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Abstract. The upcoming ISO26262 standard, which deals with the functional safety of road 
vehicles, will induce car manufacturers to adapt the way in which vehicle systems are usually 
developed. To achieve this, more rigorous development processes along with new tools and 
techniques will most certainly be necessary. This paper presents an overview of current 
initiatives at Renault dealing with the improvement of development processes for mechatronic 
systems to comply with ISO 26262. It focuses on introducing more formalization in the 
systems engineering design process via the definition of an ontology to formalize the concepts 
and knowledge of the systems engineering, functional safety and automotive specialty domains 
(e.g. braking, energy management). The ontology is at the heart of our improvement initiatives 
since it allows establishing logical consistency of the whole design process. A regenerative 
hybrid braking system integrated into a full electrical vehicle will serve as the case study for the 
evaluation of the improvements made possible by the approach. 

Introduction 
The Context. Car manufacturers have had to face an always-increasing list of stakes and 
challenges for the last several years. The strongly competitive worldwide market of today 
imposes a car manufacturer to offer to its customers relevant, innovative, reliable, 
environment-friendly and safe services, at competitive costs while complying with ever more 
stringent regulations and times-to-market (Chalé Góngora et al 2010). The solutions to face 
this challenges have typically been the development of mechatronic systems, which make an 
integrated use of mechanical, electronic and software technologies (Bishop 2008), and the 
implementation of model-based development processes (Struss and Price 2004). 
This causes an increase in system complexity, which makes safety analyses on these systems 
equally more complex, time consuming and thus more expensive, which is incompatible with 
the economic constraints and the relatively short development cycles of the automotive 
industry. Mastering safety risks is nevertheless necessary, as illustrated by the many examples 
of car manufacturers forced to perform important vehicle recalls because of failures that are not 



 

  

always immediately identified or well understood. Furthermore, the arrival of the ISO 262621 
standard (ISO 2009) regarding the functional safety of electrical electronic (EE) embedded 
systems brings along new requirements with which automotive systems and development 
processes will have to comply. Although the standard will not be compulsory at a first stage, it 
is already acting as a catalyst for the research of improved processes, methods and tools in 
order to master safety risks. 

Motivation. One of the current challenges at Renault consists in preparing its engineering 
divisions so that they are capable of developing mechatronic safety-critical systems according 
to the ISO 2626 standard. The standard defines a system life cycle and the activities that must 
be performed in the different phases of this life cycle, along with the support processes that are 
necessary for these activities. It also defines a specific method for automotive hazard analysis 
that identifies hazards and classifies them using ASIL2, for Automotive Safety Integrity 
Levels. The result of this analysis is the definition of couples {Hazard, ASIL} called Safety 
Goals. Safety goals are allocated from the system level to its components according to the rules 
defined by the standard. This leads to the definition of specific safety requirements on the 
system, on its components and on the associated development processes, depending on the 
ASIL quotation. The satisfaction of these requirements allows asserting the absence of 
unacceptable residual risks. 
Therefore, the standard raises some problems concerning the demonstration of functional 
safety and, more generally, concerning the development processes which are currently 
under-formalized. Indeed, one of the strengths of ISO 26262 is that each requirement in the 
standard is associated to an ASIL. So, the compliance of the system, of its components 
(whatever their nature) and of their development processes to the standard can be obtained and 
verified in a systematic way. This suggests that better formalization can be beneficial to ensure 
consistency with respect to the standard.  
This paper presents an answer to this state of affair. We build upon our previous work (Chalé 
Góngora et al 2010) and propose to introduce the use of ontology into the current systems 
development process at Renault. A regenerative hybrid braking system was chosen as our case 
study in order to evaluate the foreseen techniques on a non-trivial real application. The 
advantages of the proposed ontology-centric approach are: 

- A formal definition of all the concepts and relationships (our system and safety design 
language or data model) shared and understood by all actors from different domains. 

- The possibility to verify that all the data describing a system (e.g., requirements, 
functions, flows, components, interfaces, etc.) are consistent and complete. 

- Eased impact analyses following a change request and eased modifications of all 
impacted data.  

- The existence of numerous tools supporting the manipulation of the ontology. 

