22 percent. Our
method requires a few amount of time for these sizes of problem.

The results for large instances with non-linear objective are given in Table 5. The content of
this table is the same as previous Table 4. These problems are maximization problems and gaps
(in percent) are calculated with reference to the best known value as best known value−heuristic value

best known value
×

100. When our heuristic method ameliorates the best known solution, the corresponding gap is
negative. Our heuristic is the one described in Section 4.3. The maximum number of iterations
is set to 4. For each iteration, CPU run time limit is fixed to 120s, except for instance with 500
aircraft, 1 runway. This instance is solved for one iteration with a time limit fixed to 600s.. For
this instance, 120s. were not sufficient for finding interesting solution.
The results are similar to the linear case. The initial solution (first iteration) of our method is
very good except in the case 500 aircraft, 1 runway. A few number of iterations provides sub-
stantial benefit. Our heuristic method gives better solution than Pinol and Beasley heuristic on
12 instances among 23. Moreover, it ameliorates the best known solution of 6 instances. The
average of our best gaps is equal to 0.92 percent. For comparison, the best average of Pinol
and Beasley heuristics is equal to 2.9 percent. Once again, amount of time required for solving
these large instances is not excessive.
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Instance Our heurictic method Pinol, Beasley best heuristic
P R Best value Value CPU time Gap iter CPU time Gap

100 1 5611.7 6119.27 20 9.04 1 554 14.51
5792.31 263.4 3.22 4

2 452.92 520.91 9 15.01 1 342 5.67
481.78 30.5 6.37 2

3 75.75 120.2 15 58.68 1 390 0
75.75 48.6 0 2

4 0 44.5 23.7 - 1 336 0
0 57.7 0 2

150 1 12329.31 14523 8.8 17.79 1 925 33.9
13266.4 132.4 7.60 2

2 1288.73 1322.87 13.4 2.65 1 608 7.87
1172.79 163.2 -9.00 3

3 220.79 329.6 22.3 49.28 1 668 8.88
241,88 70.1 9.55 2

4 34.22 66.54 35.6 94.45 1 647 16.74
45.14 168.8 31.91 3

5 0 9.49 50.8 - 1 607 0
0 382.9 0 2

200 1 12418.32 13343.3 8 7.45 1 1417 16.67
12857.2 234.2 3.53 3

2 1540.84 1453.77 13.3 -5.65 1 959 9.19
1335.95 145.5 -13.3 4

3 280.82 328.39 18.3 16.94 1 1021 21.59
285.27 125.2 1.58 4

4 54.53 137.59 26.7 152.32 1 993 2.77
56.26 93.2 3.17 2

5 0 28.68 40.8 - 1 956 0
1.73 328.5 - 3

250 1 16209.78 18310.7 56 12.96 1 381 22.15
18024.6 169.1 11.2 2

2 1961.39 1816.66 16.4 -7.38 1 1266 18.80
1790.32 198.8 -8.72 3

3 290.4 310.11 28.9 6.79 1 1454 17.48
248.45 158.6 -14.45 4

4 3.49 35.92 33.5 929.23 1 1445 271.63
2.44 155.9 -30.09 4

5 0 0 70.5 0 1 1386 0

500 1 44832.38 41897.3 16.4 -6.55 1 5852 1.03
2 5501.96 4386.27 12.5 -20.28 1 3836 3.72

4216.96 375.8 -23.36 4
3 1108.51 914.93 15.7 -17.46 1 4560 1.98

781.9 203.5 -29.46 3
4 188.46 167.68 23 -11.03 1 4413 22.98

132.71 71.2 -29.58 2
5 7.35 35.62 29.7 384.63 1 4421 0

15.9 83.9 116.33 2

Table 4: Large instances - Linear objective
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Instance Our heuristic method Pinol, Beasley best heuristic
P R Best value Value CPU time Gap iter CPU time Gap

100 1 10 926459 10 903841 18.5 0.21 1 177 11.34
2 13 690290 13 671934 12.1 0.13 1 188 0.43

13 690376 36.4 -0.0006 2
3 14 037508 14 023612 17.9 0.10 1 50 0.01

14 037508 43.3 0 2
4 14 090232 14 073032 25.9 0.12 1 48 0

14 086928 78.5 0.02 2

150 1 14 713752 13 585847 50.2 7.67 1 223 12.38
13 857413 174.8 5.82 2

2 19 829588 19 788658 16.0 0.21 1 261 0.08
19 797830 365.5 0.16 4

3 20 126522 20 107648 26.4 0.09 1 282 0
20 126522 64.7 0 2

4 20 136384 20 112323 39.7 0.12 1 84 0
20 136384 111.8 0 2

200 1 21 827542 21 184939 42.3 2.94 1 323 13.29
21 324444 352.8 2.30 4

2 26 786444 26 808643 18.2 -0.08 1 154 0
26 862823 105.9 -0.29 3

3 27 409004 27 330969 28.4 0.28 1 163 0.01
27 395708 95.2 0.05 3

4 27 484328 27 444917 41.2 0.14 1 137 0.01
27 481119 222.9 0.01 4

5 27 506007 27 460372 81.6 0.17 1 120 0
27 504531 164.1 0.01 2

250 1 27 619476 27 001408 51.3 2.24 1 416 13.32
27 028285 105.3 2.14 2

2 33 676680 33 800828 11.9 -0.37 1 467 0.15
33 809839 107.7 -0.40 4

3 34 330656 34 312694 19.3 0.05 1 229 0.03
34 343826 95.0 -0.04 3

4 34 401946 34 370653 27.8 0.09 1 201 0
34 401946 70.2 0 2

5 34 405915 34 374622 51.2 0.09 1 179 0
34 405915 126.0 0 2

500 1 45 677264 40 108125 600.0 12.19 1 1268 15.94
2 61 557052 62 117925 13.0 -0.91 1 688 0.01

62 149293 315.4 -0.96 4
3 63 641468 63 573672 16.5 0.11 1 1212 0.02

63 666346 155.0 -0.04 3
4 63 886852 63 787254 23.7 0.16 1 674 0

63 880612 191.8 0.01 4
5 63 891976 63 807412 30.9 0.13 1 687 0

63 885152 169.8 0.01 3

Table 5: Large instances - Non-linear objective

6 Conclusion

We have proposed a new approach for solving the Aircraft Landing Problem. It is based on
the approximation of the separation time matrix by a rank 2 matrix and on discretization
of planning horizon. The approximation leads to interesting lower bound that has been used
to exactly solve the problem by a cut algorithm. The method has been used to heuristically
solve large instances of the problem using the best approximation matrix. Time discretization
provides easiness in modeling. Various objective functions, runway dependent constraints can
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be easily modelized by this approach.
The overall method is quite simple and does not require a lot of algorithmic development. It
requires the use of a solver. It could be applied to take-off problem.
Future work and improvement are worth to be explored. The method is based on scenarios,
each scenario representing landing time of a plane. If the planning horizon is large, the number
of scenarios is huge. It could be interesting to develop a column generation algorithm in order to
consider only interesting scenarios. There are a lot of rank 2 approximation matrices for a given
separation time matrix. It could be interesting to find the one that maximizes the lower bound
of the objective (in a minimization problem) in order to improve efficiency of cut algorithm.
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