
1

An OSGi-based Service Oriented Architecture for Android Software Development Platforms

Aghiles Adjaz*, Samia Bouzefrane*, Dijiang Huang**and Pierre Paradinas*

* CEDRIC Laboratory,

Conservatoire National des Arts et Métiers

75141, Paris Cedex 03, France

e-mail: {First_name.Last_name}@cnam.fr

**Arizona State University

Brickyard Suite 470, 699 S. Mill Avenue, Tempe, AZ 85281-8809, U.S.A.

e-mail: dijiang@asu.edu

Abstract

During the past few years, service oriented approaches have been appeared as a new research

paradigm providing better control, re-usability, and reliability for the software developments. With the

growing complexity of embedded systems, new methodologies are needed to facilitate design,

implementation, and maintenance of such systems, while providing means to capitalize software

developments. Although embedded mobile devices are usually considered as resource restricted, there

is a great demand to incorporate service-oriented approaches to achieve more dynamicity and

robustness. To this end, this article aims at the establishment of a service oriented approach to

integrate OSGi into the mobile Android platform to make the software development adaptive and

dynamic. The main contribution of this paper is the establishment of a middleware solution

incorporating OSGi into Android software development platform, which provides a service-

architecture for Android-based applications. The presented solution is illustrated through an example.

Additionally, performance evaluations are presented to demonstrate the effectiveness of our approach.

Key words: OSGi, Service Oriented Architecture, Android platform.

1. Introduction

The increasing complexity of the applications in embedded systems and the integration of high-level

services within these systems (such as the integration of a Web service in Java Card 3.0 [2] or the

proposition of OSGi (Open Service Gateway Initiative) ME [1] for embedding OSGi in sensors) led to

the development of new methodologies to reduce the complexity of the software and to supply a

support facilitating its re-use.

Recent development of mobile cloud computing [10] constructed a new service oriented framework

that recruits mobile devices as service providers to build a sensing-based new application platform. In

such a framework, each mobile device (usually an embedded device) is a service provider. First, an

embedded device senses its surrounding information, such as wireless communication channel status,

neighboring nodes information, environmental information (e.g., CO2 and pollution levels, etc.),

personal information (e.g., medical and health information using bio sensors), etc. Second, the mobile

cloud creates a dual computing model in that an embedded device can outsource its computing-

intensive computing tasks to the cloud. In the above described mobile cloud framework, service

oriented approach is a natural choice to support mobile cloud software development and service

provisioning.

Service oriented approach (SOA1) is viewed as a new paradigm to guarantee more control, re-use and

reliability of the software. Mobile cloud demonstrated in this paper is based on mobile Android

software development platform. This article focuses on how to convert the mobile Android platforms

to a service oriented framework based on OSGi [3] framework. The notable feature of SOA is the

service dynamicity, which is achieved by our solutions involving dynamic class loading, versioning

management, and dynamic bundle reconfiguration without restarting Android application.

1 Service Oriented Architecture

2

Many SOA approaches have been presented for mobile phones such as [4, 5 and 6]. However, in

previous work, the service notion is synonym of Web services based on SOAP protocol with the

objective of securing mobile communications. OSGi was originally designed for machine

configurations of high resource footprint [3]. Recently, OSGi ME [1] was proposed for constrained

embedded systems. OSGi ME has a footprint of 40KB with 32 bit-processors while frequencies vary

from 8 to 72MHz. Another work aiming the use of OSGi technology in Java Card platforms has been

addressed in [8]. The most relevant solutions related to our approaches are EZdroid project [7] and

ProSyst’smBS Mobile SDK [9]. EZdroid is an open source project founded by Luminis BV and

Akquinet AG. This platform is based on Apache Felix OSGi implementation running on Android,

which is initially supplemented with components developed by the founders. The main drawback of

this solution is that bundle updates need the recompilation of the application. Moreover, the bundles

are duplicated within the Android applications, and there is no means to provide administrative

functions using the OSGi platform.

