
RFID-based Distributed Memory for Mobile

Applications

Michel Simatic

Institut Télécom, Télécom & Management SudParis, 9 rue Charles Fourier, 91011
Evry Cedex, France,

Michel.Simatic@it-sudparis.eu,
WWW home page: http://www-public.it-sudparis.eu/~simatic/

Abstract. The goal of our work is to give a user equipped with an
RFID-enabled mobile handset (mobile phone, PDA, laptop. . .) the abil-
ity to know the contents of distant passive RFID tags, without physically
moving to them and without using a Wireless Area Network. The existing
architectural patterns involving passive tags do not meet simultaneously
all of these requirements. Our RFID-based distributed memory does. By
associating vector clocks to tags, we replicate a view of this memory on
each tag and each handset, and disseminate updates between all of the
replicas. Thus a user can locally query the replica hold by their mobile
handset without physically moving to a tag. We have developed a per-
vasive game as an application example. Using data collected during real
game sessions, we evaluate the performance of our distributed memory.
Then we discuss staleness and scalability issues. We conclude and give
perspectives of our work.

Key words: Distributed memory, RFID, NFC, Vector clocks, Gossip
protocols, Pervasive application, Game

1 Introduction

RFID tags should be increasingly used in (pervasive) mobile applications. They
are easy to deploy and robust. In addition, the number of users equipped with
an NFC-enabled mobile phone is sensitively increasing. For instance, according
to Juniper Research, 700 million users will have such mobile phone by 2013 [5].
Most of the time, RFID tags take place in an architecture involving a Wire-
less Area Network (WAN) like Wi-Fi, UMTS, HSDPA. . . [16]. But using a
WAN increases installation and operational costs. As an example, according
to [10], the cost of data traffic is substantial in Germany, whereas negligible in
Sweden. Our goal is to meet simultaneously the three following requirements:
1) users equipped with an RFID-enabled mobile handset (mobile phone, PDA,
laptop. . .) can know the contents of any distant passive tag; 2) they do not need
to be physically near the tag; 3) they do not use any WAN. This paper presents
our answer: the RFID-based distributed memory.

To achieve this goal, we replicate the contents of the tags on each tag and
each handset of the system. Thus a handset can get the value of the data stored

2 Michel Simatic

on a distant tag. It just has to query its own replica. Whenever a mobile handset
meets a tag (or another handset), their respective replica are made consistent
by comparing the vector clock values coupled with the replicas. Thus the users
are the cornerstones of what can be considered as a gossip protocol. We can
stimulate this communication network by having an application design which
incites users to meet repeatedly during a session. This is especially true if the
application is a multi-user pervasive mobile game. If its game design does not
already integrate this feature, we can adapt it to promote players to collaborate
actively.

The work presented in this paper does not tackle security issues. Indeed a
comprehensive analysis of security with respect to RFID/NFC represents a
dedicated research field [12].

The rest of this paper is structured as follows. Section 2 details why standard
RFID architectures do not meet our requirements. Then, Section 3 presents how
we use vector clocks to get an RFID-based distributed memory. Afterwards, Sec-
tion 4 presents the pervasive game we implemented as an application example.
It describes how the game design stimulates the communication network implic-
itly made by the players. Section 5 analyzes some of the figures observed during
our experiments. Section 6 is a discussion about this architecture: it presents
related work and analyzes staleness and scalability issues. We conclude and give
perspectives of our work in Section 7.

2 Passive RFID Tags in Existing Architectures

Passive RFID tags are pieces of memory which can only be accessed when
activated by a transponder. These tags always contain an identifier specific to
the tag. Some of them hold also a chunk of memory which can be read or
written by the transponder. Passive RFID tags are commonly used following
three architectural patterns.

The first architecture is a centralized one (as defined by GS1 EPCglobal or-
ganization [1]): each product is equipped with an RFID tag. When this product
comes close to an RFID reader (either because the product has been moved
near a reader, or an operator equipped with a mobile reader has moved near
the product), the RFID reader reads the RFID identifier stored on the tag.
Then it gives this information to a dedicated application. By accessing a cen-
tral database, the application is able to link this identifier to the identity of the
product and the procedure to handle it. Notice that to have this architecture op-
erational, a WAN is required all the time in order to link the RFID reader and
the central database. But, using a WAN introduces installation and operational
costs which may not be compatible with requirements of some applications.

Thus, a second architecture can be considered. It consists in making local
copies of the central database on each mobile handset. Doing so, when a mobile
handset makes an update related to a product, it updates its local copy of the
database. Regularly, the device is connected to the database in order to upload
its updates. Possibly specific procedures are applied in order to reconcile updates

RFID-based Distributed Memory 3

coming from the different mobile handsets. It is this architecture which has been
put in place by the city of Paris for the trees growing on the border of its
avenues [13]. Each tree of Paris avenues is equipped with an RFID tag. During
the night, in their storage room, tablet PCs are in contact with a central database
in order to make a local copy of it. In the morning, each gardener takes one of
these tablet PCs. Each time they does something to a tree, they reads its RFID
tag with their tablet PC. The PC updates data on its local database. At the end
of the day, the gardener puts back the tablet PC in its storage room. Finally, the
tablet PC synchronizes its local database with the central database. The problem
with this architecture is the following: user B cannot see the modifications done
by user A on one piece of data unless user A has synchronized their device with
the central database (after having modified the considered piece of data) and
user B has also synchronized their device with the central database.