In the first part of the paper, we present the current design process at Renault, point out some of 
its limitations and propose solutions to overcome them. We then introduce our ontology and 
illustrate the role it could play in a development process. Next, we present the link between the 
ontology and the work that has been done on model transformation. Finally, we conclude on 

                                                
1 ISO 26262, currently under final revision, is the automotive adaptation of IEC 61508, an international generic 
standard on the functional safety of electric, electronic and programmable electronic safety related systems. Its 
generic scope , which has made it a reference for all the main industrial sectors, and has made IEC 61508 the 
object of numerous adaptations that take into account the specificities of these different sectors. 
2 ASIL are defined in four levels of requirements and measures of conformity that allow asserting the absence of 
an unacceptable residual risk: A, B, C and D, the latter representing the most stringent level. 
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the future perspectives that are envisaged to further promote formalization in Systems 
Engineering (SE) development process at Renault. 

Current Design Process at Renault 
The development processes of automotive systems practiced by car manufacturers or by their 
suppliers are continuously evolving in order to make them either more competitive or 
compliant to the regulations that are applicable to the automotive industry. The work presented 
here focuses on the specification and design phases of the development process (i.e. the 
descending branch of the “V” cycle), since it is during these phases that stakeholders and 
customer requirements are elicited, transformed and allocated to system components that will 
be developed by the suppliers of the car manufacturer. 
The System Design Process. Figure 1 presents a simplified illustration of the system design 
process. 

The four main activities of this design process are the elicitation of stakeholders requirements 
(capture and reformulation of original needs), the definition of system technical requirements, 
the functional architecture design and the physical architecture design. Let us introduce the 
regenerative hybrid braking system (RCB for Regenerative Combined Braking) case study to 
illustrate this process. This system is integrated into a full electrical vehicle and combines basic 
hydraulic and advanced electro-mechanical technologies for braking actuators. 
One of the missions of this system is to recuperate as much electrical energy as possible by 
using the electric motor of the powertrain and stock this energy for future use, when the driver 
brakes or decelerates the vehicle. During the elicitation of stakeholders requirements, the 

Figure 1. System design process at Renault 



 

  

original stakeholders needs are captured in the “System Stakeholder Requirements document” 
(SSR), which contains requirement statements that are not always clear or precise. For 
example, one of the requirements of the “braking service” stakeholder states: “The RCB system 
shall allow the driver to modulate the deceleration of the vehicle in a stable way”. When 
defining the system technical requirements, stakeholder requirements are transformed into a set 
of precise, achievable and consistent requirements, with tradeoffs between incompatible 
stakeholder requirements being possible. For example, one technical requirement associated to 
the stakeholder requirement cited above states: “The RCB system shall ensure the stability of 
the vehicle during braking by taking into consideration the vehicle mass, the wear and 
temperature of the braking pads and the environmental driving conditions”. Technical 
requirements are gathered in the document called “System Technical Requirements document” 
(STR). 
In functional architecture design, the functions or transformations that the system must perform 
in order to satisfy the requirements stated in the STR (mainly functional requirements) are 
identified, described and made precise (decomposed). The flows (i.e., information, energy or 
material flows) that are used (produced or consumed) by the functions are specified as well. 
The internal behavior of the system is also described and corresponds to the logic execution of 
the functions of the system. During physical architecture design, we define the constituents of 
the system, their interfaces and their connections to fully satisfy the technical requirements 
(mainly the non-functional ones like cost, weight, size, forbidden or authorized use of 
materials, etc.). During this process, the functions of the system are eventually decomposed to 
be allocated on the constituents and the flows are associated with the interfaces and connectors 
that transport them. These architectures are usually portrayed in the form of bloc-diagram type 
models. For reasons of confidentiality, the system architecture (functional and physical) is not 
presented in this paper. 
The activities related to system dependability are represented in the center of figure 1 because 
they take place during all the activities presented above. We focus on the safety aspects of 
dependability as the main objective is to comply with ISO 26262 standard. The activities start 
as soon as the stakeholders requirements have been specified. The main activities are, on the 
one hand, the Preliminary Hazard Analysis (PHA), which lists and evaluates the hazardous 
events of the system (Feared System Event (FSE), from the system viewpoint, and Feared 
Customer Event (FCE), from the customer point of view) in order to define the safety goals at 
the system level. And, on the other hand, the analysis of the causes leading to the hazardous 
events. This cause analysis will enable to derive the safety goals on the system into safety 
requirements on the functional and physical architectures and on the elements of these 
architectures. 
All the above-mentioned activities are the object of verification and validation activities (V&V 
in the figure) such as documents inspections, simulation, impact analysis of change requests, 
etc. Those processes are iterative and form a design loop that can be repeated partially or 
completely following the evolution of needs, the emergence of constraints or the impossibility 
to realize some constituents (i.e., sub-systems) of the system under development. The 
sub-systems are then developed following either a similar process to the one we presented, if 
the sub-system is complex in the sense that it calls for different professional fields, or a specific 
process, if the subsystem calls for only one professional field such as software, electronics, 
mechanics, etc. 
 

