

Reducing the Gap Between Formal and Informal
Worlds in Automotive Safety-Critical Systems

HugoG. Chalé, Ofaina Taofifenua,
Thierry Gaudré, Alexandra Topa

RENAULT
1 avenue du Golf

78288 Guyancourt, France

Nicole Lévy
Laboratoire CEDRIC, CNAM

292 Rue St Martin
75141 Cedex 03, France

Jean-Louis Boulanger
CERTIFIER

1, place Boussu BP70141
59416 Anzin Cedex, France

Copyright © 2011 by RENAULT. Published and used by INCOSE with permission.

.

Abstract. The upcoming ISO26262 standard, which deals with the functional safety of road
vehicles, will induce car manufacturers to adapt the way in which vehicle systems are usually
developed. To achieve this, more rigorous development processes along with new tools and
techniques will most certainly be necessary. This paper presents an overview of current
initiatives at Renault dealing with the improvement of development processes for mechatronic
systems to comply with ISO 26262. It focuses on introducing more formalization in the
systems engineering design process via the definition of an ontology to formalize the concepts
and knowledge of the systems engineering, functional safety and automotive specialty domains
(e.g. braking, energy management). The ontology is at the heart of our improvement initiatives
since it allows establishing logical consistency of the whole design process. A regenerative
hybrid braking system integrated into a full electrical vehicle will serve as the case study for the
evaluation of the improvements made possible by the approach.

Introduction
The Context. Car manufacturers have had to face an always-increasing list of stakes and
challenges for the last several years. The strongly competitive worldwide market of today
imposes a car manufacturer to offer to its customers relevant, innovative, reliable,
environment-friendly and safe services, at competitive costs while complying with ever more
stringent regulations and times-to-market (Chalé Góngora et al 2010). The solutions to face
this challenges have typically been the development of mechatronic systems, which make an
integrated use of mechanical, electronic and software technologies (Bishop 2008), and the
implementation of model-based development processes (Struss and Price 2004).
This causes an increase in system complexity, which makes safety analyses on these systems
equally more complex, time consuming and thus more expensive, which is incompatible with
the economic constraints and the relatively short development cycles of the automotive
industry. Mastering safety risks is nevertheless necessary, as illustrated by the many examples
of car manufacturers forced to perform important vehicle recalls because of failures that are not

always immediately identified or well understood. Furthermore, the arrival of the ISO 262621
standard (ISO 2009) regarding the functional safety of electrical electronic (EE) embedded
systems brings along new requirements with which automotive systems and development
processes will have to comply. Although the standard will not be compulsory at a first stage, it
is already acting as a catalyst for the research of improved processes, methods and tools in
order to master safety risks.

Motivation. One of the current challenges at Renault consists in preparing its engineering
divisions so that they are capable of developing mechatronic safety-critical systems according
to the ISO 2626 standard. The standard defines a system life cycle and the activities that must
be performed in the different phases of this life cycle, along with the support processes that are
necessary for these activities. It also defines a specific method for automotive hazard analysis
that identifies hazards and classifies them using ASIL2, for Automotive Safety Integrity
Levels. The result of this analysis is the definition of couples {Hazard, ASIL} called Safety
Goals. Safety goals are allocated from the system level to its components according to the rules
defined by the standard. This leads to the definition of specific safety requirements on the
system, on its components and on the associated development processes, depending on the
ASIL quotation. The satisfaction of these requirements allows asserting the absence of
unacceptable residual risks.
Therefore, the standard raises some problems concerning the demonstration of functional
safety and, more generally, concerning the development processes which are currently
under-formalized. Indeed, one of the strengths of ISO 26262 is that each requirement in the
standard is associated to an ASIL. So, the compliance of the system, of its components
(whatever their nature) and of their development processes to the standard can be obtained and
verified in a systematic way. This suggests that better formalization can be beneficial to ensure
consistency with respect to the standard.
This paper presents an answer to this state of affair. We build upon our previous work (Chalé
Góngora et al 2010) and propose to introduce the use of ontology into the current systems
development process at Renault. A regenerative hybrid braking system was chosen as our case
study in order to evaluate the foreseen techniques on a non-trivial real application. The
advantages of the proposed ontology-centric approach are:

- A formal definition of all the concepts and relationships (our system and safety design
language or data model) shared and understood by all actors from different domains.

- The possibility to verify that all the data describing a system (e.g., requirements,
functions, flows, components, interfaces, etc.) are consistent and complete.

- Eased impact analyses following a change request and eased modifications of all
impacted data.

- The existence of numerous tools supporting the manipulation of the ontology.

