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We propose an original model for a new real optical network design. The model is a linear program

which is a generalization of a model of flow with multipliers (generalized flows). We give valid
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M. Chardy ∗ M.-C. Costa † A. Faye ‡ M. Trampont §
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Abstract

Due to the emergence of bandwidth-requiring services, telecommuni-
cation operators are being compelled to renew their fix access network,
most of them favoring the Fiber To The Home (FTTH) technology. This
paper focuses on the optimization of FTTH deployment, which is of prime
importance due to the economic stakes. The key design issue here is lo-
cating splitters and routing fibers in an existing network infrastructure to
which is associated a graph with given capacities on the edges. No as-
sumption is made on the structure of the graph. First we propose a mixed
integer formulation for this decision problem. Then, valid inequalities and
problem size reduction schemes are presented. Finally efficiency of solv-
ing approaches is assessed through extensive numerical tests performed
on Orange real-life data.

Keywords: Optical telecommunication network, location, integer programming,
generalized flow.

1 Introduction

The increasing use of IP telecommunication networks for ever more bandwidth
consuming services (file transfers, video or audio streaming, cloud computing,
...) leads telecommunication operators to seriously consider the high volume
roll-out of optical-fiber-based access networks. They have to renew their ac-
cess networks that are clearly become the bottleneck in terms of bandwidth.
Therefore most of telecommunication operators are currently withdrawing their
legacy copper network, giving way to optical fiber networks.

To allow faster connections, the optical fiber gets closer and closer to the
subscriber. In Figure 1, several architectures are described : the optical fiber
stops in the neighborhood (curb) of the subscribers (FTTC), or at their building
(FTTB), or even at their home (FTTH = Fiber To The Home).

FTTH seems the most suitable choice for a long term objective: if the clients
are wholly served by optical fibers, it will be easier to increase the bandwidth in
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Figure 1: The different FTTx architectures

the future. That is why Orange (the main French telecommunication operator)
has decided to gradually convert its copper wires network to an FTTH Passive
Optical Network (PON). But this choice is obviously the one needing the most
investments since the existing copper wire and splitters could not be reused.
To avoid exorbitant civil engineering cost, the reuse of existing infrastructures,
as sewers or ducts used at the moment for copper wires, is a major issue. A
feasibility study made by Orange has shown that, in urban area, this existing
civil engineering is quite abundant and allows to install the FTTH network
without digging new trenches. As is generally the case, Orange’s objective is to
minimize the global cost of the network installation.

Access network design has been the subject of much researches dealing with
different versions of the problem depending on the topologies and on which
particular issue it is dealt with. [4], [6],[7] and [13], contain surveys on different
existing models. These models often consider only one level of intermediate
equipments and a star-star topology: a terminal is connected to an equipment
and an equipment is directly connected to the central office.

One approach is the ”Capacitated or Uncapacitated Local Access Network
Design Problem” where one has to build a graph representing the topology
of the network: an edge of the graph induces a fixed cost plus a variable cost
depending on the capacity of the edge. The uncapacitated version is an NP-hard
problem since it generalizes the classical Steiner Tree Problem and it is solved
either by a heuristic or by integer linear programming. In [3], the authors study
the polyhedron of the solutions and propose several valid inequalities. In [15],
the authors compare several approaches. A variant considering a network using
two technologies is found in [16]. These last models do not consider the cost of
installing intermediate equipments and the topology of the obtained network is

2
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a tree. An efficient algorithm based on cutting-plane and column generation is
proposed for survivable network design in [2]. A model for an access network
hub location problem considering multiplexer installation cost is proposed in
[18]; it is solved with a Lagrangian dual-based heuristic combined with an exact
solution procedure. Another local access network design problem with stepwise
link capacity is solved in [17]; the model is based on a flow formulation and
the algorithm uses relaxations obtained by approximating the noncontinuous
function by its convex envelope.

Problems involving more complex topologies, as tree-tree or topologies with
three (or more) levels, are often split in several independent subproblems. See
for instance [12] for a tree-tree network design problem: the authors first locate
the equipments with a simple plant location model, second they solve an unca-
pacitated local access network design problem to connect the terminals to the
equipments and third they connect the equipments to the central office.

In [5], the authors consider fixed and variable costs of the connections and
they present a model dealing at the same time with the network topology and
the location of the equipments. Their integer program is valid for more than one
level of intermediate equipments and they propose a Branch&Bound algorithm
that use lagrangean relaxation to compute lower bounds. Results are presented
for one level of intermediate equipments and for graphs with at most 100 vertices
and 400 edges.

