

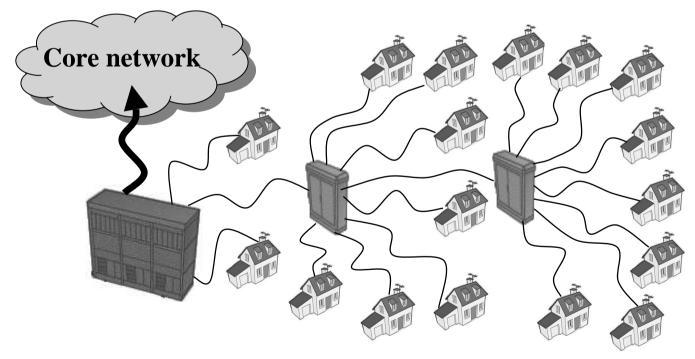
Optimizing the deployment of a multilevel optical FTTH network

Matthieu Chardy, Marie-Christine Costa, <u>Alain Faye</u>, Mathieu Trampont

IFORS-2011 July 10-15 2011 Melbourne

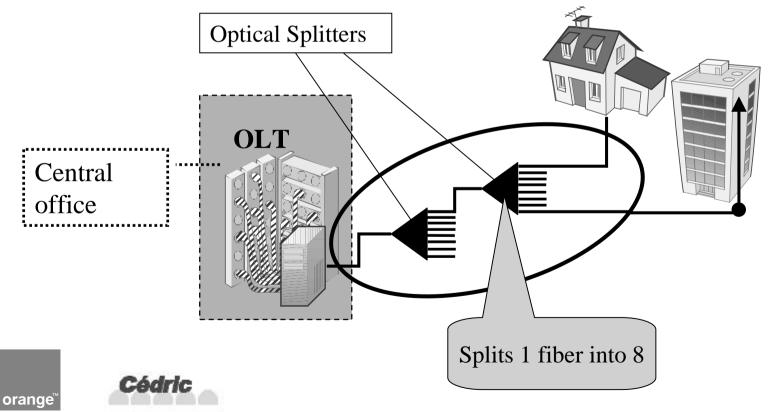
Context

- IP telecommunication networks
- Access Network: hierarchical network that links clients to the network
- Equipments: central office, optical splitters, optical fibers



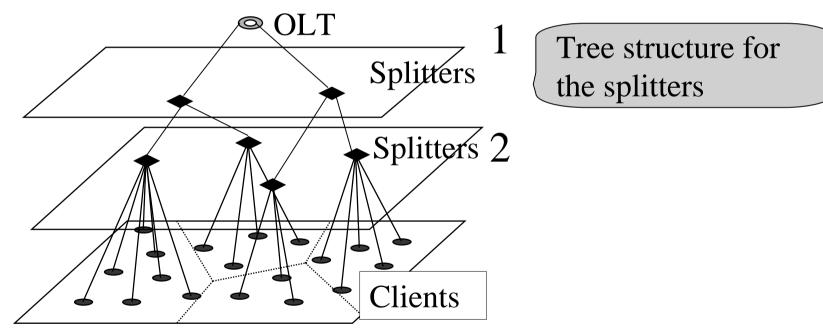
Architecture

- Architecture GPON (Gigabit Passive Optical Network)
 - Optical Line Termination connects the clients
 - two levels of optical splitters distribute fibers to the clients



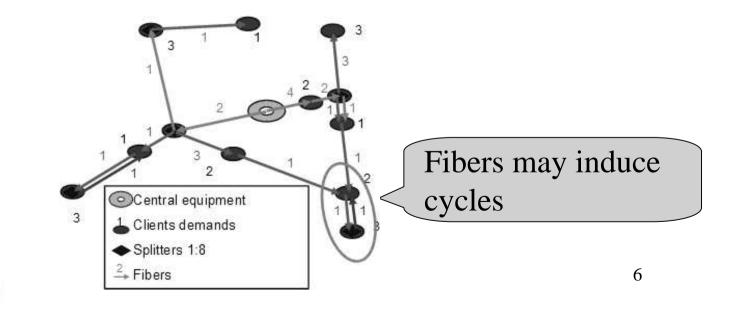
Hierarchical network

- OLT = central office
- splitters = intermediate passive equipments on 2 levels



Infrastructure graph

- locate the equipments in a graph that modelizes ducts in a city
 - -locate splitters at the nodes (two levels of splitter)
 - -route fibers linking OLT, splitters, clients