 



 

  

Problems of the Current Process. The development of automotive mechatronic systems 
requires the participation of different professional fields (e.g., vehicle architecture, mechanic, 
electronic, software, etc.), each having its own language, its own jargon. Knowledge and 
information are often implicit to one specific professional field. They are known to experts or 
specialists of the profession, but are not always well capitalized and, therefore, they are 
unknown to the other fields or, even worse, they might be lost if those experts or specialists 
change of position. It is the role of the system engineers to effectively take into account all 
those system stakeholders (i.e., the professional fields concerned with the system) and 
orchestrate their contributions in the big picture as to develop a correct system solution. In 
other words, system engineers must overcome a consistency problem. 

From a syntactic point of view, the consequences are not too severe. Syntax consistency 
problems arise when two different terms are used to name one same thing. As a usual example, 
we often work with documents and models that have terms in English and French languages. 
Consequently, we might say that working with two models with different names “just” takes 
more time. As the meaning is not altered, we can somehow understand how it all comes down 
together. It is just a matter of realizing that a given actor calls “this thing that way” and living 
with that. From the semantic point of view, however, the problem takes a completely different 
dimension. The problem can be summarized as the utilization of one same term by two 
different professional fields to designate respectively two different concepts. This can lead to 
situations that are so contradictory that we might end up trying to solve a problem with no 
solution. Ultimately, when the actors of different professional fields exchange information or 
knowledge, some content is lost either by communication omission or by misinterpretation of 
this information as mentioned by (Burr et al 2005). The other possible consistency problem is 
less fundamental but equally important and consists in inter-domain consistency. As the system 
development is carried out by different domains, each of them relies only on the information 
relevant to their activity. The information manipulated by the different domains can intersect 
and the difficulty is to guarantee that all the domains are working with consistent information 
ensuring consistency of the design process (Papadopoulos et al 2001).  

Transition to Model-Based System Engineering (MBSE). Renault is currently transitioning 
to a MBSE process for the development of its vehicle systems. The use of formal and informal 
(but consistent) models to create a common semantic model is expected to facilitate systems 
engineering activities and to avoid the encountered drawbacks of previous document-centric 
implementations of the process, which were lacking semantic consistency among the different 
modeled objects. The objective of MBSE is to produce and control a consistent, correct and 
complete global model of the system, which contains all the information that specifies, designs 
or will allow the verification and validation of the system. The main benefits of implementing 
MBSE, as they are emphasized in (Estefan 2008 and Friedenthal et al 2008), include: 

- improved quality through a more rigorous and costless traceability between 
requirements, design, analysis and testing 

- increased productivity through the reuse of models and automated document generation 
- enhanced communication by integrating views of the system from multiple 

perspectives 

The risk of developing inconsistent models that have different conceptualizations of the same 
system according to their own viewpoint still remains very present. Inconsistencies between 
models discovered too late in the development process may produce huge costs. Consistency is 
then a crucial issue and needs to be maintained at all levels in the development process. 
Therefore, the consistency problem concerning MBSE can be formulated as the demonstration 
of the consistency of two different designs models.  



