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Abstract. For any finite and consistent first-order theory, we can find
a presentation as a rewriting system that enjoys cut admissibility.

Since proofs are rarely built without context, it is essential to develop meth-
ods that are adapted to search for proofs in theories. For instance, SMT provers
provide efficient tools. Nevertheless, they are restricted to some particular the-
ories, such as linear arithmetic or arrays. We would like to have a generic and
automated way of obtaining efficient methods for a given theory, provided it is
consistent. A naive idea is to use an axiomatic presentation of the theory, but it is
now folklore that this is not efficient enough. The theory should therefore be pre-
sented in a more effective manner. One solution is, starting from the axiomatic
presentation, to automatically design a deductive system that is adapted to the
theory. In [23], Negri and van Plato turn variable-free axioms into non-logical
deduction rules that are added to a sequent calculus. Similarly, [10] transforms
a large class of axioms into inference rules in sequent and hypersequent calculi.
Deduction modulo [15] is a bit different: it presents the theory as computation,
by means of a rewriting system, and the inference rules of an existing deduc-
tive system (natural deduction, sequent calculus, etc.) are applied modulo the
congruence associated with this rewriting system. We have shown in [7] that
presenting theories as rewriting systems improves indeed the search for proofs in
the theory. If one wants these presentations to behave well, they should have the
following proof-theoretical property: the cut rule must be admissible. Indeed,
in the usual setting, cut admissibility implies the consistency of the theory, the
subformula property (to find a proof, one can restrict oneself to the subformulas
of the formula to be proved), the existence of proof normal forms, etc. Systems
produced by [23, 10] all have the cut admissibility. However, in deduction mod-
ulo, it depends on the considered rewriting system. The question is: knowing that
the theory is consistent, is it possible to present it as a rewriting system such
that cut admissibility holds in deduction modulo? A presentation as a rewrit-
ing system with the cut admissibility was given for particular theories, such as
arithmetic [17], simple type theory [14], and Zermelo’s set theory [16]. Dowek
designed a systematic way of transforming a consistent propositional theory into
such a rewriting system, using a model of the theory. In [9], we gave a semi-
algorithm that can handle any first-order theory: first, it produces a rewriting
system that corresponds to the theory; second, it completes the rewriting system
to ensure the cut admissibility. It is the second part that may not terminate. In
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Consistency Implies Cut Admissibility 49

this paper, we give a simple way to present any first-order theory as a rewriting
system with cut admissibility. This is done by developing a recent characteriza-
tion [8] of an extension of the resolution method based on deduction modulo as
a combination of the set-of-support strategy [26] and selection of literals.
In the two next sections, we briefly present deduction modulo and refinements

of resolution. Section 3 describes how a theory can be presented as a rewriting
system, and why cut admissibility is implied by its consistency. As the rewriting
system that is produced is too big in practice, we are led to restrict the number
of rules are proposed in Section 4. We conclude by discussing further works.

1 Deduction Modulo

We use standard definitions for terms, predicates, propositions (with connectives
¬,⇒,∧,∨ and quantifiers ∀, ∃), sequents, substitutions, term rewriting rules and
term rewriting, as can be found in [1, 18] . The substitution of a variable x by a
term t in a term or a proposition A is denoted by {t/x}A, and more generally the
application of a substitution σ in a term or a proposition A by σA. A term t can

be narrowed into s using substitution σ at position p (t
p,σ
� s) if σt can be rewritten

to s using substitution σ at position p. A literal is an atomic proposition or the
negation of an atomic proposition. A proposition is in clausal form if it is the
universal quantification of a disjunction of literals ∀x1, . . . , xn. L1∨. . .∨Lp where
x1, . . . , xn are the free variables of L1, . . . , Lp. In the following, we will often omit
to write the quantifications, and we will identify propositions in clausal form with
clauses (i.e. set of literals) as if ∨ was associative, commutative and idempotent.
�� represents the empty clause. The polarity of a position in a proposition can
be defined as follows: the root is positive, and the polarity switches when going
under a ¬ or on the left of a ⇒.
In deduction modulo, term rewriting and narrowing is extended to propo-

sitions by congruence on the proposition structure. In addition, there are also
proposition rewriting rules whose left-hand side is an atomic proposition and
whose right-hand side can be any proposition. Such rules can also be applied to
non-atomic propositions by congruence on the proposition structure. We call a
rewriting system the combination of a term rewriting system and a proposition
rewriting system. Given a rewriting system R, we denote by A−→

R
B the fact

that A is rewritten in one step in B, either by a term rewriting rule or by a
proposition rewriting rule, and by A�

R
B the fact that A is narrowed to B.