The ProSyst’s mBS Mobile for Android product is a carrier grade OSGi framework solution for the

Android platform 1.5 and higher. A new type of bundle has been defined, making ProSyst bundles

slightly different from traditional OSGi bundles. The consequence is that existing bundles have to be

modified in order to be used by mBS Mobile. Another drawback is due to the installation of any

Android application, which does not check the availability of the services, on which the application

depends.

To address the drawbacks of existing work, in this paper, we present a new OSGi-based SOA

framework to design Android applications based on OSGi bundles. Our solutions target to develop a

component-based software package that implements the service-component model with modularity

and reusability capabilities. The presented solutions make Android platforms more dynamic by

providing SOA features such as dynamic class-loading, versioning management, and dynamic bundle

configuration avoiding the Android platform restart. In fact, our methodology defines a middleware to

launch Felix, an OSGi implementation, on Android terminals, and to manage the life cycle of the

bundles that are used by Android applications. An application example is developed to illustrate the

use of the proposed middleware, and experiments are conducted to measure the middleware overhead.

In the rest of this paper, we describe the principles of OSGi architecture and present the programming

basics of Android platforms before emphasizing on the differences of OSGi and Android technologies

in section 2. In section 3, we detail the solution we propose to make Android platform more robust by

using dynamic services. Section 4 illustrates the use of our middleware by developing an application

example. Section 5 gives the first experiments that have been carried out to measure the overhead due

to our added middle-ware. Section 6 concludes the paper.

2. Description of Android and OSGi Platforms

In this section, we describe the principal features of OSGi and Android platforms in order to highlight

the differences and to show the contribution of OSGi for Android platforms.

2.1 OSGi Architecture

OSGi technologies allow composing services dynamically for Java-based applications. OSGi is used

in various domains such as in automotive, telecommunications or energy. OSGi is based on a simple

and efficient model that allows dynamic programming with Java components that concentrate on the

business logic. The deployment of these components is called bundles that cover all the bundle-related

operations such as, loading, installing, activating, updating, or uninstalling. One major benefit of using

OSGi is that these operations are carried out dynamically without restarting the OSGi platform. The

platform checks the bundle dependencies (and their versions) before authorizing the activation of an

application on which it depends.

OSGi platform consists of two parts: the OSGi framework and the standard services. The OSGi

framework offers a service facility, where a service can be removed at any time. The OSGi framework

3

allows adding bundles in the container and managing their dependences and their versions using a

class loader associated to each bundle. A bundle is a Jar file that contains a compiled code, resources

as well as meta-data. The meta-data is stored in a configuration file called Manifest.mf. This file is

necessary to the deployment of the bundles in the OSGi framework. It contains all the information

related to the bundle such as its name, its version, its provider, the required dependencies, the exported

and imported packages, and the information used during its life cycle. Packages are the exchanged

units between the bundles. Indeed, a bundle sharing its service with other bundles has to mention it in

the Manifest file by using the entry Export-Package. If a bundle requires another bundle, it has to

import the corresponding package by using the entry Import-Package of the Manifest file.

2.2. The Android platform

Android is an open source operating system based on Linux and dedicated to mobiles phones, initially

designed by the Android start-up and then acquired by Google. The Android platform is organized

around various layers. An application layer supplies standard applications such as SMS application, a

browser, a calendar, etc. Every application runs on a distinct virtual machine called Dalvik Virtual

Machine (DVM) to avoid altering the functioning of the other applications.

The executable files .dex (Dalvik Executable) are generated from class files. Android contains a

framework layer that facilitates the application development based on several components such as GUI

management (Views); data sharing (Content Provider); resource access (Resource Manager), life-cycle

management (Activity Manager), etc. This framework is based on C/C++ libraries and on Android

runtime to provide Java basic functionalities.

In Android platform, a service is a component that runs in background. It is defined by an “.aidl”

specification called Android Interface Definition Language (AIDL), from which a Java interface is

automatically generated with an abstract Stub class. A service class contains an internal class

extending Stub classes. To make the service available to other applications, the service-class name

must be presented in the Service entry of the Manifest file. Additionally, Android introduces the

activity notion to define a treatment associated with a physical view to interact with the user. The

activity is the entry point of the application through a GUI. And the Intent messaging is a facility for

late run-time binding between activities in the same or different applications.