To solve this problem, a third architecture can be considered. It is based on
RFID tags containing memory which can be written. In this case, the applica-
tion reads/writes the updates concerning the product (e.g., its history) on its
associated RFID tag. Actually, the system made of all of such RFID tags cor-
responds to a distributed memory, each RFID tag holding piece of data of this
distributed memory: there is no more need for central database storage. But this
architecture experiences one severe limitation: a mobile handset has no way to
have an idea of the value of the different tags of the system unless it is physically
in contact with each tag. Thus the handset can never make queries on the whole
contents of this distributed memory without physically moving to all of the tags.

None of the presented architectures meets simultaneously our three require-
ments. We propose a solution by introducing vector clocks inside the RFID
tags.

3 Applying vector clocks to passive elements

In this section, we present how vector clocks are used to give to each handset the
best up-to-date view of distributed memory (DM). This gives users the ability
to make queries on a local view of DM .

Here are the main ideas of our solution. Each tag and mobile handset of the
system holds a local view of DM . We associate a vector clock per local view. The
vector clocks we use are plain vector clocks [15, 8]. Whenever a mobile handset
comes into contact with a tag (or another handset), these two elements make
their own view of DM consistent by comparing vector clock values. Thus, each of
them takes advantage of the knowledge of the other element to get more recent
information concerning DM evolutions. Doing so, they get a more up-to-date
view of DM . The next paragraphs detail our solution.

The system we consider is made of two types of elements: RFID tags and
mobile handsets (See Figure 1). Each element e holds a local view DMe of the
distributed memory. We note DMe[r] the view element e has of the contents of
DM hold by RFID tag r. Each element e holds also a vector clock V Ce which
is used to propagate operations done on DM . V Cr[r] holds the timestamp of

4 Michel Simatic

the last update done on DMr[r] (which is the part of the distributed memory
DM hold by RFID tag r). Meanwhile V Ce,e 6=r[r] holds the timestamp of the
last update of DMr[r] which element e is aware of.

DM [1] r2
DM [2] r2

DM r2
VC [1]r2
VC [2]r2

VCr2

VC [1]r1
VC [2]r1

VCr1
DM [1] r1
DM [2] r1

DM r1

VCm2 DM m2

VCm3 DM m3

VCm1 DM m1

RFID/NFC tag r2

RFID/NFC tag r1

Mobile handset m2

Mobile handset m3

Mobile handset m1

m1VC [1]

VC [2]m1

DM [1] m1
DM [2] m1

VC [1]m2
VC [2]m2

DM [1] m2
DM [2] m2

DM [1] m3
DM [2] m3

VC [1]m3
VC [2]m3

DM

Fig. 1. Data present in a system made of 2 RFID tags and 3 mobile handsets

At application initialization time, for all elements e of the system, DMe is
initialized with the initial value of the distributed memory. This initial value
depends upon the application which will be using the distributed memory. On
the contrary, V Ce is initialized to a value independent from the application:
(0, . . . , 0).

Then, during the rest of application lifetime, whenever a mobile handset m
changes the value stored in DMr[r] of a tag r, it applies Algorithm 1.

Algorithm 1: Update of DMr[r] on tag r by mobile handset m
1 DMr[r]← update of DMr[r]
2 V Cr[r]← update of V Cr[r]
3 DMm[r]← DMr[r]
4 V Cm[r]← V Cr[r]

As in [17], usually V Cr[r] is a logical clock: line 2 of Algorithm 1 is
V Cr[r] ← V Cr[r] + 1. But, as in [11], we may take advantage of two conditions
to save space on each tag (and thus improve the scalability). First condition is
“The real-time clock of the last update of the tag r is stored among the data
of DMr[r]”. Second condition is “Two subsequent updates always have subse-
quent and different real-time clocks”. If both conditions are satisfied, V Cr[r] can
hold directly the real-time clock of the update: line 2 of Algorithm 1 becomes
V Cr[r] ← real-time clock of the update of DMr[r]. We save the space of one
logical clock.

RFID-based Distributed Memory 5

Another optimization can be coupled with the previous one. It can be con-
sidered if the real-time clock of the last query on DMr[r] is stored among the
data of DMr[r]. In the case there is no need to distinguish the real-time clock
of the last update and the real-time clock of the last query, V Cr[r] can hold
the real-time clock of the last update or query: line 2 of Algorithm 1 becomes
V Cr[r] ← real − time clock of the update or query of DMr[r]. We save the
space of one real-time clock.

In addition to Algorithm 1, by applying Algorithm 2, DMe and V Ce may
be updated whenever element e is able to exchange information with another
element e′. In the context of an RFID/NFC-based application, this happens in
two cases: a mobile handset is near an RFID tag (respectively another mobile
handset) and is able to interact with it via RFID/NFC protocol (respectively
NFC peer-to-peer protocol).