∗
−→
R

is the reflexive transitive closure of −→
R
.

Deduction modulo consists in applying the inference rules of an existing
proof system modulo such a rewriting system. This leads for instance to the
asymmetric sequent calculus modulo [12], some of whose rules are presented in
Figure 1.

Example 1. Consider the rewriting rule A ⊆ B → ∀x. x ∈ A ⇒ x ∈ B. We can
build the following proof of the transitivity of the inclusion in the asymmetric
sequent calculus modulo this rule:
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50 Guillaume Burel

�

−
A

∗
−→
R

C
∗

←−
R

B
Γ,A − B,Δ

Γ,A − Δ Γ − B,Δ
−
�

A
∗

←−
R

C
∗

−→
R

B
Γ − Δ

Γ,B − Δ Γ − A,Δ
⇒− C

∗
−→
R

A ⇒ B
Γ,C − Δ

Γ − A,Δ
−∀

B
∗

−→
R

∀x. A

x not free in Γ,ΔΓ − B,Δ

Fig. 1. Some inference rules of the Asymmetric Sequent Calculus Modulo R

�

−
A

∗
−→
R

−C + ∗
←−
R

B
Γ,A − B,Δ

Γ,A − Δ Γ − B,Δ
−
�

A − ∗
←−
R

C
∗

−→
R

+B
Γ − Δ

Γ,B − Δ Γ − A,Δ
⇒− C

∗
−→
R

−A ⇒ B
Γ,C − Δ

Γ − A,Δ
−∀

B
∗

−→
R

+∀x. A

x not free in Γ,ΔΓ − B,Δ

Fig. 2. Some inference rules of the Polarized Sequent Calculus Modulo R

�

−
x ∈ C − x ∈ C

�

−
x ∈ B − x ∈ B

⇒−
x ∈ B ⇒ x ∈ C, x ∈ B − x ∈ C

∀−
B ⊆ C, x ∈ B − x ∈ C

�

−
x ∈ A − x ∈ A

⇒−
x ∈ A ⇒ x ∈ B,B ⊆ C, x ∈ A − x ∈ C

∀−
A ⊆ B,B ⊆ C, x ∈ A − x ∈ C

−⇒
A ⊆ B,B ⊆ C − x ∈ A ⇒ x ∈ C

−∀
A ⊆ B,B ⊆ C − A ⊆ C

A rewriting rule can be applied indifferently to the left- or the right-hand side
of a sequent. Consequently, they can be considered semantically as an equivalence
between their left- and right-hand side. To be able to consider implications, a
polarized version of deduction modulo was introduced [11]. Proposition rewriting
rules are tagged with a polarity + or −; they are then called polarized rewriting
rules. A proposition A is rewritten positively into a proposition B (A−→+B) if
it is rewritten by a positive rule at a positive position or by a negative rule at
a negative position. It is rewritten negatively (A−→−B) if it is rewritten by a
positive rule at a negative position or by a negative rule at a positive position.
Term rewriting rules are considered as both positive and negative.

∗
−→± is the

reflexive transitive closure of −→±. This gives the polarized sequent calculus
modulo, some of whose rules are presented in Figure 2.