In the first part of the paper, we present the current design process at Renault, point out some of
its limitations and propose solutions to overcome them. We then introduce our ontology and
illustrate the role it could play in a development process. Next, we present the link between the
ontology and the work that has been done on model transformation. Finally, we conclude on

1 ISO 26262, currently under final revision, is the automotive adaptation of IEC 61508, an international generic
standard on the functional safety of electric, electronic and programmable electronic safety related systems. Its
generic scope , which has made it a reference for all the main industrial sectors, and has made IEC 61508 the
object of numerous adaptations that take into account the specificities of these different sectors.
2 ASIL are defined in four levels of requirements and measures of conformity that allow asserting the absence of
an unacceptable residual risk: A, B, C and D, the latter representing the most stringent level.

Analyze – Evaluate – Optimize
(Dependability)

Define system technical
requirements

V & V

Design physical
architecture

V & V

Design functional
architecture V & V

Needs

Sub systems

technical requirements

System

Sub-
systems

Analyze – Evaluate – Optimize
(Dependability)

Define stakeholders
requirements

V & V

Define system technical
requirements

V & V

Design physical
architecture

V & V

Design functional
architecture

V & V

Analyze – Evaluate – Optimize
(Dependability)

Define stakeholders
requirements

V & V

Define system technical
requirements

V & V

Design physical
architecture

V & V

Design functional
architecture

V & V

Define stakeholders
requirements

V & V

the future perspectives that are envisaged to further promote formalization in Systems
Engineering (SE) development process at Renault.

Current Design Process at Renault
The development processes of automotive systems practiced by car manufacturers or by their
suppliers are continuously evolving in order to make them either more competitive or
compliant to the regulations that are applicable to the automotive industry. The work presented
here focuses on the specification and design phases of the development process (i.e. the
descending branch of the “V” cycle), since it is during these phases that stakeholders and
customer requirements are elicited, transformed and allocated to system components that will
be developed by the suppliers of the car manufacturer.
The System Design Process. Figure 1 presents a simplified illustration of the system design
process.

The four main activities of this design process are the elicitation of stakeholders requirements
(capture and reformulation of original needs), the definition of system technical requirements,
the functional architecture design and the physical architecture design. Let us introduce the
regenerative hybrid braking system (RCB for Regenerative Combined Braking) case study to
illustrate this process. This system is integrated into a full electrical vehicle and combines basic
hydraulic and advanced electro-mechanical technologies for braking actuators.
One of the missions of this system is to recuperate as much electrical energy as possible by
using the electric motor of the powertrain and stock this energy for future use, when the driver
brakes or decelerates the vehicle. During the elicitation of stakeholders requirements, the

Figure 1. System design process at Renault

original stakeholders needs are captured in the “System Stakeholder Requirements document”
(SSR), which contains requirement statements that are not always clear or precise. For
example, one of the requirements of the “braking service” stakeholder states: “The RCB system
shall allow the driver to modulate the deceleration of the vehicle in a stable way”. When
defining the system technical requirements, stakeholder requirements are transformed into a set
of precise, achievable and consistent requirements, with tradeoffs between incompatible
stakeholder requirements being possible. For example, one technical requirement associated to
the stakeholder requirement cited above states: “The RCB system shall ensure the stability of
the vehicle during braking by taking into consideration the vehicle mass, the wear and
temperature of the braking pads and the environmental driving conditions”. Technical
requirements are gathered in the document called “System Technical Requirements document”
(STR).
In functional architecture design, the functions or transformations that the system must perform
in order to satisfy the requirements stated in the STR (mainly functional requirements) are
identified, described and made precise (decomposed). The flows (i.e., information, energy or
material flows) that are used (produced or consumed) by the functions are specified as well.
The internal behavior of the system is also described and corresponds to the logic execution of
the functions of the system. During physical architecture design, we define the constituents of
the system, their interfaces and their connections to fully satisfy the technical requirements
(mainly the non-functional ones like cost, weight, size, forbidden or authorized use of
materials, etc.). During this process, the functions of the system are eventually decomposed to
be allocated on the constituents and the flows are associated with the interfaces and connectors
that transport them. These architectures are usually portrayed in the form of bloc-diagram type
models. For reasons of confidentiality, the system architecture (functional and physical) is not
presented in this paper.
The activities related to system dependability are represented in the center of figure 1 because
they take place during all the activities presented above. We focus on the safety aspects of
dependability as the main objective is to comply with ISO 26262 standard. The activities start
as soon as the stakeholders requirements have been specified. The main activities are, on the
one hand, the Preliminary Hazard Analysis (PHA), which lists and evaluates the hazardous
events of the system (Feared System Event (FSE), from the system viewpoint, and Feared
Customer Event (FCE), from the customer point of view) in order to define the safety goals at
the system level. And, on the other hand, the analysis of the causes leading to the hazardous
events. This cause analysis will enable to derive the safety goals on the system into safety
requirements on the functional and physical architectures and on the elements of these
architectures.
All the above-mentioned activities are the object of verification and validation activities (V&V
in the figure) such as documents inspections, simulation, impact analysis of change requests,
etc. Those processes are iterative and form a design loop that can be repeated partially or
completely following the evolution of needs, the emergence of constraints or the impossibility
to realize some constituents (i.e., sub-systems) of the system under development. The
sub-systems are then developed following either a similar process to the one we presented, if
the sub-system is complex in the sense that it calls for different professional fields, or a specific
process, if the subsystem calls for only one professional field such as software, electronics,
mechanics, etc.