Algorithm 2: Making DMe and DMe′ consistent
1 foreach i, 1 ≤ i ≤ number of tags in the system
2 if V Ce[i] < V Ce′ [i] then

3 // Element e′ holds a more up-to-date view of DMi[i]
4 DMe[i]← DMe′ [i]
5 V Ce[i]← V Ce′ [i]
6 elseif V Ce[i] > V Ce′ [i] then

7 // Element e holds a more up-to-date view of DMi[i]
8 DMe′ [i]← DMe[i]
9 V Ce′ [i]← V Ce[i]
10 endif

11 endforeach

By applying Algorithms 1 and 2, each element e of the system has the best up-
to-date view of the distributed memory it can have. But there is no guarantee
that this best up-to-date view is the most up-to-date view of the distributed
memory. As DM evolves during lifetime of the application, DMe may contain
stale data: there may be a tag r, r 6= e for which DMe[r] does not correspond to
DMr[r] currently hold by tag r. The only guarantee we have is that tag r did
hold value DMe[r] at some point in time. Either it is its initial value. Or it is
a subsequent value which induced the modification of V Cr[r] (after application
of Algorithm 1) and thus the propagation of this new value to DMe[r] (after
application of Algorithm 2).

There are other staleness limitations. They are discussed in Section 6.
Despite them, an application running on a mobile handset m is able to make

queries on DMm: it has a view of the whole distributed memory without moving
physically to the tags. Notice that the application can help reducing the stal-
eness limitation. As in gossip protocols, if it stimulates information exchanges
between elements of the system, propagation of updates will disseminate quicker
in the system. Thus the gap between DMe and DM will be thinner. Next sec-

6 Michel Simatic

tion presents an application example and shows how its design promotes the
dissemination.

4 Pervasive Game as an Application Example

The RFID-based distributed memory presented previously has been imple-
mented in the context of pervasive game “Plug: Secrets of the museum” (PSM).
This section briefly presents PSM, makes the link between PSM and the data
structures presented in Section 3, and describes how the game is designed to
promote the dissemination of data.

PSM has been developed in the context of the PLUG project [3]. It is de-
signed to let players discover, in a different way, meaningful objects of a mu-
seum [18]. In PSM, 8 teams of players are equipped with NFC-enabled mobile
phones (Nokia 6131 NFC). Their main goal is to collect family of objects during
a game session of at most 85 minutes. To do so, using a J2ME midlet we have
developed, they exchange virtual cards (representing objects of the museum) ei-
ther with one of the 16 RFID/NFC tags (ISO 14443, Mifare-NFC, 13.56 MHz,
1 Kbyte of RAM) located in different places of the museum, or with other teams
(through NFC peer-to-peer communication). To reduce risks of deadlocks be-
tween players, every card has 3 instances in the game: there are 4 families and
4 cards by family times 3 instances, which makes 48 cards, in all. At the begin-
ning of a game session, cards are shuffled and distributed between the 8 mobile
phones (4 cards per handset) and the 16 RFID tags (1 card per tag).

PSM uses data structures presented in Section 3 as follows. DMe[r] (e being
any element of the system, r being any tag) is a byte storing a value between
0 and 15 (each value corresponds to one of the 16 cards). V Ce[r] is a short
value (two bytes). It contains the real-time clock of the last update or query on
DMr[r] as seen by e. Indeed we use the optimizations presented in Section 3.
This is because our game has two interesting properties. The first one is that the
clocks of the mobile phones are manually synchronized at the beginning of each
day; we checked experimentally that the clocks do not drift away more than 1
second from each other during the day. The second property is that it takes at
least 10 seconds for two players to exchange a virtual card with the same tag or
to make a query on the same tag. As 10 seconds is much greater than 1 second:
1) we can apply the optimizations; 2) the real-time clock can be stored as the
number of seconds since the beginning of the game (as a game session lasts at
most 85 minutes —5100 seconds— there is no risk of overflow).

DMe (respectively V Ce) is initialized to the 16 card values hold initially by
the tags (respectively (0, . . . , 0)).

At play time, whenever a team wants to exchange one of the cards hold by
its mobile phone with the card hold by a tag, it must go physically near the tag.
The application on the mobile handset applies Algorithm 1. Moreover, when a
team wants to know what card is physically contained in a tag, it also has to
go physically near the tag. We take advantage of this read operation to apply
Algorithm 2 in order to make DMmobile and DMtag consistent. Thus, although

RFID-based Distributed Memory 7

the team believes there is only a read operation (to display the card stored in the
tag), there is actually also a write operation which possibly modifies DMtag and
V Ctag. Algorithm 2 is also applied whenever two teams exchange cards between
their mobile phones (via NFC peer-to-peer protocol): this makes DMmobile1

and
DMmobile2

consistent.
To help players in their search, game design introduces a hint function: a

team can ask its mobile phone for an indication of an RFID tag which contains
a virtual card convenient for its collection. The hint function is implemented
by analyzing DMmobile and V Cmobile. It considers the virtual cards stored in
DMmobile which correspond to the family collected by the team. Among these,
it selects a card which the team does not have already and for which the in-
formation in V Cmobile is the most recent (Intuitively, the more recent it is, the
more probable it is that the virtual card is still in the RFID tag). Actually the
hint function provides two kinds of result. The first kind is the indication of a
tag r and the card DMmobile[r] it was containing currentClock − V Cmobile[r]
seconds ago. The second kind of result is “For the moment, no tag contains a
card which is interesting for you”. This message is displayed when none of the
cards of DMmobile satisfies team’s need.

