
THE MELODIC SIGNATURE INDEX FOR
FAST CONTENT-BASED RETRIEVAL OF SYMBOLIC SCORES

Camelia Constantin
LIP6, Univ. Paris 6, Paris, France

camelia.constantin@lip6.fr
Zoé Faget

Armadillo & Univ. Paris-Dauphine, France
zoe@armadillo.fr

Cédric du Mouza
CEDRIC, CNAM, France

dumouza@cnam.fr
Philippe Rigaux

CEDRIC, CNAM, France
philippe.rigaux@cnam.fr

ABSTRACT

NEUMA is an on-line library that stores collections of sym-
bolic scores and proposes a public interface to search for
melodic pieces based on several kinds of patterns: pitches-
based, with or without rhythms, transposed or not. In addi-
tion, searches can be either exact or approximate. We de-
scribe an index structure apt at supporting all these searches
in a consistent setting. Its distinctive feature is an encod-
ing of the various information that might be involved in the
pattern-matching process with algebraic signatures. The
properties of these signatures are suitable to represent in a
compact and expressive way the sequences of complex fea-
tures that constitute a melodic description.

1. INTRODUCTION

Context and motivation. NEUMA is a Digital Score Li-
brary devoted to the publication of digital music scores. Putting
this material on-line offers an opportunity for web-based
sharing of musical scores archives, including collaborative
production, annotation, and large-scale corpus analysis. In
the present paper, we focus on the functionalities that per-
mit to undertake large-scale studies of melodic, harmonic
or stylistic material. One of the musical investigations cur-
rently conducted by our fellow musicologists working with
NEUMA considers a melodic répertoire in a given cultural
area, and studies how this répertoire is exchanged and bor-
rowed throughout various styles, periods and composers.
Using efficient tools to retrieve and compare similar melodies
leverages the scope of investigations that can be conducted
for such a study. To this end, NEUMA provides a set of

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

functions that support the analysis process. The pattern-
matching function takes a pattern P and carries out a search
over the score collections, looking for all the melodic frag-
ments that “match” P . The function can be parameterized
by combining one of the following options: Exact search,
which can itself be refined as Transposed/non transposed
and/or With/without rhythm, and Approximate search, which
compares P to melodic fragments considered in their full
dimensions (pitch, rhythm) and applies a similarity func-
tion. The user is free to choose an appropriate combination
of these choices (called an interpretation in the following),
and this yields a quite appreciated flexibility to the system.
This flexibility has a cost, though, since the system must be
ready to face several possible pattern interpretations.

Indexing the pattern-matching retrieval process. As our
collections grow, the need for an indexing mechanism able
to directly access the scores of interest for a given pattern
became prominent. Building an index for each possible in-
terpretation would have been cumbersome due to the major
redundancy of information in the associated descriptors. We
rather chose to design a specialized index, able to satisfy
several interpretations. This design, and the experiments
that validate the resulting structure, constitute the purpose
of the present paper.

In short, the principles of our index, called Melodic Sig-
nature Index (MSI), can be summarized as follows: (i) its
kernel structure is that of a traditional hash file, with an in-
memory directory that refers to a list of on-disk buckets; (ii)
each entry e in the directory corresponds to the hash value
he of some fixed-size melodic fragments, called n-grams,
present in at least one score of the collections; the associ-
ated bucket actually contains the list of all the n-gram occur-
rences that hash to he; (iii) the index implementation is con-
sistently built over algebraic signatures computed from the
melodic n-grams, and representing the various aspects that
might be addressed by one of the possible pattern-matching
interpretations.

Whereas the first two aspects are drawn from the state-
of-the-art in terms of large text-encoded indexing [14], the
last one is inspired by recent work on signature-based text
processing [7, 10], tailored to the specifics of symbolic mu-
sic retrieval. The resulting structure enjoys several features
that make it a suitable choice for large score libraries index-
ing, namely (i) flexibility – a single index supports several
distinct pattern-matching operations, (ii) compactness – in
spite of the rich information content it contains, the index
space requirement is only a fragment of the overall collec-
tion storage, and (iii) efficiency – as shown by our analytic
study and experiments, a few milliseconds suffice to retrieve
the result, even for very large patterns searched for in very
large collections.