Problems of the Current Process. The development of automotive mechatronic systems
requires the participation of different professional fields (e.g., vehicle architecture, mechanic,
electronic, software, etc.), each having its own language, its own jargon. Knowledge and
information are often implicit to one specific professional field. They are known to experts or
specialists of the profession, but are not always well capitalized and, therefore, they are
unknown to the other fields or, even worse, they might be lost if those experts or specialists
change of position. It is the role of the system engineers to effectively take into account all
those system stakeholders (i.e., the professional fields concerned with the system) and
orchestrate their contributions in the big picture as to develop a correct system solution. In
other words, system engineers must overcome a consistency problem.

From a syntactic point of view, the consequences are not too severe. Syntax consistency
problems arise when two different terms are used to name one same thing. As a usual example,
we often work with documents and models that have terms in English and French languages.
Consequently, we might say that working with two models with different names “just” takes
more time. As the meaning is not altered, we can somehow understand how it all comes down
together. It is just a matter of realizing that a given actor calls “this thing that way” and living
with that. From the semantic point of view, however, the problem takes a completely different
dimension. The problem can be summarized as the utilization of one same term by two
different professional fields to designate respectively two different concepts. This can lead to
situations that are so contradictory that we might end up trying to solve a problem with no
solution. Ultimately, when the actors of different professional fields exchange information or
knowledge, some content is lost either by communication omission or by misinterpretation of
this information as mentioned by (Burr et al 2005). The other possible consistency problem is
less fundamental but equally important and consists in inter-domain consistency. As the system
development is carried out by different domains, each of them relies only on the information
relevant to their activity. The information manipulated by the different domains can intersect
and the difficulty is to guarantee that all the domains are working with consistent information
ensuring consistency of the design process (Papadopoulos et al 2001).

Transition to Model-Based System Engineering (MBSE). Renault is currently transitioning
to a MBSE process for the development of its vehicle systems. The use of formal and informal
(but consistent) models to create a common semantic model is expected to facilitate systems
engineering activities and to avoid the encountered drawbacks of previous document-centric
implementations of the process, which were lacking semantic consistency among the different
modeled objects. The objective of MBSE is to produce and control a consistent, correct and
complete global model of the system, which contains all the information that specifies, designs
or will allow the verification and validation of the system. The main benefits of implementing
MBSE, as they are emphasized in (Estefan 2008 and Friedenthal et al 2008), include:

- improved quality through a more rigorous and costless traceability between
requirements, design, analysis and testing

- increased productivity through the reuse of models and automated document generation
- enhanced communication by integrating views of the system from multiple

perspectives

The risk of developing inconsistent models that have different conceptualizations of the same
system according to their own viewpoint still remains very present. Inconsistencies between
models discovered too late in the development process may produce huge costs. Consistency is
then a crucial issue and needs to be maintained at all levels in the development process.
Therefore, the consistency problem concerning MBSE can be formulated as the demonstration
of the consistency of two different designs models.

We have opted to build an automotive ontology because of its capability to describe in a formal
and explicit way the concepts of a domain, their properties and their relationships as it seems
essential to facilitate the communication between the actors of a project (shared common
language, minimization of information loss, improvement of information capitalization and
reuse). The interested reader can refer to Grubber (1995) to understand the concepts upon
which an ontology is built upon to develop those capabilities. Another key element in MBSE is
the transformation of models, which allows the definition and implementation of operations on
models. This provides a transformation chain that enables the automated or computer assisted
development of a system from its corresponding models. Model transformations implicitly
embed some semantic knowledge that ensures the inter-model consistency. In the next section,
we present an ontology as a system consistency reference model placed at the heart of the
system design process.

Ontology Centric Design Process
As shown in figure 2, we propose to introduce an ontology as the central element of the system
design process. In this figure, we separate into two branches the activities pertaining to system
design and safety presented in the previous section. The ontology is instantiated for the system
under development. It will serve as the consistency reference model in the RCB project, which
follows a model-based approach presented in (Chalé Góngora et al 2010).

Figure 2. Central role of the system and safety ontology in the design approach

Use of the Reference Model. The actors of a development project, independently of their
respective fields or area of expertise, will refer to the ontology (a shared conceptualization of
the system and safety engineering domain and of the system under development) to verify and
validate the compliance, the completeness and the consistency of the information (i.e.,
documents and models) produced by the system design and safety activities.