There are few references devoted to FTTH networks. In [14], the authors
present a heuristic to optimize the location of three types of equipments: cable
splitting points, optical splitters, and distribution points. No existing infrastruc-
ture is considered and the heuristic locates each type of equipments separately.
In [11], the authors propose a model optimizing location and capacities of one
level of splitters; they solve a continuous location problem close to the multi-
source Weber problem, with additional constraints on the fiber lengths and on
the equipment capacities. The model closest to ours is proposed by Kim, Lee
and Han [10]: the authors have to locate splitters and to assign fiber capacities
in an FFTH-PON tree access network. They use the tree structure to propose
a specific heuristic and integer programming models for one or two levels of
splitters. They add some valid inequalities to the model to get lower bounds
which allow them to guarantee their solutions. They obtain very small duality
gaps for networks with twenty nodes or so. Some papers (see for instance [8])
deal with another FFTH optimization problem which is downstream from ours:
the routing and wavelength assignment (RWA).

In this paper, we study an FTTH PON access network design problem where
the network must be installed entirely in existing ducts. A fiber entering a
splitter is split in several fibers of a higher level and there are two levels of
splitters, i.e. three levels of fibers. The problem is to locate the splitters and
to determine the route of the fibers in order to serve given demands, while
respecting the capacity constraints of the ducts. All the demands are served by
fibers at level three, the higher level of fibers. The cost to minimize includes the
splitter costs and the optical fiber costs. We propose an integer model which
can be viewed as an extension of the generalized flow problem (see [1]) where
the multipliers are on the nodes (and not on the arcs as usual), where only a
part of the flows entering a node is multiplied, and where we must distinguish
several levels of flows that cannot be merged but share the same edge capacities.
The proposed model and method consider any graph without specific structure.

3
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First we describe the network architecture and the problem. Second, we propose
an integer linear programming model for the problem. Then we propose some
cuts and reductions reinforcing the model. Finally we give numerical results
on several instances obtained from real life data for networks with up to three
thousand nodes and a low density before concluding on the benefits of this model
and future works to come.

2 The model

Orange has decided to use exclusively the existing network infrastructure that
is supposed to be abundant enough to allow the development of the new optical
connections required by the FTTH network. Let us modelize by an undirected
graph G = (V,E) this existing infrastructure. The vertices, or nodes, of V
are denoted by vi or simply i, i = 0, ..., n. v0 is the Optical Line Termination
(OLT). C is the set of nodes with a demand: C = {vi ∈ V such that there
is a Client at node vi}; a Client can represent several subscribers in the same
building or neighborhood: in that case, a subscriber is linked to the Client by a
copper fiber and the Client’s demand is the sum of the subscribers demands (see
Figure 1). The edges of G correspond to the existing ducts and have capacities
equal to the maximum number of fibers that can be added in the duct. An edge
is undirected but a fiber on an edge [i, j] can be routed from i to j (if the fiber,
on a path originated at OLT, meets i before j) or from j to i (otherwise).

We present in this section a location model for a three level architecture:
from OLT to the S1 (splitters of level 1 connected to OLT by fibers of level 1),
from the S1 to the S2 (splitters of level 2 connected to the S1 by fibers of level
2) and finally from the S2 to the Clients (all the Clients are served by fibers of
level 3).

To each fiber of level k arriving in an optical splitter of level k (k = 1, 2)
corresponds a fixed number mk of fibers of level k+1 leaving the splitter; notice
that, since mk is a fixed parameter, a part of the mk fibers produced by a splitter
can be unused. There can be several splitters of different levels at a same node.
The cost of the optical network contains the purchasing costs and the installation
costs: it is the sum of the costs of the splitters, and the costs of the fibers that
are linear functions of their lengths depending on the level. Costs of splitters of
level 1 or 2 can be significantly different whereas linear costs of fibers of level
1, 2 or 3 are in practice quite homogeneous. The problem is to determine how
locating the splitters and the fibers in order to minimize the global cost, while
satisfying the demands and respecting the capacity constraints.

Let us now consider the whole problem.

The data are the following:

• lij : length of the edge [i, j], [i, j] ∈ E;

• γk : linear cost of a level k fiber, k = 1, 2, 3.

• dkij : cost of a fiber of level k routed on the edge [i, j]; dkij = lijγ
k for all

[i, j] ∈ E, k = 1, 2, 3.

• Ck : cost of a splitter of level k, k = 1, 2.

4
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• mk : multiplying coefficient at level k, i.e. number of fibers of level k + 1
leaving a splitter of level k (for only one fiber entering the splitter), k =
1, 2; mk ≥ 2.

• ai : demand at node i , i.e. number of fibers of level 3 required by the
Client at node i, i = 0, ..., n. ai = 0 if i /∈ C;

• bij : capacity of the edge [i, j], i.e. maximum number of fibers that can
be added in the duct [i, j], [i, j] ∈ E.

The integer variables are the following:

• zki : number of splitters of level k installed at node i, i = 0, ..., n, k = 1, 2.

• fkij : number of fibers of level k routed on the edge [i, j] from i to j, [i, j] ∈
E, k = 1, 2, 3;

• uki : number of unused fibers of level k leaving a splitter of level k − 1 at
node i, i = 0, ..., n, k = 2, 3.