Related work. Two main approaches for off-line indexing
score collections have been investigated: tree-based [9, 13,
20] and inverted files [3,5,16]. [5,16] propose to index both
the pitch interval and rhythm sequences in an inverted file.
We adopt a similar approach, with a much richer encoding
that allows to reach a constant search complexity and more
flexibility in terms of search options.

The subjective nature of measuring music similarity lead
to the introduction of several error measures. The δ and
(δ, α) approximations [2] use exact matching algorithms for
similarity search. Many algorithms for efficient computa-
tion of similarity matching through exhaustive search have
been proposed [1, 4]. In general, indexing can be achieved
with a high-dimensional structure whose performances are
known to deteriorate as the dimension increases. In the spe-
cific context of the edit distance, several indexing methods
have been suggested, an overview of which can be found
in [15]. A classical technique is to introduce an measure ap-
proximating the edit distance but easier to index [12]. The
idea of using n-gram for melody retrieval and measuring
music similarity is not new in monophonic [17,19] as well as
polyphonic pieces [6, 8], although they usually model only
some of the music information. Our structure enjoys the
nice feature of being able to index both exact search with
many variants, and approximate search based on the edit
distance. This makes it a structure of choice to solve the
addressed problem of index pattern searches in large score
databases.

The rest of the paper presents our structure (Section 2)
and the pattern-matching algorithms (Section 3). Section 4
briefly reports the performance results obtained over a large
collection of scores, and Section 5 concludes the paper.

2. THE MELODIC SIGNATURE INDEX

We outline in this section the index structure in NEUMA,
with emphasis on algebraic information put in index records.

2.1 Index overview

NEUMA interprets scores content according to a “model” of
symbolic music. The model of interest to this work relies
on a synchronized time series approach that sees a score as
a superposition of voices. Each voice is a sequence of ele-
ments in E × D, where E is the domain of musical “events”
(notes, chords, rest, etc.) and D the musical duration. A de-
scriptor can be text-encoded in the form <e1-d1; e2-d2;
. . .; en-dn> where each ei encodes an event and each di
its duration. In the following, we shall blur the distinction
between a descriptor and its textual encoding. Given a de-
scriptor d, we denote as ε(d) the sequence of events (without
durations) and as ρ(d) the sequence of durations (without
events) of d.

Example 1 Voice v, in score 354, encodes a melody begin-
ning with a G3 (half), followed by an A3 (half), a B3 (flat,
quarter), etc. Its descriptor dv is: (22-2;24-2;25-4;24-4;22-
4;21-4;22-4;. . .) Moreover, ε(dv) = (22, 24, 25, 24, 22, 21,
22, . . .) and ρ(dv)=(2, 2, 4, 4, 4, 4, 4, . . .).

In the example above, note heights are encoded with chro-
matic notation (number of semi-tones from the lowest pos-
sible sound). Rest, chords, and silence are encoded with
other, non ambiguous, symbols: we do not elaborate fur-
ther E which provides a compact representation of melodic
sequences.

Given a pattern P , a search retrieves the scores such that
for at least a voice v, and at least an offset (position) o in
v, P matches the fragment v[o]v[o + 1] The seman-
tics of a matching attempt depends on the interpretation of
P , chosen by the user at query time. We explain the pro-
cess with an example: let P be the pattern described by
37-4;35-4;34-2. Then, under the exact search, trans-
posed, without rhythm interpretation, P matches the voice
v of Example 1 at offset 3 (offsets start at 0). If we take
the rhythm into account, this is no longer true. Using a non-
transposed interpretation also leads to a failure, with or with-
out rhythm. Finally, an approximate search likely detects a
high similarity between P and v at position 3.