Figure 3 illustrates some possible uses of an ontology in a model-based approach. The figure
presents the example of two Simulink models, but the approach is applicable to other types of
models. In this example, we are interested in the signals (i.e., the solid straight arrows) of the
Simulink models. The ontology models this concept with the flow class with an attribute (not
represented in the figure) maxValue. We can define semantic consistency relations with the
help of transformations or mappings between the domains of the ontology and of the language
of the Simulink tool, on the one hand, and between the instances of the ontology and the
instances of the elements of Simulink, on the other hand.

Define stakeholders
requirements

ONTOLOGY
System and

Safety

Define system
technical requirements

Design functional
architecture

Design physical
architecture

Sub systems
technical requirements

Preliminary
hazard analysis

Undesired events
cause analysis

Document Document Document Documents

Stakeholder
requirements

Compliant design
documents and models

Needs

Document Document Document Documents

Document Document Document Documents

Document Document Document Documents

Models Models Models

Models Models Models

Document Document Document Documents Models Models Models

Document Document Document Documents Models Models Models

Document Document Document Documents
FMECA and

other analysis Models Models Models

Figure 3. Uses of an ontology as a reference model of a MBSE approach

Assuming we have defined that Simulink signals are equivalent to the ontology flows, it is then
possible to:

1. Enrich the ontology: All the signals of a Simulink model will enrich the instances of the
ontology. In the figure, the signal Torque_Frein_Electrique of the Simulink model
defines the flow Flow_001 in the ontology. For this flow, we define a unique maximal
value of the braking force maxTorque.

2. Use knowledge in the ontology: A second Simulink model will be able to use the flows
of the ontology and gather the information previously defined. In the figure, the flow
Flow_001 of the ontology and the signal Electrical_Brake_Torque of the second model
are equivalent. In Simulink, this signal should connect to a port that enables to type the
flow. In our example, this value has an upper bound equivalent to maxTorque.

3. Verify the consistency of a model with respect to the ontology: If the signal
Electric_brake_Torque (that models a flow representing the braking torque of the
electrical engine) does not exceed in simulation the maximum value maxTorque, then
the signal is coherent to the ontology (for the maxValue relation). Generalizing to all
the relations defined into the ontology, we can assess the consistency of a model
compared to the ontology.

4. Verify that two models are consistent: If we had defined a mapping between Flow_001
and Torque_Frein_Electrique and between Flow_002 and Electrical_Brake_Torque,

3 Consistent
flow?

Torque_Frein_Electrique

then a user can notice that those two instances are equivalent since they represent the
same element in the system, even though two designations are used in the models (one
in French and the other in English). Defining an equivalence between those two
instances will result in an inconsistency. In figure 3, two different values for the
maxValue have been defined (i.e., maxTorque is different from maxTorque2) whereas
in the ontology we specified that a flow can only have one maxValue. In the opposite
case (i.e., maxTorque is equal to maxTorque2) and generalizing, the two models are
consistent and, once again, they describe the same system and we have some evidences
that a solution for the system exist. Generalizing even more, it becomes possible to
verify the consistency of the whole system design through an ontology.

In a general manner, the project actors create information in documents and models. The
ontology will enable them to verify the consistency, the completeness and the conformity of the
produced information. Once verified, the new information can be imported into the ontology
(Kergosien et al 2010). Another essential use of the ontology, not presented is this paper, is the
possibility to query the ontology as a knowledge base and infer knowledge. Reference
information can be exploited to produce new views (system views) and generate new
information (Sure et al 2002). The ontology is therefore the reference (model) that, on the one
hand, contains the reference information that describes the system under development and, on
the other hand, connects the information it contains with the information present in the
documents and models produced during the course of the system development project.
The System and Safety Ontology. Figure 4 shows a part of the system and safety ontology
under development. As presented in (Chalé Góngora et al 2010) the ontology serves as a data
model for the systems covered by the ISO 26262 standard. This data model formalizes the
relevant concepts of the systems engineering domain, as defined by INCOSE (e.g.,
requirements, functions, etc.), and of the safety domain, as defined in (Avizienis et al 2004)
and in the ISO 26262 standard (e.g., safety goal, safety requirement, ASIL, etc.), as well as the
relations between all those concepts.
We use the “Ontology Web language” (OWL 1.03), a formal language with mathematically
defined syntax and semantics4. For instance, a Safety Goal is defined by a couple Feared
System Event (FSE) and ASIL. Defining a safety goal that is in relation with two different
ASILs would then result in a contradiction on the cardinality restriction between safety goal
and ASIL. The ontology is realized with the help of Protégé 3.4.45. This version of Protégé
includes in particular a plug-in for the “Semantic Web Rule Language” (SWRL) and an
interface with the rule engine Jess6. This plug-in allows expressing rules on the ontology that
can be used to infer more complex knowledge than with the use of OWL only. For instance, it
is possible to express the logical consequence that, if a requirement is implemented by a
function and the requirement is part of another requirement, then this other requirement is also
implemented by the function. This enables to show, for example, all the functions that
participate to the satisfaction of a requirement.