 

  

We have opted to build an automotive ontology because of its capability to describe in a formal 
and explicit way the concepts of a domain, their properties and their relationships as it seems 
essential to facilitate the communication between the actors of a project (shared common 
language, minimization of information loss, improvement of information capitalization and 
reuse). The interested reader can refer to Grubber (1995) to understand the concepts upon 
which an ontology is built upon to develop those capabilities. Another key element in MBSE is 
the transformation of models, which allows the definition and implementation of operations on 
models. This provides a transformation chain that enables the automated or computer assisted 
development of a system from its corresponding models. Model transformations implicitly 
embed some semantic knowledge that ensures the inter-model consistency. In the next section, 
we present an ontology as a system consistency reference model placed at the heart of the 
system design process. 

Ontology Centric Design Process 
As shown in figure 2, we propose to introduce an ontology as the central element of the system 
design process. In this figure, we separate into two branches the activities pertaining to system 
design and safety presented in the previous section. The ontology is instantiated for the system 
under development. It will serve as the consistency reference model in the RCB project, which 
follows a model-based approach presented in (Chalé Góngora et al 2010).  

 

 
Figure 2. Central role of the system and safety ontology in the design approach 

Use of the Reference Model. The actors of a development project, independently of their 
respective fields or area of expertise, will refer to the ontology (a shared conceptualization of 
the system and safety engineering domain and of the system under development) to verify and 
validate the compliance, the completeness and the consistency of the information (i.e., 
documents and models) produced by the system design and safety activities. 

Figure 3 illustrates some possible uses of an ontology in a model-based approach. The figure 
presents the example of two Simulink models, but the approach is applicable to other types of 
models. In this example, we are interested in the signals (i.e., the solid straight arrows) of the 
Simulink models. The ontology models this concept with the flow class with an attribute (not 
represented in the figure) maxValue. We can define semantic consistency relations with the 
help of transformations or mappings between the domains of the ontology and of the language 
of the Simulink tool, on the one hand, and between the instances of the ontology and the 
instances of the elements of Simulink, on the other hand. 
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Figure 3. Uses of an ontology as a reference model of a MBSE approach 

Assuming we have defined that Simulink signals are equivalent to the ontology flows, it is then 
possible to: 

1. Enrich the ontology: All the signals of a Simulink model will enrich the instances of the 
ontology. In the figure, the signal Torque_Frein_Electrique of the Simulink model 
defines the flow Flow_001 in the ontology. For this flow, we define a unique maximal 
value of the braking force maxTorque. 

2. Use knowledge in the ontology: A second Simulink model will be able to use the flows 
of the ontology and gather the information previously defined. In the figure, the flow 
Flow_001 of the ontology and the signal Electrical_Brake_Torque of the second model 
are equivalent. In Simulink, this signal should connect to a port that enables to type the 
flow. In our example, this value has an upper bound equivalent to maxTorque. 

3. Verify the consistency of a model with respect to the ontology: If the signal 
Electric_brake_Torque (that models a flow representing the braking torque of the 
electrical engine) does not exceed in simulation the maximum value maxTorque, then 
the signal is coherent to the ontology (for the maxValue relation). Generalizing to all 
the relations defined into the ontology, we can assess the consistency of a model 
compared to the ontology. 

4. Verify that two models are consistent: If we had defined a mapping between Flow_001 
and Torque_Frein_Electrique and between Flow_002 and Electrical_Brake_Torque, 
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then a user can notice that those two instances are equivalent since they represent the 
same element in the system, even though two designations are used in the models (one 
in French and the other in English). Defining an equivalence between those two 
instances will result in an inconsistency. In figure 3, two different values for the 
maxValue have been defined (i.e., maxTorque is different from maxTorque2) whereas 
in the ontology we specified that a flow can only have one maxValue. In the opposite 
case (i.e., maxTorque is equal to maxTorque2) and generalizing, the two models are 
consistent and, once again, they describe the same system and we have some evidences 
that a solution for the system exist. Generalizing even more, it becomes possible to 
verify the consistency of the whole system design through an ontology. 