The following paragraphs describe the game design specificities which pro-
mote the dissemination of data done by algorithms of Section 3.

As seen previously, whenever a mobile phone is in contact with another el-
ement of the system (should it be a tag or another mobile phone), we apply
Algorithm 2 in order to make DMmobile and DMtag or mobile consistent. The
only way a team can know the card stored in a tag is to physically go to that
tag: team is promoted to physically move to tags. Thus we stimulate data propa-
gation via tags. Moreover, a team gains points whenever it exchanges a card with
another team: team is promoted to do such exchanges. Not only does it foster
human interactions inside the museum [9], but it stimulates data dissemination
via mobiles.

Concerning exchanges between teams, a rule prevents two teams from spend-
ing their whole PSM session doing exchanges of cards (and thus getting corre-
sponding points). To do so, in PSM, a team can exchange at most two cards with
another team in a sliding window of ten minutes. This rule limits the number of
exchanges made by a team during a session. For instance, in the case of a session
lasting 85 minutes, a team can make at most (85/10 + 1) × 2 = 18 exchanges.
Even though it is limiting number of exchanges, this rule has indeed a positive
effect on dissemination of data. If it was not there, at least one pair of mobile
phones would not contribute any more to the propagation of data updates to
other mobile phones and to tags. Said in other words, at least 2 of the 8 mobile
phones would not be used any more for this dissemination task: we would lose
at least 2/8 = 25% of our “network” capacity.

This section has presented the game we have developed as an application
example. Next section presents the experimental results we observed with this
game.

8 Michel Simatic

5 Experimental Results

In June 2009, five public sessions took place in the Musée des arts et métiers

(Paris). Each of them was played with 6 teams. In this section, we present our
methodology to obtain data out of these sessions. Next, we analyze some of the
data.

During each game session, each mobile phone logs all of the events triggered
by the team using it. We log systematically the date of the event. The other
logged information depends upon the type of the event. Here are some details
about the events concerning the rest of this article:

– for Application start event, we log the game session identifier, the family
collected by the team, the virtual cards hold by the mobile phone, DMmobile

and V Cmobile;
– for Consult a tag event, we log the tag identifier, the virtual card contained

in the card, DMmobile and V Cmobile after DMmobile and DMtag have been
made consistent;

– for Exchange with a tag event, we log the tag identifier, the virtual card
given, the virtual card received;

– for Exchange with another team event, we log the identifier of the other
team, the virtual card given, the virtual card received, DMmobile and V Cmobile

after DMmobile and DMmobile other team have been made consistent;
– for Hint request event, we log the family collected by the team, the kind of

hint result, and the information given to the team (in the case of a result of
the first kind).

At the end of each day of tests, all of the log files are transferred from the
mobile phones to a laptop. On this laptop, we run a Java application. It orders all
of the events according to their Date of event field. Then it counts the different
events. Finally it builds a history of the state of the system. The state concerning
cards contained by each mobile is initialized by analyzing Application start

events. It evolves whenever there is an Exchange with a tag or Exchange with

another team event. The state concerning tags is initialized when analyzing
first Consult a tag event. It evolves whenever there is an Exchange with a

tag event.
As we are in front of a fully distributed application, it is quite sure that the

history we get does not correspond to what did happen in the reality. Section 4
has presented the properties concerning time in PSM. Thus, in the history of
events we get, we have the guarantee that the chain of events concerning each
tag and each mobile phone is correct. It is the interleaving of these events we
obtain which may not have existed in reality [4]. Thus, the figures we present
hereafter are only an approximation of what really happened during application
execution.

During the 5 game sessions, 30 mobile phones played sessions of 70 to 85
minutes. 3889 events were logged. There were 590 visits to a tag, 279 exchanges
between a mobile phone and a tag and 142 exchanges between one mobile phone
and another one.

RFID-based Distributed Memory 9

14 hint requests were logged1. As our event analyzer builds a history of the
state of the whole system, whenever there is a Hint request event, we can eval-
uate the correctness of this hint. 8 (respectively 3) out of the 9 (respectively
5) hint results of the first (respectively second) kind were correct. This means
(8+3)/(9+5) = 79% of the hints were correct. But this percentage is computed
with only 14 data. To have a bigger sample, we have modified the event analyzer:
whenever analyzing a Consult a tag event, the analyzer generates an artificial
Hint request event. To do so, it applyies the algorithm which the mobile would
have applied if the player had triggered the hint function at that moment. With
the generated hints, we observe that 490 (respectively 30) out of the 540 (respec-
tively 50) hint results of the first (respectively second) kind were correct. This
means (490 + 30)/(540 + 50) = 88% of the hints are correct. Of course, 88% is
much lower than the 100% accuracy we would have obtained with a centralized
architecture. But, we do reach 88% without installation and operational costs of
a WAN. The acceptability of this rate of correct hints is application dependant.
In the case of our game, the hint function is presented to players as a kind of
gambling: a rate of 88% is acceptable.

One may think intuitively that a recent hint has more chances of being cor-
rect than an old hint. The beginning of Table 1 (until line “[30, 34]”) confirms
this conjecture. But we have no satisfying explanation for the high percentages
observed in the last lines.