3 www.w3.org/2004/OWL/
4 Attention must be paid to the sense of semantics. It just allows to describe the structure of the universe of
discourse and by no means tries to explain the universe of discourse.
5 protege.stanford.edu/
6 protege.cim3.net/cgi-bin/wiki.pl ?SWRLTab/

Figure 4. System and safety ontology

As of now, the ontology consists in 97 classes, i.e., concepts, and more than 100 properties, i.e.,
relations. In figure 4, we present only the most general concepts and relations. The instantiation
of the ontology has started on a subset of the case study for demonstration purposes. It results
that the reference model of the RCB system comprises 66 requirements, 79 functions with 83
flows and 22 components (not including interfaces).
In the next section, we discuss about model-driven approaches and model transformations and
explain how they can be integrated in the framework of the ontology centric design process.

Model transformation
Applying Model-Driven Architecture to System Engineering Processes. Model-driven
engineering (MDE) or Model-driven development (MDD) is originally a discipline in software
engineering that relies on models, but introduces a higher level of abstraction by defining
meta-models as first class entities. The idea behind MDD is to create different models of a
system at different levels of abstraction, in order to achieve an architectural separation of
concerns, and to use transformations to produce the desired implementation. In current
literature, we can find various approaches to model transformation techniques. The best-known
MDD realization is the MDA approach of the OMG who introduced this architectural
framework in order to perform correct and automatic model transformations that provide
increasing capabilities regarding costs, quality and delivery cycles challenges. Numerous
recent efforts and studies investigate the applicability of MDA principles to the Systems
Engineering domain. A 10-20% efficiency gain is expected once this approach is applied.
Before that, industrial companies have to understand this approach, adapt it to SE domain and
adapt their organization as well. In (Estefan 2008) it is highlighted how OMG MDA is applied
to a typical SE life cycle, taking into account the artifacts and the deliverables associated with
each MDA view. Tools provided to support MDA in a MBSE approach are expected to become
sufficiently mature in the near future with automated transformation processes.
Model transformation is an essential part of the MDA framework. In this framework, models
are based on meta-models that comply with the Meta-Object Facility (MOF) standard of the

1 1

Component
1

Internal
Interface

2..*

1
External
Interface

1

Interface

1..*

Connects

Connects 1..*

Is a

Organic Architecture

Is a

System

External
Element

1..*

1..*

1
Is composed of

Safety Goal

Safety
Requirement

Is a

Is a

1

1

Undesirable
System Event

ASIL

Requirement

Is allocated to
1

1..*

Operating Mode

Transition
1
2

Function

1..*

1

0..*

1

Links

Produces
Consumes

Activates

Is activated by a
combination of values

1

Functional Architecture

Is described in

1

Is derived into

Is allocated to

1..*

1

1

System concept Legend Safety concept

Dependability

1

OMG that uses the layered concepts of instance, model, meta-model and meta-meta-model.
Model transformation is the automatic generation of a target model (the result of the
transformation) from a source model (the input of the transformation) by a transformation
engine according to a transformation model (a set of transformation rules), see figure 4 below.

Figure 5. Elements of model transformation

Transformation rules are defined whenever possible for the meta-model level and written as
expressions of transformation languages. In the MDA framework, transformation rules are
entered into a transformation tool, which can then automatically interpret them and execute the
transformation. For that purpose, a formal syntax for writing transformation rules must be
defined (Anneke et al 2003). In the case of automatic model transformations, the mapping
between the different concepts has to be developed only once for a pair of meta-models, not for
each model instance (Levendovszky et al 2002). Therefore, the specification of meta-models is
a prerequisite for the execution of automatic model transformation.
Model Transformation Panorama. As already mentioned, a major advantage of the model
based development process consists in the provided support for the analysis and the
construction of a consistent, correct and complete system model. In order to produce a coherent
global system model integrating different views of the system at different stages of the
development process and at different abstraction levels, two elements are important:

- the techniques used to perform analyses on the models along with the establishment of
traceability,

- the languages used by those techniques.

Modeling languages must have sufficient power to impose consistent modeling rules and to
allow automatic (i.e. tool supported) analyses and transformations through a non-ambiguous
interpretation of model elements. The final goal is to have a complete and seamless system and
component development environment (methods, techniques, tools) which supports the whole
system and components design process regarding safety aspects. To achieve this goal, one
future perspective is to analyze all the languages (general or domain specific) in order to
identify the model transformations that are necessary to obtain a chain of model
transformations enabling the automated or computer assisted development of the system.
Further investigations must be concentrated on choosing the most appropriate and efficient
transformations covering all activities within the adopted process inside Renault.