Example 2. Consider the polarized rewriting system

A ⊆ B →− ∀x. x ∈ A ⇒ x ∈ B

A ⊆ B →+ ¬diff (A,B) ∈ A

A ⊆ B →+ diff (A,B) ∈ B

We can build the following proof of the transitivity of the inclusion in the po-
larized sequent calculus modulo this rule:
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�

−
diff (A,C) ∈ C − A ⊆ C

�

−
diff (A,C) ∈ B − diff (A,C) ∈ B

⇒−

diff (A,C) ∈ B ⇒ diff (A,C) ∈ C, diff (A,C) ∈ B − A ⊆ C
∀−

B ⊆ C, diff (A,C) ∈ B − A ⊆ C
�

−
diff (A,C)∈A−diff (A,C)∈A

⇒−

diff (A,C) ∈ A ⇒ diff (A,C) ∈ B,B ⊆ C, diff (A,C) ∈ A − A ⊆ C
∀−

A ⊆ B,B ⊆ C, diff (A,C) ∈ A − A ⊆ C
−¬

A ⊆ B,B ⊆ C − A ⊆ C,A ⊆ C
−∵

A ⊆ B,B ⊆ C − A ⊆ C

To a rewriting system R corresponds a theory, which is the set of formulas
that can be proved in the sequent calculus modulo R. It was proved that this
theory can always be presented by a traditional set of axioms, which is then
called a compatible presentation [15]. In this paper, we are concerned with the
opposite direction: is it possible to present any axiomatic first-order theory by a
rewriting system? In [9, Corollary 25], we answered positively: it is possible to
transform any first-order theory into a rewriting system. However, this rewriting
system may not have all the good properties that ensure that deduction modulo
behaves well, in particular the admissibility of the cut rule.

The cut rule is admissible in the sequent calculus modulo R if, whenever a
sequent can be proved in it, then it can be proved without using the cut rule (−

�

in
Figure 1). Abusing terminology, we say that a rewriting system R admits cut if
the cut rule is admissible in the sequent calculus modulo R. The admissibility
of the cut rule has a strong proof-theoretical as well as practical importance:
it involves that normal forms exist for proofs; it implies the consistency of the
theory associated to R; it is equivalent to the completeness of the proof search
procedures based on deduction modulo R (such as ENAR [15], extending the
resolution method, and TaMed [4], extending the tableau method); etc. Cut
admissibility can also be seen as the completeness of the cut-free sequent calculus
w.r.t. the sequent calculus with cuts. In [9], to ensure the cut admissibility,
we designed a procedure that completes the rewriting system. However, this
procedure may not terminate (and produces too much rules in practice). In
this paper, we propose another method to transform an axiomatic presentation
of a theory into a cut-admitting rewriting system, that works for any finitely
presented first-order theory.

2 Resolution Calculi

We briefly recall the resolution calculus and the set-of-support strategy, before
presenting the extension of resolution with deduction modulo.
A derivation in resolution [25] tries to refute a set of clauses by inferring new

clauses by means of the following inference rules

P ∨ C ¬Q ∨D
Resolution σ = mgu(P,Q)

σ(C ∨D)

L ∨K ∨ C
Factoring σ = mgu(L,K)

σ(L ∨ C)

until the empty clause is derived.
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52 Guillaume Burel

2.1 Set-of-Support Strategy

The set-of-support strategy for resolution [26] consists in restricting the clauses
on which resolution can be applied. The input set of clauses is separated into a
theory Γ and a set of support Δ. At least one of the clauses on which resolution
is applied must be in the set of support, and the generated clause is put into
the set of support. If the theory Γ is assumed to be consistent, this strategy
is complete: if Γ,Δ is a unsatisfiable set of clauses, the empty clause can be
derived from it using the set-of-support strategy. The set-of-support strategy
can therefore be seen as proving a formula ¬Δ in a theory Γ without trying to
find a contradiction in Γ because it is assumed to be consistent. In the following,
we say that a set of clause Δ is refuted by the set-of-support strategy for Γ if
the empty clause can be derived from the set Γ,Δ with set of support Δ.