In a general manner, the project actors create information in documents and models. The 
ontology will enable them to verify the consistency, the completeness and the conformity of the 
produced information. Once verified, the new information can be imported into the ontology 
(Kergosien et al 2010). Another essential use of the ontology, not presented is this paper, is the 
possibility to query the ontology as a knowledge base and infer knowledge. Reference 
information can be exploited to produce new views (system views) and generate new 
information (Sure et al 2002). The ontology is therefore the reference (model) that, on the one 
hand, contains the reference information that describes the system under development and, on 
the other hand, connects the information it contains with the information present in the 
documents and models produced during the course of the system development project. 
The System and Safety Ontology. Figure 4 shows a part of the system and safety ontology 
under development. As presented in (Chalé Góngora et al 2010) the ontology serves as a data 
model for the systems covered by the ISO 26262 standard. This data model formalizes the 
relevant concepts of the systems engineering domain, as defined by INCOSE (e.g., 
requirements, functions, etc.), and of the safety domain, as defined in (Avizienis et al 2004) 
and in the ISO 26262 standard (e.g., safety goal, safety requirement, ASIL, etc.), as well as the 
relations between all those concepts. 
We use the “Ontology Web language” (OWL 1.03), a formal language with mathematically 
defined syntax and semantics4. For instance, a Safety Goal is defined by a couple Feared 
System Event (FSE) and ASIL. Defining a safety goal that is in relation with two different 
ASILs would then result in a contradiction on the cardinality restriction between safety goal 
and ASIL. The ontology is realized with the help of Protégé 3.4.45. This version of Protégé 
includes in particular a plug-in for the “Semantic Web Rule Language” (SWRL) and an 
interface with the rule engine Jess6. This plug-in allows expressing rules on the ontology that 
can be used to infer more complex knowledge than with the use of OWL only. For instance, it 
is possible to express the logical consequence that, if a requirement is implemented by a 
function and the requirement is part of another requirement, then this other requirement is also 
implemented by the function. This enables to show, for example, all the functions that 
participate to the satisfaction of a requirement. 

                                                
3 www.w3.org/2004/OWL/ 
4 Attention must be paid to the sense of semantics. It just allows to describe the structure of the universe of 
discourse and by no means tries to explain the universe of discourse. 
5 protege.stanford.edu/ 
6 protege.cim3.net/cgi-bin/wiki.pl ?SWRLTab/ 



 

  

 
Figure 4. System and safety ontology 

As of now, the ontology consists in 97 classes, i.e., concepts, and more than 100 properties, i.e., 
relations. In figure 4, we present only the most general concepts and relations. The instantiation 
of the ontology has started on a subset of the case study for demonstration purposes. It results 
that the reference model of the RCB system comprises 66 requirements, 79 functions with 83 
flows and 22 components (not including interfaces). 
In the next section, we discuss about model-driven approaches and model transformations and 
explain how they can be integrated in the framework of the ontology centric design process. 

Model transformation 
Applying Model-Driven Architecture to System Engineering Processes. Model-driven 
engineering (MDE) or Model-driven development (MDD) is originally a discipline in software 
engineering that relies on models, but introduces a higher level of abstraction by defining 
meta-models as first class entities. The idea behind MDD is to create different models of a 
system at different levels of abstraction, in order to achieve an architectural separation of 
concerns, and to use transformations to produce the desired implementation. In current 
literature, we can find various approaches to model transformation techniques. The best-known 
MDD realization is the MDA approach of the OMG who introduced this architectural 
framework in order to perform correct and automatic model transformations that provide 
increasing capabilities regarding costs, quality and delivery cycles challenges. Numerous 
recent efforts and studies investigate the applicability of MDA principles to the Systems 
Engineering domain. A 10-20% efficiency gain is expected once this approach is applied. 
Before that, industrial companies have to understand this approach, adapt it to SE domain and 
adapt their organization as well. In (Estefan 2008) it is highlighted how OMG MDA is applied 
to a typical SE life cycle, taking into account the artifacts and the deliverables associated with 
each MDA view. Tools provided to support MDA in a MBSE approach are expected to become 
sufficiently mature in the near future with automated transformation processes. 
Model transformation is an essential part of the MDA framework. In this framework, models 
are based on meta-models that comply with the Meta-Object Facility (MOF) standard of the 
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OMG that uses the layered concepts of instance, model, meta-model and meta-meta-model. 
Model transformation is the automatic generation of a target model (the result of the 
transformation) from a source model (the input of the transformation) by a transformation 
engine according to a transformation model (a set of transformation rules), see figure 4 below. 