Meta-Meta-Model (MMM)

Source Meta-Model (MMa) Transformation Meta-Model
(TMa)

Target Meta-Model (MMb)

Transformation Model (TM)

Source Model (Ma) Target Model (Mb) Transformation engine

Complies with

Complies with Complies with

Complies with

Complies with

Complies with

Complies with

write read
exec

from to

An intermediate result is presented in table 1. This table shows a partial first comprehensive
panorama on existing and required model transformations, which will be able to cover the
Renault SE process currently under deployment. We performed a study that focused on
existing transformation approaches (adopted techniques and defined transformation rules).
Some approaches are strengthened by implemented tools that serve as a proof of concept, some
are commercialized and others have yet to be implemented.

Table 1: Model transformation panorama (excerpt)

Source
Language

Target
Language

Artifacts to be
transformed

(source/target)

Existing
Transformation
Tool/Provider or

Specified
Transformations

Transformation
Approach

Technical Constraints of Transformation
Tools/Remarks

UML B
Language

Source artifacts:
class diagram, state
machine diagram

Target artifacts:

formal B
specifications

Tool: UML2B

Tool: UML-to-B

UML2B: Pattern
matching through the use

of Objective CAML
language which facilitates
defining transformations

rules

UML-to-B: MDA-based
transformation technique

founded by a set of
structural and semantic

mappings between UML
and

B meta-models

UML2B: Working on Linux, XMI standard
support (especially those generated by

Objecteering UML Modeler 5.2.1). The user must
dispose of Objective CAML language (version

3.04 or higher) and a PXP parser

UML-to-B: UML and B meta-models are encoded
with Eclipse IDE thanks to the Eclipse Modeling
Frame-work (EMF) and more precisely thanks to

eCore tool (the eCore language used to create
models in EMF conforming to the MOF)
Transformation rules are written in oAW2

(openArchitectureWare) using xTend tool, which
supports MDA

B
Language UML

Source artifacts:
formal B

specifications

Target artifacts:
class and state

machine diagrams
(future support of

sequence and
collaboration

diagrams)

Tool: B2UML Pattern matching B2UML:automatic transformation process; it does
not allow designer intervention

Ontology-Based Model Transformation Framework. In MBSE, a model allows capturing
the relevant aspects of a system from a given perspective, and at a precise level of abstraction.
During the system development, different model types are realized to represent specific
possible system views for any of the design process activities (specifications analysis, system
architectural design, validation and safety analysis). The models should contain only the
aspects needed to support the design process phase they are used in, hiding unnecessary
complexity. Models are supported by languages that have at least a well defined structure (i.e.,
syntax) and in some cases a well defined meaning (i.e., semantics). When the syntax and
semantics are well defined (i.e., mathematically defined) the language is connoted formal. In
MDA, meta-models are used to define the syntax and semantic of languages. Most
meta-models are semi formal in the sense that their syntax is formal but their semantics is not.
Following those semi formal meta-models, model transformations operate essentially at the
syntax level but always embed implicitly some semantic knowledge (Roser and Bauer 2005)
that ensures the inter-model consistency. We argue that the system and safety ontology can
make explicit the part of the semantic knowledge that is common to the source and target
domains involved in a transformation.
We propose a framework that ensures model transformations consistency with the ontology.
Figure 5 illustrates this framework. We build upon the framework of model transformation as
defined by the OMG so we can see two meta-models, source and target, with the
transformation model in the center. For the purpose of the example, we represented two

transformation models in the figure. At the top of the figure, we place the system and safety
ontology that defines those domains with their concepts and relations. Actually, both
meta-models and ontologies can be used to define concepts and relations (Söderström 2001) so
meta-models and ontologies can be used independently as the meta-model in MOF for model
transformations. The terms mapping and transformation are interchangeable and can be used
indifferently but the term mapping is encountered more frequently in ontology literature so we
will use this term when the transformation involves an ontology.
In the framework, a model transformation is still defined independently from the ontology.
However, the meta-models involved in the transformation need to be mapped with the
ontology, so we define one mapping from the ontology to each meta-model (Source Mapping
and Target Mapping). In the figure, we represented only some concepts of the meta-models
and the ontology but the idea can and has to be generalized to relations. Mapping the ontology
to the meta-models involved in a transformation enables to define the concepts of the
meta-models that are equivalent with respect to the ontology. For instance, the concept C of the
source meta-model and the concept i of the target meta-model are equivalent as they are
respectively mapped with the same concept 3 in the figure. Those equivalent concepts enable to
define the consistency of a transformation with respect to the ontology.

Figure 6. Model transformation framework

In the figure, Transformation Model 1 is consistent with the ontology as all the transformation
rules are consistent with the ontology, i.e., all the source concepts that are mapped with the
ontology are transformed into their equivalent target concept and all the target concepts that are
mapped with the ontology have been transformed from their equivalent source concept. If a
source concept is not subject to transformation (e.g., concept A is not the object of
transformation) the consistency property still holds. The framework does not allow checking
the consistency of concepts outside the ontology so we disregard the transformations of those
concepts as they are neither fundamental for systems engineering nor for safety.