2.3 OSGi versus Android

Compared to executing each application on a distinct DVM based on Android platform, all OSGi

applications run in one JVM (see Figure 1). Android platform has drawbacks such as the duplication

of components in DVMs. With a single VM in OSGi, the classes are shared and for each bundle is

associated a distinct class loader that allows selective export of internal packages and selective import

of required dependencies.

Figure 1.OSGi versus Android

In summary, using OSGi with Android will bring benefits such as:

 Designing applications by assembling components,

 Re-using existing OSGi components (bundles),

4

 Loading classes dynamically,

 Updating easily and managing bundles without restarting the Android application,

 A versioning support for bundles.

3. Description of the Presented Solution

This section describes a step-by-step methodology to integrate OSGi within the Android platform in

order to take advantage of OSGi framework, i.e., the dynamic class-loading, service reusability,

resolution of dependencies before executing an application, and update of services without restarting

the application.

3.1 Integrating Felix platform in Android

In our implementation, we choose the Apache Felix platform as an implementation of OSGi due to its

small size compared to other OSGi implementations. In the implementation, we use Apache Felix

version 3.0.6, which has been incorporated in the release 4 of OSGi specification.

To integrate Felix within an Android platform, two approaches exist: (1) implementing Felix as an

activity, or (2) implementing Felix as an Android remote service. We choose to implement Felix as an

Android remote service. This is because Felix has to execute as a background task and does not need

any graphical resources. Our implementation details are explained in the following sub-sections.

3.1.1 Android Services

Unlike other platforms in the market, Android provides an environment for applications that do not

require user interfaces to operate. In Android system, a Service is an application extended with

android.app.Service class, and it runs in the background. This service class can inform users that an

event requires attention. In contrast to Android Activity that provides a user interface, a Service is

completely invisible to the user, and can be controlled from other applications (activities).

An application that runs without requiring constant interaction with the user may be implemented

as a Service. Thus, we integrate the Felix Framework as a Service into the Android platform, called

AndroLix that extends the android.app.Service class while providing different methods as presented

in the following subsection.

3.1.2 AndroLix methods

The access to Felix being made via a RPC communication mechanism, AndroLix provides to clients an

AIDL description containing different methods that are implemented by this service. The proposed

AndroLix middleware allows the management of bundles’ life-cycle, and calls bundles through the

AndroLix AIDL, which is shown Figure 2. The AndroLix methods are presented as follows:

- install(): installs a bundle from a specified location and returns a unique bundle ID

- uninstall (): uninstalls a bundle with a specific ID. If the Bundle is in a Resolved or Installed

state, it is directly uninstalled. If it is in Active state, it is stopped before being uninstalled.

- getBundleId(): returns the bundle ID.

- startBundle(): starts a bundle after checking the availability of the bundle ID and the bundle

status. The bundle is started if it is in Installed or Resolved2 state.

- stopBundle(): stops a bundle after checking the availability of the bundle ID and the bundle

status. The bundle is stopped if it is in Active state.

- getBundlesContainer(): retrieves the symbolic name, the bundle ID and the status (Installed,

Resolved, Active) of all the bundles present in the bundle container.

2 the bundle's code dependencies are resolved

5

- startFelixFramework(): defines a persistent set of properties (Felix Framework cache

directory, Felix Framework and Android packages to be loaded, etc.) and starts the Felix

Framework. This method is called when creating AndroLix Service.

- install_uninstall(): checks a package dependency of a bundle at a start-up or a stop of the

bundle.

- Call() : allows a dynamic class-loading of classes to deal with different services wassociated

to distinct contracts. The entry parameters are: the ID of the bundle that will load the service

class, the complete name of the class including the package name, the name of the method to

call, and the method arguments. The Call() method returns the result and the state of the

operation.