The datas

- A graph modelizing a local zone
- A capacity on each edge (maximum number of fibers routed on the edge)
- the client demands at the nodes
- the « node 0 » location of the central office

The datas

- C^k cost of a level k splitter
- l_{ij} length of the edge [i, j]
- γ^k linear cost of a level k fiber
- d_{ij}^{k} cost of a level k fiber on the edge [i, j], $d_{ij}^{k} = l_{ij}\gamma^{k}$
- m^k number of fibers produced by a level k splitter
- a_i demand in fibers of the clients at node i
- b_{ij} capacity of the edge [i, j]

The decision variables of the problem

 z_i^k number of level k splitters installed at node i

 f_{ij}^{k} number of level k fibers routed on edge [i, j]

 u_i^k number of unused fibers of level k at node i

orande

The mathematical model

Integer linear problem

$$\begin{split} \min_{f,z,u} \sum_{i=0}^{n} \sum_{k=1}^{2} C^{k} z_{i}^{k} + \sum_{[i,j] \in E} \sum_{k=1}^{3} d_{ij}^{k} \left(f_{ij}^{k} + f_{ji}^{k} \right) \\ & \left\{ \begin{aligned} \sum_{j/[j,i] \in E} f_{ji}^{1} &= z_{i}^{1} + \sum_{j/[i,j] \in E} f_{ij}^{1} & i = 1, \dots, n \quad (1) \\ \sum_{j/[j,i] \in E} f_{ji}^{2} &+ m^{1} z_{i}^{1} &= z_{i}^{2} + \sum_{j/[i,j] \in E} f_{ij}^{2} + u_{i}^{2} \quad i = 0, \dots, n \quad (2) \\ \sum_{j/[j,i] \in E} f_{ji}^{3} &+ m^{2} z_{i}^{2} &= a_{i} + \sum_{j/[i,j] \in E} f_{ij}^{3} + u_{i}^{3} \quad i = 0, \dots, n \quad (3) \\ \sum_{k=1}^{3} \left(f_{ij}^{k} + f_{ji}^{k} \right) \leq b_{ij} & [i,j] \in E \quad (4) \\ z_{i}^{k} , u_{i}^{k} , f_{ij}^{k} \text{ integer} \end{split} \end{split}$$

orange[™]

10

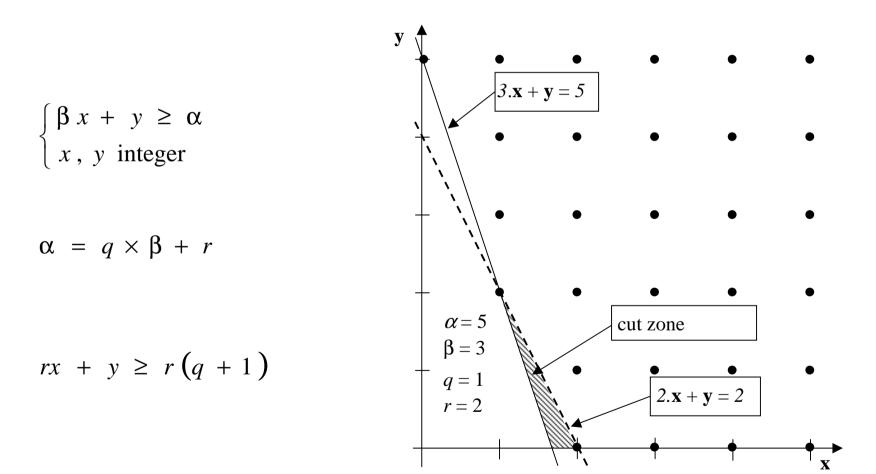
Valid inequalities

$$Q \text{ set of points } \begin{pmatrix} x \\ y \end{pmatrix} \text{ such that} \qquad \begin{cases} \beta x + y \ge \alpha \\ x, y \text{ integer} \end{cases} \quad \text{with } \beta, \alpha \text{ integer} \end{cases}$$

$$\text{Integer division of } \alpha \text{ by } \beta: \qquad \alpha = q \times \beta + r \qquad \text{with } 0 \le r < \beta$$

$$\text{Then} \qquad rx + y \ge r(q+1) \qquad \text{is valid for } Q$$

Cutting plane



12

How to use these cuts in our problem?