 
Figure 5. Elements of model transformation 

Transformation rules are defined whenever possible for the meta-model level and written as 
expressions of transformation languages. In the MDA framework, transformation rules are 
entered into a transformation tool, which can then automatically interpret them and execute the 
transformation. For that purpose, a formal syntax for writing transformation rules must be 
defined (Anneke et al 2003). In the case of automatic model transformations, the mapping 
between the different concepts has to be developed only once for a pair of meta-models, not for 
each model instance (Levendovszky et al 2002). Therefore, the specification of meta-models is 
a prerequisite for the execution of automatic model transformation. 
Model Transformation Panorama. As already mentioned, a major advantage of the model 
based development process consists in the provided support for the analysis and the 
construction of a consistent, correct and complete system model. In order to produce a coherent 
global system model integrating different views of the system at different stages of the 
development process and at different abstraction levels, two elements are important: 

- the techniques used to perform analyses on the models along with the establishment of 
traceability, 

- the languages used by those techniques. 

Modeling languages must have sufficient power to impose consistent modeling rules and to 
allow automatic (i.e. tool supported) analyses and transformations through a non-ambiguous 
interpretation of model elements. The final goal is to have a complete and seamless system and 
component development environment (methods, techniques, tools) which supports the whole 
system and components design process regarding safety aspects. To achieve this goal, one 
future perspective is to analyze all the languages (general or domain specific) in order to 
identify the model transformations that are necessary to obtain a chain of model 
transformations enabling the automated or computer assisted development of the system. 
Further investigations must be concentrated on choosing the most appropriate and efficient 
transformations covering all activities within the adopted process inside Renault. 
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An intermediate result is presented in table 1. This table shows a partial first comprehensive 
panorama on existing and required model transformations, which will be able to cover the 
Renault SE process currently under deployment. We performed a study that focused on 
existing transformation approaches (adopted techniques and defined transformation rules). 
Some approaches are strengthened by implemented tools that serve as a proof of concept, some 
are commercialized and others have yet to be implemented. 

Table 1: Model transformation panorama (excerpt) 

Source 
Language 

Target 
Language 

Artifacts to be 
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Ontology-Based Model Transformation Framework. In MBSE, a model allows capturing 
the relevant aspects of a system from a given perspective, and at a precise level of abstraction. 
During the system development, different model types are realized to represent specific 
possible system views for any of the design process activities (specifications analysis, system 
architectural design, validation and safety analysis). The models should contain only the 
aspects needed to support the design process phase they are used in, hiding unnecessary 
complexity. Models are supported by languages that have at least a well defined structure (i.e., 
syntax) and in some cases a well defined meaning (i.e., semantics). When the syntax and 
semantics are well defined (i.e., mathematically defined) the language is connoted formal. In 
MDA, meta-models are used to define the syntax and semantic of languages. Most 
meta-models are semi formal in the sense that their syntax is formal but their semantics is not. 
Following those semi formal meta-models, model transformations operate essentially at the 
syntax level but always embed implicitly some semantic knowledge (Roser and Bauer 2005) 
that ensures the inter-model consistency. We argue that the system and safety ontology can 
make explicit the part of the semantic knowledge that is common to the source and target 
domains involved in a transformation.  
We propose a framework that ensures model transformations consistency with the ontology. 
Figure 5 illustrates this framework. We build upon the framework of model transformation as 
defined by the OMG so we can see two meta-models, source and target, with the 
transformation model in the center. For the purpose of the example, we represented two 



 

  

transformation models in the figure. At the top of the figure, we place the system and safety 
ontology that defines those domains with their concepts and relations. Actually, both 
meta-models and ontologies can be used to define concepts and relations (Söderström 2001) so 
meta-models and ontologies can be used independently as the meta-model in MOF for model 
transformations. The terms mapping and transformation are interchangeable and can be used 
indifferently but the term mapping is encountered more frequently in ontology literature so we 
will use this term when the transformation involves an ontology.  
In the framework, a model transformation is still defined independently from the ontology. 
However, the meta-models involved in the transformation need to be mapped with the 
ontology, so we define one mapping from the ontology to each meta-model (Source Mapping 
and Target Mapping). In the figure, we represented only some concepts of the meta-models 
and the ontology but the idea can and has to be generalized to relations. Mapping the ontology 
to the meta-models involved in a transformation enables to define the concepts of the 
meta-models that are equivalent with respect to the ontology. For instance, the concept C of the 
source meta-model and the concept i of the target meta-model are equivalent as they are 
respectively mapped with the same concept 3 in the figure. Those equivalent concepts enable to 
define the consistency of a transformation with respect to the ontology. 