Another factor of the correctness of hints is how many tags are notified of a
given change in a tag (see Figure 2) and how long it takes to disseminate such
information (see Figure 3). If it is rather frequent that at least 3 tags are notified
of the change of a tag (it happens with a frequency of 39%, see Figure 2), the
frequency of notification of at least 12 tags is less than 9%.This is because the
notification of a tag change takes time to spread itself among other tags.

Figure 3 shows for instance that, to have 3 tags notified of a change, it takes
at most 5 minutes in 50% of the cases. So while the information of a tag change
is spreading, the probability that the concerned tag receives a new virtual card
is increasing. This new information will also spread itself, replacing the previous
one. This explains why it is very rare (frequency of 3%, see Figure 2), that all
of the 16 tags get notified of 1 tag change.

The dissemination of the new value of the tag takes time. It is possible that,
at some point in time, the new value of a tag is spreading among elements of
the system, while its old value is still spreading among other elements. Thus,
it may happen that a tag is notified of stale information. To evaluate this last
phenomenon, each time an element e is notified of a value change in tag r, we
compare the date te of notification with the date tr of next value change of tag
r. Let’s define the validity period as Tvalid = tr − te. If Tvalid ≤ 0, the value
change of r which has been notified to e is stale. If Tvalid > 0, the value change

1 This number of logged hint requests is low probably because of the game design:
asking for a hint is costing points to a team. Moreover, the hint was presented to
players as not being 100% sure. We suspect this resulted in players not asking often
for a hint.

10 Michel Simatic

Table 1. Relation between rate of correct hint result of the first kind and hint age

Age of the hint Number of Number of % correct
(in minutes) hint requests correct hints hints

[0, 4] 176 178 99%
[5, 9] 59 65 91%

[10, 14] 50 61 82%
[15, 19] 55 64 86%
[20, 24] 32 35 91%
[25, 29] 7 8 88%
[30, 34] 14 18 78%
[35, 39] 15 15 100%
[40, 44] 12 12 100%
[45, 49] 7 8 88%
[50, 54] 7 8 88%
[55, 59] 10 10 100%
[60, 64] 6 7 86%
[65, 69] 10 17 59%
[70, 74] 11 13 85%
[75, 79] 10 12 83%
[80, 84] 5 5 100%
[85, 85] 4 4 100%

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

F
re

q
u
en

cy
 i

n
 %

Number of tags notified of a given change

(3, 39%)

(12, 9%)

(16, 3%)

Fig. 2. Frequency of number of tags notified of a change (including the concerned tag)

RFID-based Distributed Memory 11

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12 14 16

T
im

e
(i

n
 m

in
u
te

s)

Number of tags notified

Q2 at (3, 5)

Quartiles

Fig. 3. Boxplot of times (in minutes) taken by a given number of tags to be notified
of a change (decile D1, quartiles Q1, Q2, Q3, and decile D9)

of r is an up-to-date information. The results are summarized in figure 42. In
FrequencyOfV alidityPeriods{Tvalid ≤ −1} = 29% of the cases, we disseminate
stale information.

 0

 20

 40

 60

 80

 100

-40 -20 0 20 40 60 80F
re

q
u
en

cy
 o

f
d
at

a
<

=
 v

al
id

it
y
 p

er
io

d
 (

in
 %

)

Validity period (in minutes)

(-12, 5%)

(-1, 29%)

(85, 100%)

Fig. 4. Frequency of validity periods (Tvalid)

2 Validity period +85 has a special meaning: the virtual card stored in tag r at moment
tr never changed again until the end of game session (which can last at most 85
minutes).

12 Michel Simatic

Figure 5 evaluates the impact of stale information dissemination on the per-
ception of the global state by the mobile. To get it, for each Consult a tag

event, we count the number of differences (i.e. stale tags) between DMmobile

and the real state. Figure 5 shows that DMmobile contains no stale tag in
FrequencyOfAtMostNStaleTags{n = 0} = 6% of the cases. In other words,
DMmobile contains at least one stale tag in 100− 6 = 94% of the cases. On the
other hand, DMmobile contains at least 5 (respectively 7) correct tags in 100%
(respectively 99.8%) of the cases. In the context of our game, these percent-
ages help understanding the difference of rate of correct hint results between the
two kinds of results. Indeed first kind (respectively second kind) has a rate of
490/540 = 91% (respectively 30/50 = 60%). This is because, with first kind of
results, we consider only the value of one card among the 16 cards. As DMmobile

contains at least 12 correct tags in 71% of the cases, the probability that the
selected card is correct is high. Whereas, with second type of results, we take a
decision based on the value of all of the cards in DMmobile. The probability of a
correct answer can only be lower.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

%
 o

f
d
at

a
w

it
h
 a

t
m

o
st

 n
 s

ta
le

 t
ag

s

n = Number of stale tags in DMmobile

(0, 6%)

(4, 71%)

(9, 99.8%) (11, 100%)

Fig. 5. Frequency (in %) of observation of at most n stale tags in DMmobile

This section has presented the experimental results from five public game
sessions. In summary, at least 3 tags were notified of a given tag change in 39%
of the cases. The dissemination of this notification took at most 5 minutes in
50% of the cases. Moreover, in 29% of the cases, the notification received by
a tag was stale. Despite this percentage, the view hold by each mobile had at
most 4 stale tags in 71% of the cases. In addition to these “system” figures, we
observed an “applicative” rate of hint success of 88%. This rate is acceptable by
users in the context of our game (as the hint function is presented as a gambling
function).