Figure 2. Overview of our architecture

3.2. Android applications that use bundles

By calling the AndroLix service, any Android application is able to interact with Felix platform.

However, the OSGi bundles cannot use the mechanisms provided by the application framework of

Android since the bundles are executed in background and cannot interact with Android applications.

For this reason, we define an Android application as a pair of a bundle and an apk application. Both

the application and bundle have the same name and are stored in the same package. The bundle

specifies in Import-package entry not only the packages it requires but also the packages needed by the

corresponding apk. The role of the associated bundle is to represent the application within the Felix

container, i.e., the bundle guarantees the dependencies resolution of the apk application before its

installation, and could access to other Felix bundles if they are required by the apk application. For

example in Figure 3, the application B is composed of the apk and of an associated bundle contained

in Felix and used to access to other Felix bundles. Moreover, the application is installed and

uninstalled automatically according to the state of the associated bundle. In other words, if the bundle

is active the corresponding application is installed, otherwise the application is uninstalled.

6

Figure 3. A typical application using bundles

3.3. The features of our proposed solution

By using Felix bundles to design Android applications with respect to a component approach, we

provide more facilities for Android programmers. In fact, thanks to a single Felix container available

to all apk applications, bundle sharing hence reusability is offered while versioning management is

assured. The installation of the application is conditioned by the earlier resolution of the dependencies.

Whenever a bundle has been updated, the involved applications are not required to be restarted.

Contrary to the existing approaches, our solution does not change the structure of the bundle, i.e.,

classic bundles may be used by the android application without any modification. Furthermore, as

described in Figure 4, a friendly graphical user interface to manage Felix container has been developed

as an Activity to handle different bundles in real time. This interface allows the user to start, stop and

remove a bundle, and to check the status of the bundles in the container.

Figure 4. A GUI management of bundles

4. An Illustrative Example

To illustrate the use of the implemented middleware, we develop an application that uses OSGi

services. The application offers geo-localization and tracking services in order to localize an object on

a map based on geographical coordinates. The application is composed of two entities; each one is

handled by a distinct Android platform. The first entity sends its geographical position during a

movement, and the second entity receives the coordinates and finds the position on a map.

The information exchanged by the two entities is done based on SMS service in a transparent manner.

As in Figure 5, the tracker entity starts by sending a localization request, and the tracked entity

answers by sending its position each time a new position is detected. When the tracker entity does not

7

want to receive information any more, it sends to the tracked entity a stop request inviting this latter to

stop its application.

Figure 5. Application example

To respect the requirements of the application, we designed three bundles as in Figure 6:

- SendService Bundle: this bundle provides three services: Send service to send an SMS

message, Crypt service to encrypt a message and Decrypt service to decrypt an encrypted

message.

- ReceiveService Bundle: this bundle provides two types of services: isSmsLocation service

returns the type of the message passed as a parameter, and getLocation service that

extracts the geographical coordinates from the message.

- Tracker Bundle: this bundle is associated to the apk application. It represents the

application in the Felix container and accesses to the services provided by SendService

and ReceiveService bundles.

Figure 6. The service architecture of the application

In the developed application, if we update an OSGi service such as changing the implemented

encryption algorithm, the update is handled automatically and no application using this service will be

recompiled. This behavior increases the robustness of the application.

8

5. Some experiments

In the preceding sections, we proposed a new model to implement OSGi on Android mobile platforms.

We illustrate the use of this model to highlight the benefit of our proposed solution. In this section, we

present the performance of our solution by measuring the overhead generated when using the Felix

middleware. For this purpose, we choose execution time as a measurement criterion and we use

DDMS (Dalvik Debug Monitor Server) tool of Android SDK that runs in both emulators and real

terminals. DDMS provides a powerful option called TraceView to measure execution time.

In these experiments, based on a TraceView tool, we measured the execution times of all the

developed methods that interact with Felix. First, we computed the necessary time to start Felix, and

then we measured, according to the number of bundles and their dependences, the execution time of

these methods. The experiments have been undertaken on a Samsung Galaxy Tab mobile phone that

uses a 2.2 version of Android, with Cortex 1.0 GHz processor. In the following figures, the execution

time is given in milliseconds.