2.2 Algebraic signatures

We interpret our melodic events in E as elements of a Galois
field GF (2f) of size 2f . The elements of GF are bit strings
of length f . Since |E| ≤ 255, we let f = 8 in the following.
A Galois field is a finite set that supports addition and mul-
tiplication. These operations are associative, commutative
and distributive, have neutral elements 0 and 1, and there ex-
ist additive and multiplicative inverses. A primitive element
α of GF is such that its powers enumerate all the non-zero
elements of the Galois field. Let D = e0e1 · · · eM−1 be a
descriptor encoding a sequence of M events interpreted as
GF elements. We define an AS signature as follows.

Definition 1 The AS α-signature of a descriptor D is de-
fined by

ASα(D) = e0 + e1 · α+ e2 · α2 . . .+ eM−1 · αM−1 (1)

If we consider m primitive elements α1, α2, . . . , αm, the
m-symbols signatureNASm(D) is obtained by concatenat-
ing the set ofASαi(D), 1 ≤ i ≤ m, seen as bit strings. This
allows to obtain a signature of size m.

Given a descriptor D, we are interested in partial alge-
braic signatures calculated from substrings of D.

Definition 2 Let l ∈ [0,M − 1] be any offset in D. The
Cumulative Algebraic Signature (CAS) at l, CAS(D, l), is
the algebraic signature of the prefix of D ending at el, i.e.,
CAS(D, l) = AS(e0 . . . el).

The Partial Algebraic Signature (PAS) from l′ to l is the
value PAS(D, l′, l) = AS(el′el′+1 · · · el), with 0 ≤ l′ ≤ l,
We most often use the PAS of sub-sequences of length n,
i.e., of n-grams.

Definition 3 The n-gram Algebraic Signature (NAS) of D
at l is NAS(D, l) = PAS(D, l − n+ 1, l), for l ≥ n− 1.

e
l

e
l−n+1

e
l’

e
0

e
M−1

CAS(l) PAS(l’, l)NAS(l)

Descriptor D

Figure 1. CAS(l), PAS(l′, l) and NAS(l) in descriptor D

We may dropD whenever it is implicit for brevity’s sake.
Figure 1 shows the respective parts of the record that define
the CAS, PAS and NAS at offset l. The following simple
properties of algebraic signatures are useful for what fol-
lows. Properties 2 and 3 let us incrementally calculate next
CAS and NAS while indexing the score, or preprocessing
the pattern, instead of recomputing the signature entirely.
This speeds up the process considerably.

CAS(l) = CAS(l − 1) + el · αl (2)

NAS(l) =
NAS(l − 1)− el−n

α
+ el · αn−1 (3)

Property 4 finally is fundamental for the match attempt
calculus. For 0 ≤ l′ < l:

CAS(l) = CAS(l′) + αl
′+1PAS(l′ + 1, l) (4)

We refer the reader to [11] for more details about defini-
tions and properties of algebraic signatures. The above are
sufficient to describe the MS-index features.

2.3 The Melodic Signature index

The Melodic Signature Index (MS-Index) is a classical hash
file, denoted HD[0..L − 1], with directory length L = 2v

being a power of 2 (Figure 2). Elements of HD refer to
buckets or lines of variable length.

Buckets

records for CAS c

r2 <i1,o1,c1,c’1,A1,u1>

L−1

0

C

C
0

i

H
as

h
 d

ir
ec

to
ry

 H
D

r1

records for CAS c’

Structure of a bucket

...<ik,ok,ck,c’k,Ak,uk>

<i2,o2,c2,c’2,A2,u2>

...

Figure 2. Structure of the MS-Index
.

Each bucket stores a list of hash records (records in short),
each indexing some fixed-size fragment of a voice descrip-
tor, called n-gram. Fragment (24-4;22-4;21-4) is for in-
stance a 3-gram extracted from the descriptor of Example 1.
The actual value of n is a parameter of the MS-Index, to
be discussed next. To build the index, we process all n-
grams in the score library. From each n-gram G of the form
e1-d1;...;en-dn we derive a number of algebraic sig-
natures that determine the index organization and content.