2.2 (Polarized) Resolution Modulo

An extension of resolution based on deduction modulo, named Extended Narrow-
ing and Resolution (ENAR), was defined in [15]. ENAR is a family of resolution
calculi, each parametrized by a rewriting system R.1 It consists in adding a new
inference rule, called Extended Narrowing, which produces the clauses obtained
by narrowing a clause by R. Since narrowing a clause with a proposition rewrit-
ing rule can produce a formula which is not in clausal normal form, the latter
has to be computed to find the generated clauses. The Extended Narrowing rule
is therefore:

C
Ext. Narr. C�

R

A, D ∈ C�(A)
D

where C�(A) is the set of clauses in the clausal normal form of A.
We say that ENAR for R is complete if, whenever − A can be proved in the

sequent calculus modulo R, the empty clause can be derived from C�(¬A) in
ENAR for R. Hermant [20] proved that the empty clause can be derived from
C�(¬A) in ENAR for R if and only if − A can be proved without cut in the
sequent calculus modulo R. This implies that ENAR for a rewriting system R
is complete if and only if the sequent calculus modulo R admits cut.
In ENAR, formulas have to be put in clausal normal form dynamically, which

may require fresh Skolem symbols each time. To avoid this, Dowek introduced
the Polarized Resolution Modulo (PRM) [13]. As ENAR, this is a family of
resolution calculi parametrized by a rewriting system, but this system is assumed
to be polarized, and clausal, i.e., each negative rule is of the form P →− C, and
each positive rule is of the form P →+ ¬C, where C is in clausal form. In that
case, the Extended Narrowing rule becomes:

1 ENAR is originally parametrized by a rewriting system R and an equational the-
ory E , and the unification in the Resolution, Factoring and Extended Narrowing rules
is performed modulo the equational theory E , as in Equational Resolution [24]. To
keep it simple, we choose not to consider equational theories in this paper.
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Consistency Implies Cut Admissibility 53

P ∨ C
Ext. Narr.− σ = mgu(P,Q), Q →− D ∈ R

σ(D ∨ C)

¬Q ∨D
Ext. Narr.+ σ = mgu(P,Q), P →+ ¬C ∈ R

σ(C ∨D)

Jianhua Gao recently proved that any rewriting system which admits cut can
be transformed into an equivalent polarized and clausal rewriting system [19],
so that PRM can be applied whenever ENAR can.

To each polarized clausal rewriting rule can be associated a clause in which
one literal is selected. This clause is called a one-way clause [13]. For instance, to
P →− C is associated ¬P ∨C, and to P →+ ¬C is associated P ∨C (the selected
literals are underlined). Conversely, to a clause and a literal occurrence in this
clause can be associated a polarized clausal rewriting rule: to P ∨ C and P is
associated P →+ ¬C, and to ¬P ∨C and ¬P is associated P →− C. The results
of this paper exploit this isomorphism between polarized clausal rewriting rules
and one-way clauses.

3 Cut-Admitting Presentations of Theories

3.1 Presenting a Theory as a Rewriting System

We suppose that the theory is presented by means of a set of clauses. If not, it
has to be transformed into clausal normal form using standard techniques.

Definition 3. Given a set of clauses Γ , we define the polarized rewriting system

RΓ consisting of, for each clause C in Γ , for each literal L in C,

– if L = P is positive, a positive rewriting rule P →+ ¬∀x1, . . . , xn. L1 ∨ · · · ∨
Lm where x1, . . . , xn are the free variables of C that are not free in P and

L1, . . . , Lm are the literals of C different from P ;

– if L = ¬P is positive, a negative rewriting rule P →− ∀x1, . . . , xn. L1∨· · ·∨
Lm where x1, . . . , xn are the free variables of C that are not free in P and

L1, . . . , Lm are the literals of C different from ¬P .

Example 4. Let Γ be the set of clauses corresponding to the definition of the
inclusion:

¬A ⊆ B ∨ ¬X ∈ A ∨X ∈ B

A ⊆ B ∨ diff (A,B) ∈ A

A ⊆ B ∨ ¬diff (A,B) ∈ B

Then RΓ is

A ⊆ B →− ∀x. ¬x ∈ A ∨ x ∈ B

X ∈ A →− ∀b. ¬A ⊆ b ∨X ∈ b

X ∈ B →+ ¬∀a. ¬a ⊆ B ∨X ∈ a
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54 Guillaume Burel

A ⊆ B →+ ¬diff (A,B) ∈ A

diff (A,B) ∈ A →+ ¬A ⊆ B

A ⊆ B →+ ¬¬diff (A,B) ∈ B

diff (A,B) ∈ B →− A ⊆ B

Remark 5. The number of rewriting rules in RΓ is equal to the number of literal
occurrences in Γ .