Next section analyzes our architecture with a more theoretical point of view.

RFID-based Distributed Memory 13

6 Discussion

Section 2 presents how passive RFID tags are commonly used following 3 ar-
chitectural patterns. In this section, we focus on scientific work related to our
proposal. Then we analyze its limitations.

6.1 Related Work

As mentioned before, the work presented in this article relies on vector clocks
theory [15, 8]. Moreover, our usage of vector clocks can be considered as a gossip
protocol. Indeed, our algorithms satisfy most of the conditions defined by [2] to
consider a protocol as a gossip protocol. For instance, when a handset interacts
with a tag or another handset, the state of both changes in a way which reflects
the other. The style of gossip protocol implemented in this paper is an anti-
entropy protocol for repairing replicated data [7]. The data is the contents of
the distributed memory. It is replicated on the handsets. Tags correspond to the
network: when a handset interacts with a tag r, it leaves a message on the tag.
The message contains information about what the handset has seen on the other
tags and what information it has received from the other handsets. This message
will be received by the next handset to interact with this tag.

This work can also be considered as an implementation of opportunistic data
flooding. Such flooding is implemented in several sensor networks. For instance,
ZebraNet is a mobile, sensor network designed to collect data about zebras [14].
To do so, a sensor is attached to each animal. It collects data locally and trans-
mits them whenever another sensor comes within range. Periodic zoologists
drive-bys can then collect logged data from many animals despite encounter-
ing relatively few within range. Our contribution is to integrate passive tags into
such peer-to-peer architecture. Of course, a passive tag cannot be used to collect
data locally. But it can hold information without any energy saving issue. This
offers two interesting opportunities. First, the tag can be used as a data cache.
A moving sensor can store data to be transmitted to another moving sensor
which will come within the tag in the future. The second opportunity is that
the tag can give a networking capability to any moving entity. Suppose zebras
are equiped with passive tags. When moving from one static sensor to another
one, these zebras may transmit information via their passive tag. They become
“network” elements.

[6] presents an RFID-based distributed memory which does not require any
WAN. This distributed memory is illustrated through two applications: Ubi-

Check and Roboswarm. In Ubi-Check, an RFID tag is attached to each of the
traveler’s items. Each tag is initialized with a value specific to the traveler. All
of these RFID tags are read after special points (e.g., after an airport security
control). Their values are transmitted to an application which checks that they
are consistent. If it is not the case, it means that, at some point, the traveler
exchanged one of their items with the item of another traveler. An alarm is thus
triggered to warn the traveler that one of their items is missing. In Roboswarn,
RFID tags are placed throughout a physical space to give direction information

14 Michel Simatic

to plain robots wandering in this space. These tags are initialized by dedicated
robots before the standard robots are run. The major difference with our pro-
posal is that, in Ubi-Check and Roboswarm, distributed memory data cannot be
modified any more once the initialization process is over. In other words, [6] in-
troduces an RFID-based distributed ROM which can be “flashed” (initialized),
whereas we introduce an RFID-based distributed RAM.

6.2 Analysis of the Limitations

The architecture proposed in this paper has limitations concerning staleness and
scalability. They are discussed in the following.

Staleness For any element e of the system, DMe may contain stale data of
three types.

Firstly, there may be a tag r, r 6= e for which DMe[r] does not correspond to
DMr[r] currently hold by tag r. This happened in 94% of the cases in our PSM
experiments (see Figure 5).

Secondly, our architecture experiences the problem inherent to vector clocks
in distributed systems [15, 8]: element e has no guarantee that DMe corresponds
to a value of DM which did exist at some point in time.

Thirdly, element e has no guarantee that it sees the whole history of changes
of DMr[r] (for any tag r of the system). Suppose that, at time t1, a mobile
handset m1 sets the value of DMr[r] of tag r to vt1 . When applying Algorithm 1,
V Cm1

← t1. Then, at time t2, a mobile handset m2 sets DMr[r] to vt2 . Upon
application of Algorithm 1, V Cm2

← t2. Afterwards, if m2 comes to tag r′ before
m1, when m2 applies Algorithm 2, we have DMr′ [r] ← vt2 and V Cr′ [r] ← t2.
When m1 comes to tag r′, because V Cm1

[r] < V Cr′ [r], DMr′ [r] is never set to
the value vt1 .

In the following, we focus on the first type of stale data.
The rate of stale data and the period during which data remains stale is

application dependant. How often do data evolve? How often are tags visited by
application users? How long do users take to go from one tag to another?. . . In
the context of PSM, the highest rate of stale data we observed is 11/16 = 69%
(see Figure 5). Concerning the period, 5% of the data remained stale more than
12 minutes (see Figure 4).

If the rate and/or period are too high for the application, three methods can
be considered to reduce them. The two first ones are stimulating the “network”.
The third one introduces a WAN.