Figure 7.Felix starting time when varying the number of bundles

First, we start Felix and we measure the starting time when increasing the number of bundles as

depicted in Figure 7. We notice that this time may reach two seconds if Felix handles up to 30

bundles. Even if this time seems to be important, Felix is started once when starting the Android

platform.

Figure 8. Execution times of different methods when varying the number of bundles

We also measure the execution time of three methods: Start(), Stop() and Update() to respectively

start, stop and update bundles as in Figure 8. When increasing the number of bundles, the execution

time of the three methods seems to vary independently of the number of bundles. However, when

increasing the level of dependencies, the execution time of the methods Start() and Stop() increases

9

linearly with the number of dependency levels (see Figure 9). A dependency level corresponds to a

bundle that depends on another. In fact, when a bundle is started, its dependencies are resolved first. In

the same manner, when a bundle is stopped, its dependencies are freed.

Figure 9. Execution times of different methods when varying the number of dependencies

Based on the above presented performance evaluations, we can see that the methods proposed to

manage the bundles depend only on the number of the bundle dependencies for each bundle.

6. Conclusion

In this paper, we aimed at using facilities offered by OSGi in Android platforms. For this purpose, we

proposed a solution to integrate Felix, a lightweight implementation of OSGi specification. We first

define a set of methods, called AndroLix, in order to implement Felix as an Android remote service.

Then, we present an application example to illustrate the use of the AndroLix middleware. Finally, we

present performance measurements to evaluate the time performances of AndroLix. Our solutions

allow android applications to take advantage of the facilities offered by OSGi such as to update

bundles dynamically without restarting the involved applications, to manage the versioning, to share

services between distinct applications, and to check the dependencies before the application launching

avoiding errors during execution. For our future work, we plan to extend our solution to communicate

with remote OSGi bundles in a mobile cloud computing framework.

7. References

[1] :Andre Bottaro and Fred Rivard, “OSGi ME - An OSGi Profile for Embedded Devices”, Eclipse

Summit, Germany, 2009.

[2] : Java Card, 2011: http ://java.sun.com/javacard/3.0/

[3] :OSGi, 2011: http ://www.osgi.org.

[4] : Johnneth Fonseca, Zair Abdelouahab, Denivaldo Lopes and Sofiane Labidi, A security

framework for SOA applications in mobile environment, International Journal of Network Security

and Its Applications (IJNSA), Vol.1, No.3, October 2009.

[5] : Decker, M, and Bulander, R. "A Platform for Mobile Service Provisioning Based on SOA

Integration", In Communications in Computer and Information Science, Vol 23, 2009, Springer Berlin

Heidelberg, pp 72-84.

[6] :Natchetoi, Y. Kaufman, V. and Shapiro, A. "Service-oriented architecture for mobile

applications", Proceedings of the 1st international workshop on Software architectures and mobility /

International Conference on Software Engineering, pp 27-32, 2008.

[7] :EZdroit project, 2011 : http://www.ezdroid.com/

[8] : Agnes C. Noubissi, Julien Iguchi-Cartigny and Jean-Louis Lanet, Convergence OSGi-Java Card :

Fine-grained dynamic update, E-smart10, 21-24 September 2010, Sophia Antipolis France.

[9] : ProSyst, 2011 : http://www.prosyst.com/index.php/de/html/content/49/mBS-Mobile-for-Android/

[10] :Dijiang Huang, Xinwen Zhang, Myong Kang, and Jim Luo,

MobiCloud: Building Secure Mobile Cloud Framework for Mobile Computing and Communication.

http://www.prosyst.com/index.php/de/html/content/49/mBS-Mobile-for-Android/
http://www.ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5569935

10

In Proceedings of the 5th IEEE International Symposium on Service-Oriented System Engineering

(SOSE), pages 27-34, 2010.