 
Figure 6. Model transformation framework 

In the figure, Transformation Model 1 is consistent with the ontology as all the transformation 
rules are consistent with the ontology, i.e., all the source concepts that are mapped with the 
ontology are transformed into their equivalent target concept and all the target concepts that are 
mapped with the ontology have been transformed from their equivalent source concept. If a 
source concept is not subject to transformation (e.g., concept A is not the object of 
transformation) the consistency property still holds. The framework does not allow checking 
the consistency of concepts outside the ontology so we disregard the transformations of those 
concepts as they are neither fundamental for systems engineering nor for safety. 
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Transformation Model 2 illustrates the contrary as source concept A is transformed into target 
concept iv and those concepts are not mapped to the same ontology concept (1 is mapped to A 
and 6 is mapped to iv. 1 and 6 are not equivalent). The transformation is inconsistent with 
respect to the ontology. If a source concept not mapped with an ontology concept is 
transformed into a target concept mapped with an ontology concept then the transformation is 
inconsistent (e.g., source concept 6 is transformed into target concept iii). Reciprocally, if a 
source concept mapped with an ontology concept is transformed into a target concept not 
mapped with an ontology concept, the transformation is inconsistent. 

This framework enables to guarantee the interoperability of different tools on the semantic 
level. The ontology presented in the previous section explains how system and safety 
engineering have to be understood. Within the framework, we can verify that the SE design 
tools implement correctly the ontology at the semantic level (i.e., the meta-model implemented 
by the tool is consistent with the ontology). Moreover, the framework shows how those tools 
can interoperate seamlessly via model transformations that are consistent with the ontology. 
Finally, this framework enables to assess if the language and the transformations proposed by a 
tool correctly implement the ontology and, therefore, if this tool can be used to support the 
Renault system design process. 

Conclusion 
In this paper, we presented ongoing initiatives at Renault that aim at introducing formal 
descriptions in the SE design process. A system and safety ontology has been defined, it 
integrates the concepts of the ISO 26262 standard, which deals with the functional safety of 
electric/electronic/programmable systems, with the concepts of the SE design process. This 
ontology is used as the reference model in a MBSE approach, meaning that all the models used 
during the design process will have to comply with the ontology. The sensible subject of 
ontology evolution has been identified but we do not deal with this issue yet. The interested 
reader can refer to (Haase and Stojanovic 2005 and Ye et al 2008) for interesting insights and 
applications. 

Although the initial purpose of these initiatives was to prepare our engineering divisions to the 
arrival of ISO 26262, we sense that the benefits of using the ontology go beyond the safety 
aspects alone. We argue that the utilization of an ontology allows the elimination of 
information losses by improving communication, facilitates the documentation or justification 
of design choices and improves tool interoperability and component reuse. Finally, the 
approach presented in this paper ensures the consistency of the whole design process. 
Coming back to the subject of system safety, our future work will tackle the ISO 26262 
requirements that recommend the use of formal methods as a verification technique. The 
standard, however, does not give any indication as to which formal method to chose, since this 
choice depends on the purpose and scope of validation and verification activities. ISO 26262 
represents an opportunity to investigate how these methods can help improve the development 
of automotive systems and how they can be adapted to the specificities of the automotive 
domain. We have chosen to evaluate the capabilities of the formal languages and formal tools 
AltaRica, B and Simulink Design Verifier to formally model and verify that the system 
satisfies safety properties during the different phases of the design process. For these 
evaluations, the ontology has already helped to identify the similar concepts of the design 
artifacts and the languages, facilitating the application of the formal methods 
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