We first use signatures to calculate the index i of the line
that refers to G. Let τ be the transform that extracts from
G a (n-1)-gram with the sequence of pitch intervals. We
calculate i by hashing on the intervals signature. Let s =
NASm(ε(G)) be the m-symbol signature of G for some
m (see below), interpreted as a large, unsigned integer and
compute index i as:

i = hL(S) = S mod L

Since L = 2v , this amounts to extracting the last v bits of
S. m should be such that m ≤ n and m ≥ dv/fe.

Example 2 LetG be the 4-gram (24-4;22-4;21-4;22-4). Then
ε(G)=(24, 22, 21, 22) and τ(ε(G))=(-2, -1, 1) (e.g., the
pitch interval encoding). Assume m = 3. We select three
independent primitive elements α1, α2, and α3 in the Ga-
lois Field. The index of G in the hash file is:

ASα1
(τ).ASα2

(τ).ASα3
(τ) mod L

where . represents bit string concatenation.

The properties of AS signatures ensure a balanced distri-
bution of the hash values in the range [0..L − 1]. Next, we
insert in HD[i] a record describing G, defined as follows:

Definition 4 Let G be an n-gram at offset o in a descrip-
tor D. The record indexing G, denoted R(G), is a 6-uplet
(id(D), o, cε, cρ, ASρ,⊥) where

1. cε is CAS(ε(D), o), i.e., the event CAS of G at o;

2. cρ is CAS(ρ(D), o), i.e., the rhythm CAS of G at o;

3. ASρ is NASm(ρ(D), o), i.e., its rhythm signature;

4. ⊥ is the minimal pitch index inG, representing (along
with the previous signatures) its absolute height.

The hash record of an n-gram contains all the informa-
tion necessary to evaluate matching attempts at run time, by
combining the signatures with the Galois Field operators to
evaluate the required pattern interpretation.

Example 3 Consider again the 4-gramG of Example 2, as-
suming it is found at offset 3. Then cε and cρ are obtained
from the cumulative values at offset o − 1, thanks to Prop-
erty 2; Aρ is the NAS signature of ρ(G)=(4, 4, 4, 4); ⊥ is
21, the minimal pitch of the n-gram.

Construction time complexity. The MS-index is built in lin-
ear time in the size of the score library. Note in particular
that the cumulative signature at offset o can be derived from
the cumulative at offset o− 1.
Space complexity. The size of the directory, HD, is neg-
ligible. Given a descriptor D, a record occupies 3 + 2 +
1 + 1 + 1 + 1 = 9 bytes, and the index size is therefore
|L| × τD × 9, where τD denotes the ratio of descriptor’s
size with respect to a full score size. Standard indexed file
compression techniques (e.g., variable bytes compression)
further reduce the space requirements. As shown by our ex-
periments, τD is typically of the order of 10/00 and, in spite
of its rich content, our index occupies a small fraction of the
whole library space.

3. SCORE RETRIEVAL

Due to space limitation, we give in this section an informal
presentation of the algorithms.

3.1 Exact search, basic algorithm

We explain (Figure 3) an exact search, transposed and with-
out rhythm (that is, we consider as a match any sequence
of pitch intervals similar to that of P). First, we preprocess
P for three signatures: (i) of the initial n-gram S1, (ii) of
the final n-gram S2 and (iii) of the suffix Sp of P after S1.
Hashing on S1 locates the bucket with every record r1 hash-
ing to the signature of S1. Likewise, hashing on S2 locates
the bucket with every r2 hashing to the signature of S2. We
only consider pairs of records that are in the same voice and
at the right distance among them (looking at offsets). We

failure

Pattern PS1

Sp

S2

h(S1)

h(S2)

H
as

h
di

re
ct

or
y

e1

e2

AS(e1, e2, Sp)

success

Figure 3. A matching attempt with MS-Index

thus locate any descriptor D matching P on its initial and
terminal n-gram, at least by signature. An algebraic calcu-
lation AS(r1, r2, Sp), based on the cumulative signatures,
determines whether Sp may match the suffix of D as well.
Search complexity. By limiting disk accesses to the two
buckets associated to the first and last n-grams of the P ,
MS-Index search runs independently from P ’s size. The
cost of the search procedure outlined above is reduced to
that of reading two buckets. The hash directory is cached
in RAM. With an appropriate dynamic hashing mechanism
that evenly distributes the records in the structure and scales
gracefully, the bucket size is expected to remain uniform
enough to let the MS-Index run in constant time.