3.2 From Consistency to Cut Admissibility

Theorem 6. The consistency of a finite set of clauses Γ implies the complete-

ness of the set-of-support strategy for Γ .

Proof. This is the main theorem of [26].

Theorem 7. The completeness of the set-of-support strategy for Γ implies the

completeness of PRM for RΓ .

Proof. This is a corollary of the following lemma.

Lemma 8. A derivation of the empty clause from a set of clauses Δ with the

set-of-support strategy for Γ can be transformed into a derivation of the empty

clause from a set of clauses Δ in PRM for RΓ .

Proof. By induction on the length of the derivation. If the first step resolves two
clauses from the set of support (i.e. two clauses not in Γ ), the same resolution
can be performed in PRM. If the first step is

C ∨ P D ∨ ¬Q
Resolution σ = mgu(P,Q)

σ(C ∨D)

where D∨¬Q is in Γ , we know that there is a rule Q →− ∀x1, . . . , xn. D in RΓ .
Therefore, we have the following derivation in PRM:

C ∨ P
Ext. Narr.+ σ = mgu(P,Q)

σ(C ∨D)

If the first step is

C ∨ ¬P D ∨Q
Resolution σ = mgu(P,Q)

σ(C ∨D)

where D∨Q is in Γ , we know that there is a rule Q →+ ¬∀x1, . . . , xn. D in RΓ .
Therefore, we have the following derivation in PRM:

C ∨ ¬P
Ext. Narr.− σ = mgu(P,Q)

σ(C ∨D)

Theorem 9. The completeness of PRM for RΓ implies the admissibility of the

cut rule in the polarized sequent calculus modulo RΓ .
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Consistency Implies Cut Admissibility 55

Proof. Either direct proof by adapting Hermant’s one for unpolarized deduction
modulo [20], or combination of the following lemmas.

As in [9], Section 2.2, from the polarized rewriting system RΓ we define the
unpolarized rewriting system R∓

Γ consisting of:

– a rule P → P ∨ ¬C for each positive rule P →+ ¬C in RΓ ;
– a rule P → P ∧ C for each negative rule P →− C in RΓ .

Lemma 10. A derivation of the empty clause from a set of clauses Δ in PRM

for RΓ can be transformed into a derivation of the empty clause from a set of

clauses Δ in ENAR for R∓
Γ .

Proof. By induction on the derivation length, the only interesting case is Ex-

tended Narrowing.
Suppose that we have

P ∨ C
Ext. Narr.− σ = mgu(P,Q), Q →

− D
σ(D ∨ C)

To Q →− D corresponds the unpolarized rule Q → Q∧D. Hence, P ∨C can be
narrowed to σ((Q∧D)∨C), whose clausal normal form is (σ(Q∨C))∧(σ(D∨C)).
Hence, the Extended Narrowing rule of ENAR can infer the clause σ(D ∨ C).
Suppose that we have

¬P ∨ C
Ext. Narr.+ σ = mgu(P,Q), Q →

+
¬D

σ(D ∨ C)

To Q →+ ¬D corresponds the unpolarized rule Q → Q ∨ ¬D. Hence, ¬P ∨ C
can be narrowed to σ(¬(Q ∨ ¬D) ∨ C), whose clausal normal form is (σ(¬Q ∨
C)) ∧ (σ(D ∨ C)). Hence, the Extended Narrowing rule of ENAR can infer the
clause σ(D ∨ C).

Corollary 11. The completeness of PRM for RΓ implies the completeness of

ENAR for R∓
Γ .

Lemma 12. The completeness of ENAR for R∓
Γ implies the admissibility of the

cut rule in the asymmetric sequent calculus modulo R∓
Γ .