ONTOLOGY
System and

Safety

1 2 3

4 5 6

Source Mapping

1

2

3

4 A

B

C

D

Target Mapping

3

4

5

6 i

ii

iii

iv

Source Meta-Model

A B E

F C D

Target Meta-Model

i ii v

vi iii iv

Transformation Model 1

A

B

C

D

vi F i

ii

E

Transformation Model 2

B

C

D

i

ii

E
A iv

iii F

Legend

Concept of the
ontology

Concept not in
the ontology

From From

From

To To

To

Transformation Model 2 illustrates the contrary as source concept A is transformed into target
concept iv and those concepts are not mapped to the same ontology concept (1 is mapped to A
and 6 is mapped to iv. 1 and 6 are not equivalent). The transformation is inconsistent with
respect to the ontology. If a source concept not mapped with an ontology concept is
transformed into a target concept mapped with an ontology concept then the transformation is
inconsistent (e.g., source concept 6 is transformed into target concept iii). Reciprocally, if a
source concept mapped with an ontology concept is transformed into a target concept not
mapped with an ontology concept, the transformation is inconsistent.

This framework enables to guarantee the interoperability of different tools on the semantic
level. The ontology presented in the previous section explains how system and safety
engineering have to be understood. Within the framework, we can verify that the SE design
tools implement correctly the ontology at the semantic level (i.e., the meta-model implemented
by the tool is consistent with the ontology). Moreover, the framework shows how those tools
can interoperate seamlessly via model transformations that are consistent with the ontology.
Finally, this framework enables to assess if the language and the transformations proposed by a
tool correctly implement the ontology and, therefore, if this tool can be used to support the
Renault system design process.

Conclusion
In this paper, we presented ongoing initiatives at Renault that aim at introducing formal
descriptions in the SE design process. A system and safety ontology has been defined, it
integrates the concepts of the ISO 26262 standard, which deals with the functional safety of
electric/electronic/programmable systems, with the concepts of the SE design process. This
ontology is used as the reference model in a MBSE approach, meaning that all the models used
during the design process will have to comply with the ontology. The sensible subject of
ontology evolution has been identified but we do not deal with this issue yet. The interested
reader can refer to (Haase and Stojanovic 2005 and Ye et al 2008) for interesting insights and
applications.

Although the initial purpose of these initiatives was to prepare our engineering divisions to the
arrival of ISO 26262, we sense that the benefits of using the ontology go beyond the safety
aspects alone. We argue that the utilization of an ontology allows the elimination of
information losses by improving communication, facilitates the documentation or justification
of design choices and improves tool interoperability and component reuse. Finally, the
approach presented in this paper ensures the consistency of the whole design process.
Coming back to the subject of system safety, our future work will tackle the ISO 26262
requirements that recommend the use of formal methods as a verification technique. The
standard, however, does not give any indication as to which formal method to chose, since this
choice depends on the purpose and scope of validation and verification activities. ISO 26262
represents an opportunity to investigate how these methods can help improve the development
of automotive systems and how they can be adapted to the specificities of the automotive
domain. We have chosen to evaluate the capabilities of the formal languages and formal tools
AltaRica, B and Simulink Design Verifier to formally model and verify that the system
satisfies safety properties during the different phases of the design process. For these
evaluations, the ontology has already helped to identify the similar concepts of the design
artifacts and the languages, facilitating the application of the formal methods

References

1. Anneke K., W. Jos and B. Wim. 2003. MDA Explained: The Model Driven Architecture™:
Practice and Promise, ed. Addison Wesley.

2. Avizienis, CA., J.-C. Laprie, B. Randell, and C. Landwehr. 2004. Basic Concepts and
Taxonomy of Dependable and Secure Computing. IEEE Transactions on Dependable and
Secure Computing, , 1(1): 11–33.

3. Bishop, R. H. 2008. Mechatronic Systems, Sensors, and Actuators : Fundamentals and
Modeling. The Mechatronics Handbook Series, Volume 1 of The Mechatronics Handbook.
2nd edition.

4. Burr, H., T. Deubel, M. Vielhaber, S. Haasis, and C. Weber. 2005. CAx/Engineering Data
Management Integration: Enabler for Methodical Benefits in the Design Process. Journal
of engineering design, 16(4) :385–398.

5. Chalé Góngora, H. G., O. Taofifenua, and T. Gaudré. 2010. A Process and Data Model for
Automotive Safety-Critical Systems Design. In Proceedings of the 20th annual
International Symposium of the INCOSE (Chicago, IL). Seattle: INCOSE.

6. Estefan, J.A.. 2008. Survey of Model-Based Systems Engineering Methodologies (MBSE) -
Rev B. International Council on Systems Engineering. Seattle: INCOSE.

7. Sanford, F., Moore, A. and Steiner, R.. 2008. A Practical Guide to SysML- The Systems
Modeling Language, Morgan Kaufmann OMG Press.

8. Gruber, T.R.. 1995. Towards Principles for the Design of Ontologies Used for Knowledge
Sharing. International Journal of Human-Computer Studies, 43 :907–928.