3.2 Exact search, other interpretations

Other interpretations than the basic one are obtained with
straightforward extensions to the above algorithm, namely
1) non-transposed search, without rhythm, is obtained by
comparing the minimal pitch index of P ’s initial n-gram
and the value ⊥ of r1 ; 2) searching with rhythm implies
a calculus similar to that on intervals, using r1.cρ, r2.cρ and
Aρ as input ; 3) any combination of these criteria is possible
to achieve the required interpretation.

The cost analysis remains similar, since the signatures
comparison is negligible regarding that of buckets access.

3.3 Approximate search

Our index supports the similarity measure using n-grams
introduced by Ukkonen [18]. The more n-grams the two
strings have in common, the higher the similarity. The n−gram
profile is a vector GP such that GP [S] is the number of oc-
currences of the n-gram S in P . The “distance” between
two strings P and Q is then:

An(P,Q) = Σv∈Σn |GP [v]−GQ[v]|,

where Σn is the set of all possible n−grams.

collection 1 # files files size # desc. desc. size
bach 280 27.1 MB 1,243 539 KB
gut 137 197.2 MB 352 2,413 KB
hausmusik 452 140.9 MB 1,218 1,944 KB
hymns 1,752 84.6 MB 3,885 1,954 KB
musicxml 405 38.9 MB 1,738 713 KB
wikifonia 3,583 302.7 MB 3,570 2,787 KB
wima 961 427.3 MB 3,110 4,624 KB
misc 94 8.9 MB 101 89 KB
all 7,664 1,227.6 MB 15,517 15,063 KB

Table 1. MusicXML collections used in NEUMA

The approximate search of a pattern P in a symbolic
score proceeds as follows. Given a descriptorD = e1 . . . eN ,
a pattern P = p1 . . . pm we pre-process P to get all the n-
grams S1, S2, . . .Sq occurring in P . We access the MS
index and retrieve, for each Si, i ≤ q, the list of the records
featured in the document with the same signature than h(Si).
We then sort-merge all lists into one list, ordered with re-
spect to each descriptor. We take the first list of offsets and
apply a moving window of size L = 2m − n + 1 in which
we solve the approximate search problem. Indeed we can
show that a window of size L has 2m − 2n + 2 n-grams,
from which at most m − n + 1 belong to P and at least
m− n+ 1 do not belong to P . For windows of size greater
than 2m − n + 1, n-grams not belonging to P will always
outnumber those who do.

We compute the An distance between the pattern and all
subsequences starting on the left edge of the window, and
keep track of the ending position for the best one inside the
window. We repeat this process for all offsets of the list
by sliding the window along the list. We return all triplets
(istart , iend , di) which comply to the maximum error toler-
ance.

4. EXPERIMENTS

We built a library of MusicXML scores collected from sev-
eral public on-line collections, reported in Table 1. There
exists an important discrepancy in the size of the descrip-
tors. The average descriptor size is 967 bytes, and it ranges
from 444B on average in bach to 7,020B in gutenberg
(noted gut). The ratio (descriptorsize/documentsize)
varies from 9 0/00 in wikifonia to 23 0/00 in hymns.