Proof. This is a corollary of Theorems 1 and 2 of [20].

Lemma 13. The admissibility of the cut rule in the asymmetric sequent calculus

modulo R∓
Γ implies the admissibility of the cut rule in the polarized sequent

calculus modulo RΓ .

Proof. This is a direct consequence of the equivalence theorem between the po-
larized sequent calculus moduloRΓ and the asymmetric sequent calculus modulo
R∓

Γ (Corollary 10 of [9]): a sequent is provable (resp. provable without cut) in the
polarized sequent calculus modulo a polarized proposition rewriting system R
iff it is provable (resp. provable without cut) in the asymmetric sequent calculus
modulo the rewriting system R∓.

By combining Theorems 6, 7, and 9, we obtain:

Theorem 14. The consistency of a finite set of clauses Γ implies the admissi-

bility of the cut rule in the polarized sequent calculus modulo RΓ .
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56 Guillaume Burel

4 Restricting the Number of Rules

The method described in this paper produces a number of rules equals to the
number of literal occurrences of the input theory, so that the size of the input is
multiplied by the number of literals in clauses. In this section, we discuss how
to reduce the number of rules with the help of the following example: consider
the theory

P (x) ∨Q(x)

¬P (x) ∨Q(x)

P (x) ∨ ¬Q(x)

This paper’s method gives the system R1

P (x)→+ ¬Q(x)

Q(x)→+ ¬P (x)

P (x)→− Q(x)

Q(x)→+ ¬¬P (x)

P (x)→+ ¬¬Q(x)

Q(x)→− P (x)

A first solution to lower the number of rules is to consider ordered resolution
with selection [3]. Ordered resolution with selection is parametrized by an order-
ing � on atoms which is stable by substitution and total on ground atoms, and
by a selection function S that associates to each clause a subset of the negative
literals of this clause. It consists in restricting the literals on which resolution
can be applied: if S(C) is not empty, then only the literals in S(C) can be used;
in the other case, only the maximal literals w.r.t. � can be used. In the same
spirit as in Section 3.1, it is possible to associate a polarized rewriting system
to a set of clauses for ordered resolution with selection by only considering as
left-hand sides the literals that are selected (or maximal if none are selected) in
a clause.

However, ordered resolution with selection is not compatible with the set-of-
support strategy, in the sense that their combination jeopardizes the complete-
ness. Consequently, the rewriting system corresponding to the clauses may not
admit cut. Nevertheless, a sufficient condition to ensure the completeness is the
saturation of the set of clauses used as complement of the set of support (i.e.
the theory): the clauses that can be inferred from it must either be in it or be
redundant. In our example, whatever the ordering and selection function used,
the set of clauses is not saturated: at least one of P (x) or Q(x) is maximal in
P (x)∨Q(x). By symmetry, we can suppose that P (x) is maximal. Then ¬P (x)
is maximal in ¬P (x) ∨ Q(x) (and it can also be selected). Thus, Q(x) can be
inferred, and it is not redundant. A saturated set of clauses could be:

P (x) ∨Q(x)
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Consistency Implies Cut Admissibility 57

¬P (x) ∨Q(x)

P (x) ∨ ¬Q(x)

Q(x)

which corresponds to a rewriting system

P (x)→+ ¬Q(x)

P (x)→− Q(x)

P (x)→+ ¬¬Q(x)

Q(x)→+ ¬⊥

By completeness of the combination of ordered resolution and polarized resolu-
tion modulo [6], this system admits cut, and has less rules than R1.