9. International Organization for Standardization (ISO). 2009. Draft International Standard
ISO/DIS 26262: Road Vehicles – Functional Safety. Geneva: ISO.

10. Kergosien, Eric, Mouna Kamel, Christian Sallaberry, Marie-Noëlle Bessagnet, Nathalie
Aussenac-Gilles and Mauro Gaio. 2010. Construction et enrichissement automatique
d’ontologie à partir de ressources externes. CoRR, (abs/1002.0239).

11. Levendovszky, T., G. Karsai, M. Maroti, A. Lede-czi and H. Charaf. 2002. Model Reuse
with Metamodel-Based Transformations. In Proceedings of ICSR-7. ed. C. Gacek .
Springer Berlin / Heidelberg.LNCS 2319/2002, 166-178.

12. Papadopoulos, Y., Mcdermid, J., Sasse, R. and Heiner, G. 2001. Analysis and synthesis of
the behaviour of complex programmable electronic systems in conditions of failure. In
Reliability Engineering & System Safety, Vol. 71, No. 3. (March 2001), pp. 229-247.

13. Roser, S. and Bauer, B. 2005. Ontology-Based Model Transformation. MoDELS Satellite
Events 2005: 355-356

14. Söderström, Eva, Birger Andersson, Paul Johannesson, Erik Perjons and Benkt Wangler.
2001. Towards a Framework for Comparing Process Modelling Languages. In Lecture
Notes In Computer Science; Vol. 2348. Proceedings of the 14th International Conference
on Advanced Information Systems Engineering. 600 – 611.

15. Struss, P. and C. Price. 2004. Model-Based Systems in the Automotive Industry. AI Mag,
24(4): 17–34.

16. Sure, Y., Staab, S. and Studer, R. 2002. Methodology for Development and Employment of
Ontology Based Knowledge Management Applications. SIGMOD Rec., 31(4) :18–23.

17. Ye, R., Wang, Y., Guo, J. and Xiong, Q. 2008. A Method to Guarantee Ontology

Consistency on Property Range Changes. In Proceedings of IFIP International Conference
on Network and Parallel Computing, 2008.

Biography
Hugo Guillermo Chalé Góngora is a specialist in Systems Engineering at Renault. He is
currently working as a system architect for systems of systems and is also in charge of the
development and the deployment of model-based systems engineering for the vehicle
engineering divisions. During the last years, he has been interested in safety-critical systems,,
formal methods and architecture description languages and, most recently, in autonomous
vehicles. He holds a doctorate degree in thermal and energy sciences (Centrale Lyon, France),
a post-graduate diploma on internal combustion engines and environment (IFP School, France)
and on energy conversion (ENSAM, France) and a mechanical-electrical engineering degree
(UNAM, Mexico).
Thierry Gaudré is a specialist in Systems and Software Engineering at Renault. He is in charge
of the development and deployment of specification methods and requirement management
tools for systems and software. During the last years, he has worked on Requirements
Engineering participated to Systems Engineering training for Renault engineers and technical
support for innovative systems projects. In the past, also for Renault, he has worked in the field
of Quality assurance and on Dependability of software-intensive systems where he led studies
on Verification and Validation techniques by means of statistical tests and formal methods.
Thierry Gaudré is a 1992 Engineer graduate from Supélec (France), specialized on
Instrumentation and Measurement systems.
Nicole Levy is full professor in computer Science at Cnam, Paris and member of Cedric
Laboratory since September 2010. She occupied the same status at University of Versailles
Saint-Quentin en Yvelines, being member of the PRiSM Laboratory for 12 years. Prior to that,
she has been assistant professor at University of Nancy 1 belonging to the LORIA laboratory.
Her research interests include using formal methods to specify complex systems and software
architectures. She has led the University of Versailles engineering school, called ISTY, for 5
years. She had a research group at PRiSM, on development and reconfiguration processes for
software architectures based on both functional and non-functional properties.

Jean-Louis Boulanger is an Independent Safety Assessor in the railway domain and member of
CERTIFER. He obtained his PhD in computer Science in 2006. Prior to that, he worked with
many industries of the railway domain. His research interests include requirements, software
verification and validation, traceability and RAMS with a special issue for SAFETY.
Ofaina Taofifenua is a doctoral candidate at UVSQ (France) for Renault. His research interests
include formal methods and their application to the design of mechatronic systems and the
security-innocuousness of safety-critical systems. He possesses a Master in data processing
from the University of Bordeaux (France).
Alexandra-Cristina Ţopa is an intern currently working at Renault as part of her Master degree
in Complex Industrial System Engineering at “Ecole Polytechnique” (France). She took part in
the project "Embedded System Design, tools and methods for Model Transformation". She
obtained her bachelor degree from the “Politehnica” University of Bucharest (Romania), in
Automatic Control and Computer Science.