Table 2 reports the building time and the size of the MS-
Index for different datasets. For bach, gut and wima, we
choose 4-grams. The building time does not linearly in-
crease with the descriptors size. For instance gut, whose
descriptors size is half that of wima, requires a third of the

1 bach: www.jsbchorales.net, hausmusik: www.hausmusik.ch,
gut: www.gutenberg.org/wiki/Gutenberg:The Sheet Music Project,
hymns: www.hymnsandcarolsofchristmas.com,
musicxml: www.musicxml.org, wikifonia: www.wikifonia.org,
wima: www.icking-music-archive.org

building time of wima, while all (4-gram), with a descrip-
tor size 3 times larger than wima, needs 7.5 times more
time. This results from both the handling of hash collisions
and variable-bytes compression (not detailed here).

As expected, the size of the index linearly depends on the
descriptors size. Finally using larger n-grams has a minor
impact on the index size, but an important one on the build-
ing time: e.g 7-gram index requires 25% more space than
3-gram index thanks to lower compression rate, but a build-
ing time 7 times higher, due to less collisions to handle and
less compression to perform.

collection building time size
bach 0.7 s 1.0 MB
gut 3.3 s 5.1 MB
wima 11.4 s 9.5 MB
all (3-gram) 206.6 s 28.5 MB
all (4-gram) 82.6 s 29.7 MB
all (5-gram) 47.0 s 31.3 MB
all (6-gram) 35.9 s 33.2 MB
all (7-gram) 33.2 s 35.1 MB

Table 2. Building time for different collections

n−gram size3 4 5 6 7

time (ms)

20

40

60

80

with rhythm

transposed

exact

Figure 4. Impact of the n-gram size on matching time

Figure 4 shows that the longer the n-grams, the faster
the search, whatever the interpretation 2 . Longer n-grams
means less collisions, and thus smaller buckets. Differences
between exact, transposed or without rhythm search perfor-
mances are mostly due to the selectivity of the search cri-
teria. Unlike transposed search (TR), we eliminate for an
exact search (EX) records in the first bucket (retrieved using
the NAS of the first n-gram) by checking the first note on the
n-gram. This decreases the comparisons to perform. Search
transposed with rhythm and search exact with rhythm ex-
hibit similar performances, and run faster than TR or EX

since we filter records using an additional signature.
Finally we study the search time in Table 3 and compare

performances with those of an exhaustive scan. MS-Index
overperforms for all datasets the exhaustive search (the ra-
tio ranging from 800% to 10,000%). The search time with
MS-Index does not depend on the descriptors size: wima is
twice larger than gut but searches are performed 4 times

2 We limit the presentation of the results to exact search.

coll. TR TR+RY EX EX+RY

gut
MS-index 38.1 27.8 36.9 32.4
SC 323.1 212.2 293.4 302.1
speed-up 8.5 7.6 7.9 9.3

wima
MS-index 10.4 7.5 9.7 7.5
SC 637.4 432.1 581.1 595.2
speed-up 61.3 57.6 59.9 79.3

all
MS-index 41.6 20.7 33.3 24.5
SC 2,514.2 1,490.2 2,305.3 2,030.1
speed-up 60.4 72.0 69.2 82.9

Table 3. Impact of the dataset size on search time (ms)

faster, and the same ratio holds when comparing to all
whereas its size is 3 times larger. Our index performances
are more sensitive to the data distribution since skewness
leads to large bucket, thus a larger number of tests. Searches
with rhythm are faster since they filter out records in the first
bucket (resp. n-grams) for the MS-Index (resp. exhaustive
scan), skipping useless comparisons. The speed-up is lower
for gut than for other collections. The rationale is that gut
presents a few, large files (137) with more records for each
document in a bucket. Since the id of the document is also
a filtering condition (we try to match an entry of the first
bucket with one of the second bucket from the same docu-
ment), more matching attempts are carried out.

5. CONCLUSION

We described in this paper a practical approach to the prob-
lem of indexing pattern-based searches in a large score li-
brary. Our solution supports exact and approximate searches,
and permits to refine exact searches by taking account of the
many components that constitute a melodic descriptor. Our
experiments show that a few milliseconds suffice to obtain
the result in all cases even for significantly large datasets.