A second solution to lower the number of rules is to consider subsystems of
the one obtained by this paper’s method, i.e., to only take some of the rules
produced by it. It can be shown that the system R1 can be restricted to the four
rules

P (x)→+ ¬Q(x)

Q(x)→+ ¬P (x)

P (x)→− Q(x)

P (x)→+ ¬¬Q(x)

and still admits cut.
Consequently, starting from a rewriting system

P (x)→+ ¬Q(x)

P (x)→− Q(x)

P (x)→+ ¬¬Q(x)

which does not admit cut, we can think of two ways of completing it to en-
sure cut admissibility. In one case, we add a new rule corresponding to a clause
obtain by resolving (the clauses corresponding) to the rules (Q(x) →+ ¬⊥, ob-
tained by resolving P (x) →+ ¬Q(x) with P (x) →− Q(x)). In the other case,
we add a new rule corresponding to the selection of another literal in an ex-
isting clause (Q(x) →+ ¬P (x), obtained by selecting Q(x) instead of P (x) in
P (x) →+ ¬Q(x)). In our example, in both cases, it was sufficient to obtain a
cut-admitting system. Nevertheless, in general, we may have to reiterate the
process. The completion by saturation may generate an unbounded number of
clauses, whereas the completion by reselection is bounded by the number of lit-
eral occurrences in the initial clauses. However, we currently do not know how to
tell when the second method can be stopped before generating all reselections.
It remains to be investigated what method, or their combination, behaves the
best in practice.
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58 Guillaume Burel

5 Further Work

5.1 Logical Strength

Since cut admissibility implies consistency, Gödel’s second incompleteness the-
orem implies that it cannot be proved in the theory itself. But we may wonder
whether it can be proved in the theory plus the assumption of its consistency. To
this purpose, we have to investigate the proof of Section 3.2. We conjecture that
“consistency implies cut admissibility” can be proved in first-order arithmetic.

5.2 Equality

In this paper, we only considered theories of first-order logic without equality.
However, theories are often presented in first-order logic with equality. Adding
the axioms for the equality (reflexivity, symmetry, transitivity and congruence
w.r.t. the function symbols and the predicates), and transforming them as pre-
sented in this paper, is a theoretical way to obtain presentations of such theories.
However, it does not take into account the specificity of the equality, and the
way it can be integrated into a deduction system thanks to deduction modulo. A
first improvement is to put the equational axioms into an equational theory mod-
ulo which rewriting and unification is performed (see Footnote 1). Nevertheless,
existing provers perform unification and rewriting modulo only specific equa-
tional theories, such as commutativity of a function symbol. Only such axioms
should therefore be presented this way. The other equational axioms should be
transformed into term rewriting rules. It remains to be proved that using term
rewriting rules for equational axioms and proposition rewriting rules as obtained
as in this paper for the other axioms is complete. We conjecture that it is the
case as long as the term rewriting system is confluent and commutes with the
proposition rewriting system. The confluence of the term rewriting system can
be ensured by the standard completion of Knuth and Bendix [22].

The next step is to design proof-search procedures based on deduction modulo
for first-order logic with equality. A good candidate would be an extension of
the superposition calculus [2] with an Extended Narrowing rule, but we currently
do not know if it is complete.

5.3 Axiom Schemata

This paper only considers finite theories, but usual theories, such as for instance
arithmetic, use axiom schemata. A way to handle such theories is to consider
the work of Kirchner [21] who transforms an axiom schema into a finite number
of axioms, most of them being directly orientable into rewriting rules.

5.4 Termination

Cut admissibility is not the only property of interest for a rewriting system.
The termination is another good requirement, since it implies for instance the
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decidability of proof checking. However, note that even if the rewriting sys-
tems terminates, the narrowing may not. The systems produced by this paper’s
method may not terminate in general. We have to investigate if we can restrict
the number of rules to ensure the termination of the rewriting system as well as
its cut admissibility.

In the same line of work, we should investigated whether we can obtain
rewriting systems that provide decision procedures for some theories.

5.5 Intuitionistic Logic

Since it is based on resolution, the method described in this paper only works
for classical logic. In intuitionistic logic, it is known that some theories cannot
be transformed into a rewriting system with cut admissibility. In [5], we have
proposed a procedure inspired from our work in [9] that is able to transform a
large class of intuitionistic theories into a rewriting system admitting cuts. Since
it is undecidable to know if such a transformation is possible, the procedure is
of course non-terminating. We need to investigate whether the method proposed
here can improve the transformation of intuitionistic theories, but it does not
seem plausible.
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