 $\overline{}$

We consider a set of nodes *A* and we add equations (3) for $i \in A$

$$\sum_{j \neq j} f_{ji}^{3} + m^{2} z_{i}^{2} = a_{i} + \sum_{j \neq j} f_{ij}^{3} + u_{i}^{3} \quad i \in A$$

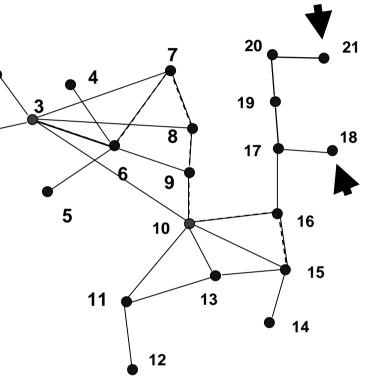
$$\sum_{i \in A} \left(\sum_{j \notin A \mid \{j, j\} \in E} f_{ji}^{3} + m^{2} z_{i}^{2} \right) = \sum_{i \in A} \left(a_{i} + \sum_{j \notin A \mid \{i, j\} \in E} f_{ij}^{3} + u_{i}^{3} \right)$$
Aggregate some inequalities
$$\sum_{i \in A} \left(\sum_{j \notin A \mid \{j, i\} \in E} f_{ji}^{3} \right) + m^{2} \sum_{i \in A} z_{i}^{2} \geq \sum_{i \in A} a_{i}$$
We put
$$x = \sum_{i \in A} z_{i}^{2} \quad , \quad y = \sum_{i \in A} \left(\sum_{j \notin A \mid \{j, i\} \in E} f_{ji}^{3} \right) \quad , \quad \beta = m^{2} \quad , \quad \alpha = \sum_{i \in A} a_{i}$$
With
$$\beta x + y \geq \alpha$$
We obtain a valid inequality
$$rx + y \geq r(q + 1)$$
Then use the cutting inequality

orange[™]

13

Graph reduction

- Many nodes of the ¹
 infrastructure graph are only geographic node with ²
 no client
 - -some of them are not useful for optimizing the deployment
 - -they can be removed from the graph

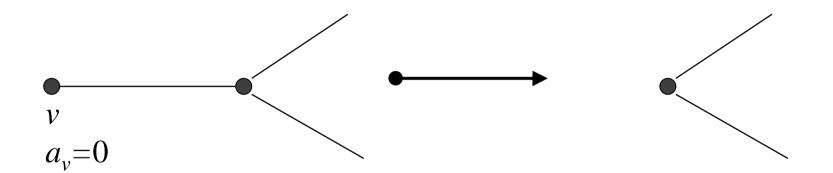


orange

Graph reduction

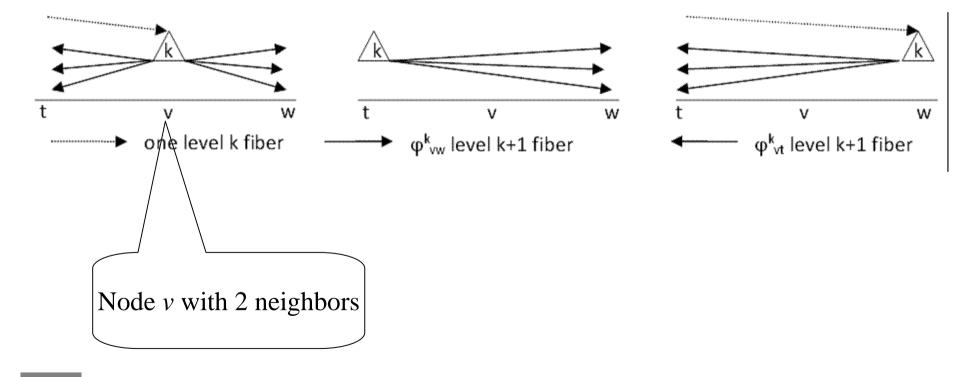
Trivial reduction

A leaf of the graph (node of degree 1) with no demand can be removed of the graph



Graph reduction

Nodes of degree 2



Graph reduction

Theorem

If the linear costs of fibers of two levels k and k' satisfy $\gamma^k \leq 2\gamma^{k'}$

then there is an optimal solution with no splitter on any node v of degree 2 with $a_v = 0$ (no demand)

Real instances

Instance	Existing infrastructure		Fiber demand	
	V	E	nb_{Client}	d_{Client}
Data_1	342	375	184	72.7
Data_2	920	1000	570	73.0
Data_3	1072	1163	667	78.2
Data_4	932	951	583	75.9
Data_5	1478	1614	1010	77.2
Data_6	712	772	441	82.6
Data_7	3044	3337	2061	79.0
Data_8	1265	1365	497	26.2
Data_9	2853	3139	1301	25.2
Data_10	844	905	327	21.1
Data_11	2076	2280	973	24.7
Data_12	901	996	347	24.1
Data_13	181	218	46	31.7
Data_14	3276	3639	1652	25.9