A nice feature of our index is that it also acts as an ini-
tial filter in a two-steps similarity search method that per-
forms a final check on the candidates against the full de-
scriptor. This leaves the opportunity to adapt the edit dis-
tance to the specifics of music score similarity search. We
are currently investigating the relevance of such adaptations
with our users.

6. REFERENCES

[1] E. Cambouropoulos, M. Crochemore, C. S. Iliopoulos, M. Mo-
hamed, and M.-F. Sagot. A Pattern Extraction Algorithm for
Abstract Melodic Representations that Allow Partial Overlap-
ping of Intervallic Categories. In ISMIR, pages 167–174, 2005.

[2] D. Cantone, S. Cristofaro, and S. Faro. Solving the (δ, α)-
Approximate Matching Problem Under Transposition Invari-
ance in Musical Sequences. In ISMIR, pages 460–463, 2005.

[3] C.-W. Chang and H. C. Jiau. An Efficient Numeric Indexing
Technique for Music Retrieval System. In ICME, 2006.

[4] R. Clifford and C. Iliopoulos. Approximate string matching
for music analysis. Soft Computing - A Fusion of Foundations,
Methodologies and Applications, 8, 2004.

[5] S. Doraisamy and S. M. Rüger. A Polyphonic Music Retrieval
System Using N-Grams. In ISMIR, 2004.

[6] S Doraisamy and S M Rüger. An approach towards a poly-
phonic music retrieval system. In ISMIR, pages 187–93, 2001.

[7] C. du Mouza, W. Litwin, P. Rigaux, and T. J. E. Schwarz. AS-
index: a Structure for String Search Using N-grams and Alge-
braic Signatures. In CIKM, pages 295–304, 2009.

[8] R. Hillewaere, B. Manderick, and D. Conklin. String quartet
classification with monophonic models. In ISMIR, pages 537–
542, 2010.

[9] I. Karydis, A. Nanopoulos, A. N. Papadopoulos, and
Y. Manolopoulos. Audio Indexing for Efficient Music Infor-
mation Retrieval. In MMM, pages 22–29, 2005.

[10] W. Litwin, R. Mokadem, P. Rigaux, and Th. Schwarz. Fast
nGram Based String Search over Data Encoded Using Alge-
braic Signatures. In VLDB, 2007.

[11] W. Litwin and T. Schwarz. Algebraic Signatures for Scalable
Distributed Data Structures. In ICDE, pages 412–423, 2004.

[12] N.-H. Liu, Yi-Hung Wu, and A. L. P. Chen. An Efficient Ap-
proach to Extracting Approximate Repeating Patterns in Music
Databases. In DASFAA, pages 240–252, 2005.

[13] Y.-L. Lo and S.-J. Chen. The Numeric Indexing For Music
Data. In ICDCSW, pages 258–266, 2002.

[14] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[15] G. Navarro, R. Baeza-yates, E. Sutinen, and J. Tarhio. Indexing
Methods for Approximate String Matching. IEEE Data Engi-
neering Bulletin, 24:2001, 2000.

[16] G. Neve and N. Orio. Indexing and Retrieval of Music Docu-
ments through Pattern Analysis and Data Fusion Techniques.
In ISMIR, 2004.

[17] I. Suyoto and R. Uitdenbogerd. Mirex 2005 symbolic melodic
similarity: Simple efficient n-gram indexing for effective
melody retrieval. Music Information Retrieval Evaluation eX-
change, 2005.

[18] E. Ukkonen. Approximate String Matching with q-grams and
Maximal Matches. Theoretical Computer Science, 92:191–
211, 1992.

[19] Julián Urbano, Juan Lloréns, Jorge Morato, and Sonia
Sánchez-Cuadrado. Mirex 2010 symbolic melodic similarity:
Local alignment with geometric representations. Music Infor-
mation Retrieval Evaluation eXchange, 2010.

[20] J.-Y. Won, J.-H. Lee, K.-I. Ku, J. Park, and Y.-S. Kim. A
Content-Based Music Retrieval System Using Representative
Melody Index from Music Databases. In CMMR, pages 280–
294, 2004.