The first method consists in having a dedicated user who goes periodically
through all of the tags just to read their contents and more important to update
their DMtag and V Ctag. By doing so, we reduce the risks of tags not being
refreshed for a long time. In the case of PSM, this method would not be fruitful.
Such a dedicated used would take 12 minutes to go through all of the tags.
Thus this method would take off only FrequencyOfV alidityPeriods{Tvalid ≤
−12} = 5% of negative dissemination (see Figure 4), reducing the total number

RFID-based Distributed Memory 15

of negative dissemination by only 5%/29% = 17%, which is not worthwhile the
effort.

Another method consists in periodically asking all of the users to meet all
together to synchronize their DMmobile. This method introduces a constraint on
users who may not accept it. In the context of PSM, it would not be applicable:
it would reduce too much the fun during the game.

The final method consists in a hybrid approach. Each mobile applies Al-
gorithms 1 and 2. But, sometimes, under some circumstances which need to be
defined and which may be application dependant, it connects to a server through
a WAN. By applying Algorithm 2, it synchronizes DMmobile and DMserver. This
approach introduces a WAN (and the cost of data plans). But it guarantees a
moderate use of the WAN (these costs would be restrained). Because it requires
a WAN, this method may not be always applicable.

In this section, we have studied the staleness limitations of our proposal. But
how do architectures presented in Section 2 behave concerning this limitation?
First architecture (Centralized) and third one (Data stored only on tags) do not
experience any staleness issue. But the former one requires a WAN. And, with
the latter one, it is impossible to have an idea of the contents of a distant tag.
The second architecture (Local copy of a central database) has worse staleness
limitations than our architecture. Each time a user modifies the contents asso-
ciated with a tag, the other users have an additional stale data in their local
database. In particular, a user reading a tag already modified by another user
will not see these modifications (whereas user does see them in the case of our
proposal). A synchronization with the central database is mandatory to cleanup
any stale data (whereas Algorithm 2 cleans up some of the stale data in the case
of our proposal).

Scalability The number of data which can be managed by our architecture is
limited by the hardware used.

First it takes time to read DMr and V Cr from the tag to the handset, process
Algorithm 2, and write back DMr and V Cr to the tag. This time must be lower
than an application dependant threshold TH. We suppose the processing time
is negligible compared to the read and write time. Let TR be the transmission
rate between the tag and the mobile, L the total length of one element of DMr

and one element of V Cr, and N the number of tag values which can be stored
in DMr. Then N is constrained by the following inequality: N ≤ TH·TR

2·L
.

Moreover, the hardware has limited size. Let S be the size of the RAM in
bytes. N is also constrained by: N ≤ S

L
.

We conclude:

N ≤ min(
TH · TR

2 · L
,
S

L
) . (1)

Inequality 1 quantifies the influence of the optimizations presented in Sec-
tion 3 on the upper bound of N .

16 Michel Simatic

In the context of PSM, we have TH = 0.5 seconds3, TR = 106 kbps (we use
plain ISO 14443 tags), L = 3 bytes, and S = 1 Kbyte. By applying Inequality 1,
we get N ≤ 341 .

It is not possible to apply our architecture if there are more than a hundreds
of tags. This is all right for some applications such as our game. But we believe
it does not fit most applications, and in particular the ones classically addressed
by the centralized architecture (which is able to handle thousands or millions of
tags).

Addressing this scalability issue is one of our research perspectives.

7 Conclusion and Research Perspectives

The goal of our work is to give a user equipped with an RFID-enabled mobile
handset (mobile phone, PDA, laptop. . .) the ability to know the contents of
distant passive RFID tags, without physically moving to them and without
using a WAN (which leads to installation and/or operational costs).

This paper studies how standard RFID architectures do not meet our re-
quirements. Then it presents how we associate vector clocks to RFID tags to
get an RFID-based distributed memory. This association may seem peculiar: we
associate a vector clock (which is usually associated to active system elements
like processors) to a piece of memory (which is intrinsically passive). This associ-
ation is actually fruitful in two ways. On one hand, tags and mobile handsets can
now be used to propagate information concerning the evolution of the RFID-
based distributed memory; thus handsets are able to read the (cached) value of
any piece of this distributed memory without being physically near the tag host-
ing that particular piece. On the other hand, this association turns users into
network elements responsible to carry information between the tags; in other
words, we create a Wireless Human-based Area Network (WHAN) playing the
role of a WAN, but without installation and operational costs of a WAN. The
tests we have made on an application example show that hints based on the
analysis of the local view of this distributed memory are correct in 88% of the
cases. The acceptability of this rate is application dependant. It is acceptable in
the context of our game.

This architecture faces two issues. The first one concerns staleness. In 94% of
the cases in our experiments, the view a mobile has of the distributed memory
contains stale data. On the other hand, the highest rate of stale data we observed
is 69%. The second issue concerns scalability. For instance, in our application,
we could handle at most 341 tags. Some applications can cope with both of these
limitations. It is indeed the case of our game. But the majority of applications
cannot: these issues require further research.

3 During our experiment, we observed that players were getting in a hurry at the end
of a session. At that moment, they were spending their remaining time walking from
tag to tag, putting their phone on the tag and immediately taking it off (in half of
a second).

RFID-based Distributed Memory 17

These are several research perspectives related to this work.
From a usage point of view, [9] analyzes some of the consequences of this

WHAN on human relationships between application users. This study must be
deepened.