Synthesis of the results (after one hour)

Instance	Size (B&B tree)	UB	LB	Gap (%)
Data_1	616009	80598	80528	0.08
Data_2	876711	257089	256324	0.30
Data_3	954926	302175	301203	0.32
Data_4	702446	265894	265249	0.24
Data_5	598893	452732	451166	0.35
Data_6	11729991	199857	199434	0.21
Data_7	283240	931339.6	922673	0.93
Data_8	538494	158896	156673	1.40
Data_9	209571	383986	377728	1.63
Data_10	662166	88318	87050	1.44
Data_11	291528	281501	276454	1.79
Data_12	633018	106634	105340	1.20
Data_13	1039895	21163	20902	0.57
Data_14	138503	504803	496829	1.58

average gap = 0.35%

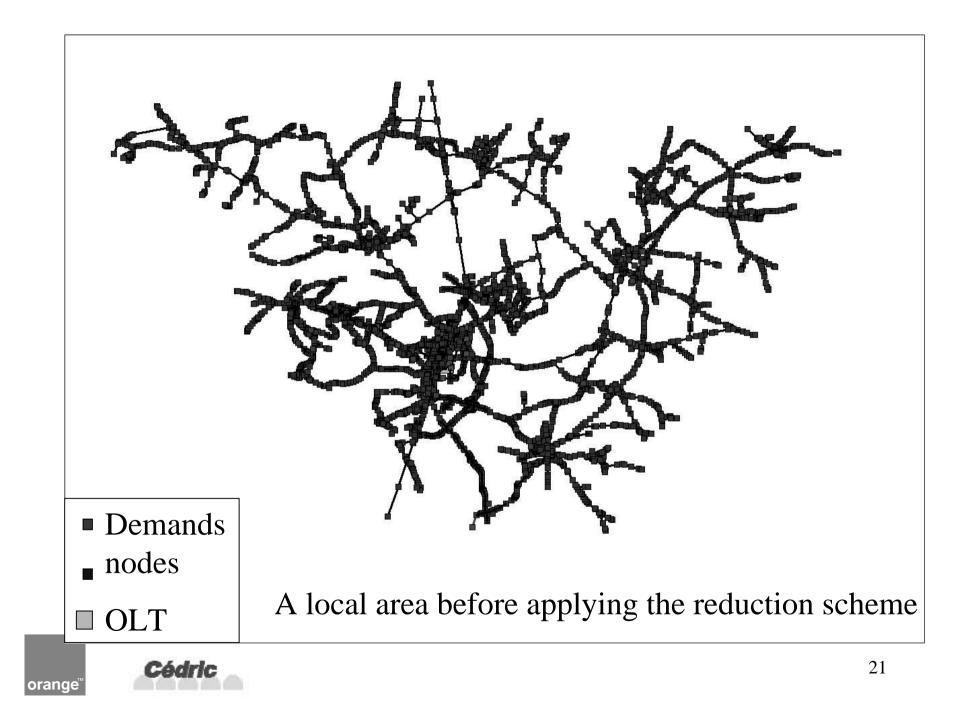
average gap = 1.37%

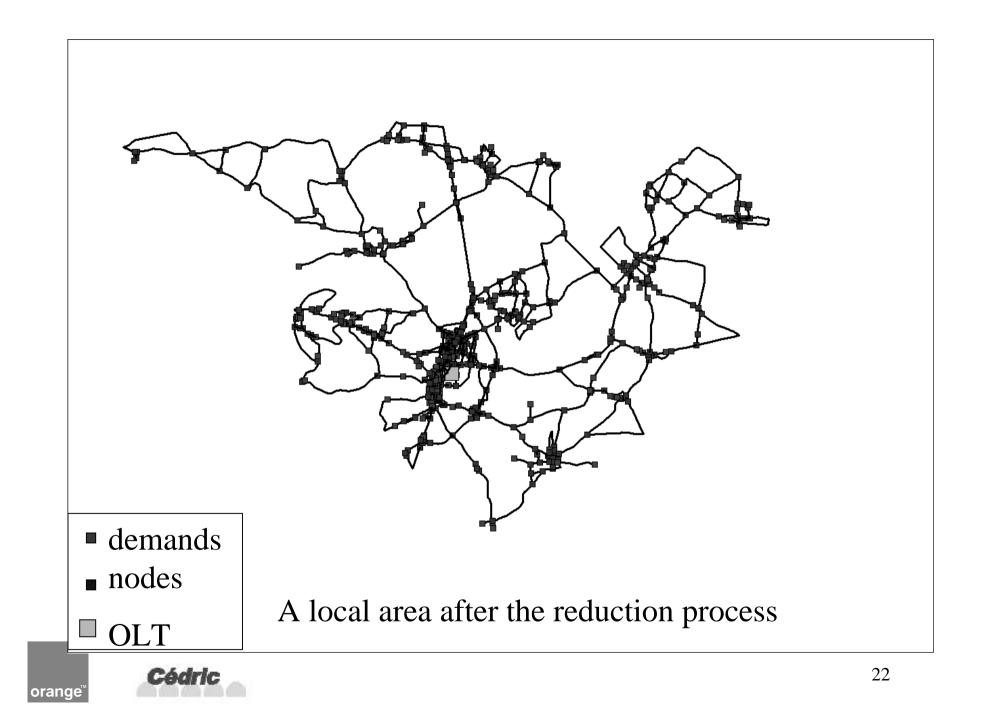
Impact of graph reduction schemes

Instance	Preprocessed graph			Reduction indicators			
	$ V^{red} $	$ E^{red} $	nb_{Client}	$nb_{removed}$	$\operatorname{red}_V(\%)$	$\operatorname{red}_E(\%)$	
Data_1	103	136	57	239	70	64	
Data_2	260	340	178	660	72	66	
Data_3	288	379	195	784	73	67	
Data_4	278	368	176	654	70	64	
Data_5	393	529	291	1085	73	67	
Data_6	200	260	129	512	72	66	
Data_7	808	1101	586	2236	73	67	
Data_8	533	633	285	732	58	54	
Data_9	1253	1539	719	1600	56	51	
Data_10	365	426	200	479	57	53	
Data_11	897	1101	534	1179	57	52	
Data_12	408	503	215	493	55	49	
Data_13	107	144	33	74	41	34	
Data_14	1624	1987	922	2125	57	52	

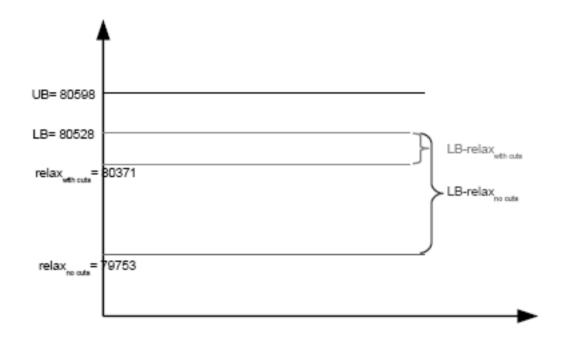
average reductions 63% 58%

orange





Do the valid inequalities reduce the gap obtained without cut?



$$gap_{LB} = (relax_{with cuts} - relax_{no cut}) / (LB - relax_{no cut})$$

Impact of valid inequalities

Instance	UB	LB	Continuous relaxation			% Gap closed	
			$relax_{no\ cuts}$	$\operatorname{relax}_{with\ cuts}$	gap~(%)	gap_{UB}	gap_{LB}
Data_1	80598	80528	79753	80371	0.8	73.1	79.7
Data_2	257089	256324	254210	256231	0.8	70.2	95.6
Data_3	302175	301203	298904	301094	0.7	67.0	95.3
Data_4	265894	265249	262716	265142	0.9	76.3	95.8
Data_5	452732	451166	446894	450731	0.9	65.7	89.8
Data_6	199857	199434	197653	199321	0.8	75.7	93.7
Data_7	931339	922673	914984	922567	0.8	46.4	98.6
Data_8	158896	156673	151955	156481	3.0	65.2	95.9
Data_9	383986	377728	370449	377614	1.9	52.9	98.4
Data_10	88318	87050	84433	86821	2.8	61.5	91.2
Data_11	281501	276454	271180	276352	1.9	50.1	98.1
Data_12	106634	105340	102805	105226	2.4	63.2	95.5
Data_13	21163	20902	20587	20902	1.5	54.7	100.0
Data_14	504803	496829	486279	496694	2.1	56.2	98.7

average closed gap 57.7% 96.8%

orange

Conclusion

- Access Network, GPON architecture
- Design of an integer linear program
- We solve real instances from medium size to large size

• In future work, taking into account uncertainty of the demand

Thank you.