From a technical point of view, the two first perspectives concern the issues
identified previously: staleness and scalability.

A third perspective is related to the generalization of our work to a system
containing any kind of processing devices and a distributed memory hosted not
only by RFID tags, but also by the memory of some or all of the mobile handsets.
There are three sine qua non conditions for this generalization. First, an element
of this distributed memory can only be modified in one place (the element is the
property of one specific RFID tag or processing device). Second, the set of RFID
tags and devices contributing to the system is defined at the beginning of the
system lifetime. Third, this set is ordered so that it is possible to associate one
vector clock element to each system element. A perspective of our work is to
see how it is possible to release one (or more) of these three conditions. Possible
answers can be found within the Optimistic Replication community [17]. But
the limited size of the RFID tags’ memory requires at least adapting existing
answers or bringing new ones.

Acknowledgments The author wishes to thank Eric Gressier-Soudan, Denis
Conan, Annie Gentès, Aude Guyot-Mbodji, Camille Jutant and all of the re-
viewers, for all of their fruitful comments during the writing of this article.

References

1. F. Armenio, H. Barthel, L. Burstein, P. Dietrich, J. Duker, J. Garrett, B. Hogan,
O. Ryaboy, S. Sarma, J. Schmidt, K. Suen, K. Traub, and J. Williams. The
EPCglobal architecture framework. Technical Report Version 1.2, GS1 EPCglobal,
September 2007.

2. K. Birman. The promise, and limitations, of gossip protocols. SIGOPS Oper. Syst.
Rev., 41(5):8–13, 2007.

3. CÉDRIC, L3i, Musée des arts et métiers, NET Innovations, Orange, Insti-
tut Télécom—Télécom & Management SudParis, Institut Télécom—Télécom
ParisTech, and Tetraedge. PLUG: PLay Ubiquitous Games and play more.
http://cedric.cnam.fr/PLUG/, January 2009.

4. K. M. Chandy and L. Lamport. Distributed snapshots: determining global states
of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985.

5. Christian D. 700 million of users of NFC mobiles in 5 years (in
French). http://www.generation-nt.com/juniper-etude-technologie-nfc-mobile-
utilisateurs-actualite-151831.html, September 2008.

6. P. Couderc and M. Banâtre. Beyond RFID: The Ubiquitous Near-Field Distributed
Memory. ERCIM news, (76):35–36, January 2009.

7. A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry. Epidemic algorithms for replicated database mainte-
nance. In PODC ’87: Proceedings of the sixth annual ACM Symposium on Princi-
ples of distributed computing, pages 1–12, New York, NY, USA, 1987. ACM.

18 Michel Simatic

8. C. J. Fidge. Timestamps in message-passing systems that preserve the partial
ordering. In Proc. of the 11th Australian Computer Science Conference (ACSC’88),
pages 56–66. K. Raymond, February 1988.

9. A. Gentes, C. Jutant, A. Guyot, and M. Simatic. RFID technology: Fostering hu-
man interactions. In K. Blashki, editor, Proceedings of IADIS International Con-
ference Game and Entertainment Technologies 2009, pages 67–74. International
Association for Development of the Information Society (iadis), IADIS Press, June
2009.

10. S. Ghellal, J. Holopainen, M. Honkakorpi, and A. Waern. Deliverable D4.7: Fi-
nal business guidelines. Technical Report D4.7, Integrated Project on Pervasive
Gaming (IPerG), April 2008.

11. R. A. Golding. Weak-consistency group communication and membership. PhD
thesis, University of California Santa Cruz, December 1992.

12. E. Haselsteiner and K. Breitfuß. Security in near field communication (NFC). In
Printed handout of Workshop on RFID Security RFIDSec 06, July 2006.

13. ITR Manager.com. City of Paris is taking care of its trees with RFID tags (in
French). http://www.itrmanager.com/articles/59758/59758.html, December 2006.

14. P. Juang, H. Oki, Y. Wang, M. Martonosi, L. S. Peh, and D. Rubenstein. Energy-
efficient computing for wildlife tracking: design tradeoffs and early experiences
with zebranet. In ASPLOS-X: Proceedings of the 10th international conference
on Architectural support for programming languages and operating systems, pages
96–107, New York, NY, USA, 2002. ACM.

15. F. Mattern. Virtual time and global states of distributed systems. In Proc. Work-
shop on Parallel and Distributed Algorithms, Chateau de Bonas, France, pages
215–226. Elsevier, October 1988.

16. G. Roussos and V. Kostakos. RFID in pervasive computing: State-of-the-art and
outlook. Pervasive Mob. Comput., 5(1):110–131, February 2009.

17. Y. Saito and M. Shapiro. Optimistic replication. ACM Comput. Surv., 37(1):42–81,
2005.

18. M. Simatic, I. Astic, C. Aunis, A. Gentes, A. Guyot-Mbodji, C. Jutant, and
E. Zaza. “Plug: Secrets of the Museum”: A pervasive game taking place in a
museum. In Entertainment Computing - ICEC 2009, Eighth International Confer-
ence, Paris, France, September 3-5, 2009, Proceedings, Lecture Notes in Computer
Science. Springer, September 2009.