The FTTH location problem can be written as the following integer linear
program:

(PON )



min
f ,z

n∑
i=0

2∑
k=1

Ck zki +
∑

[i,j]∈E

3∑
k=1

dkij(f
k
ij + fkji)

such that : ∑
j|[i,j]∈E

f1ji = z1i +
∑

j|[i,j]∈E

f1ij ∀i = 1, ..., n (1)

∑
j|[i,j]∈E

f2ji +m1 z1i = z2i +
∑

j|[i,j]∈E

f2ij + u2
i ∀i = 0, ..., n (2)

∑
j|[i,j]∈E

f3ji +m2 z2i = ai +
∑

j|[i,j]∈E

f3ij + u3
i ∀i = 0, ..., n (3)

3∑
k=1

(fkij + fkji) ≤ bij ∀[i, j] ∈ E (4)

zki ∈ N ∀i = 0, ..., n, k = 1, 2; uki ∈ N ∀i = 0, ..., n, k = 2, 3

fkij ∈ N ∀[i, j] ∈ E, k = 1, 2, 3

Constraints (1), (2) and (3) are similar to generalized flow equations (see
[1]) at each node : here the multipliers are on the nodes and only a part of the
flow entering the node is multiplied.

Constraints (1) ensure that the number of fibers of level 1 arriving at node i
is equal to the number of split fibers, i.e. number of splitters of level 1 at node
i, plus the number of unsplit fibers crossing i.

Constraints (2) ensure that the number of fibers of level 2 ”arriving” at node
i is equal to the number of split fibers, i.e. number of splitters of level 2 at node
i, plus the number of unsplit fibers crossing i, plus the number of unused fibers.
The number of fibers of level 2 (resp. 3) ”arriving” at node i is the number
of fibers of level 2 (resp. 3) really entering the node i, i.e.

∑
j|[i,j]∈E f2ji (resp.

5
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∑
j|[i,j]∈E f3ji) plus the number of fibers of level 2 (resp. 3) leaving the splitters

of level 1 (resp. level 2) installed at node i, i.e. m1 z1i (resp. m2 z2i ).
In the same way, constraints (3) ensure that the number of fibers of level 3

arriving at node i is equal to the demand at node i (0 if i /∈ C), plus the number
of unsplit fibers crossing i, plus the number of unused fibers.

Constraints (4) are the capacity constraints.

We present now some properties of any optimum solution.

Proposition 1. In any optimum solution, we have:

fkijf
k
ji = 0 ∀[i, j] ∈ E, k = 1, 2, 3

Proof. Consider a solution S such that, for some [̂i, ĵ] ∈ E and some k̂ ∈ {1, 2, 3},
we have 0 < f k̂

îĵ
≤ f k̂

ĵî
. We easily obtain a new solution S’ with a lower cost by

setting: f ′
k̂
îĵ = 0, f ′

k̂
ĵî = f k̂

ĵî
−f k̂

îĵ
and f ′

k
ij = fkij for all (i, j, k) 6= (̂i, ĵ, k̂). S’ verifies

the constraints and the cost is decreased by 2dk̂
îĵ
f k̂
îĵ

.

More generally, in any optimum solution, we cannot have a circuit (directed
cycle) such that fkij > 0 on all arcs on the circuit: let finf be the lowest value

of fkij on the circuit; we could get a better solution by decreasing by finf all the

fkij along the circuit. At least one of them becomes null and the circuit does not
exist anymore.

In addition, we give the following property relative to the unused fibers:

Proposition 2. In any optimum solution, we have:

uk+1
i < mk ∀i = 1, .., n k = 1, 2

Proof. Consider a solution with uk+1
i ≥ mk for some k; all level k splitters being

equivalent, we can consider that one of them produces mk unused fiber, which
is trivially useless. The solution is not optimal since there is another solution
with (at least) one less splitter.

To improve the efficiency in solving the mathematical program we add some
inequalities to the model and we show how to reduce the initial problem.

3 Valid inequalities based on flow constraints

We present some valid inequalities following the mixed-integer rounding princi-
ple (see for instance [19]).

Preliminary result
Let Q be the set of points (x,y) verifying :{

βx +y ≥ α
x ∈ N y ∈ N

with α ∈ N, β ∈ N.

6
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The polyhedra P , defined by the following inequalities :

{
βx +y ≥ α
x ≥ 0 y ≥ 0

,

contains Q.
Now, let us denote by r the remainder and by q the quotient of the integer

division of α by β: q =
⌊
α
β

⌋
, and r = α −

⌊
α
β

⌋
β. We have the following

proposition:

Proposition 3.
rx + y ≥ r(q + 1) (5)

is a valid inequality for Q .

Proof. We divide βx + y ≥ α by β and then we apply Proposition 8.6 in [19]
(p. 127) to the inequality x+ y

β ≥
α
β with x ∈ N and y

β ∈ R+.

The proposed inequality truncates the polyhedra P in the region defined by
q < x < q + 1, as shown in Figure 2. In the following, we only consider cases
where r > 0, else the inequality (5) is useless.

y

x

α = 5
β = 3
q = 1
r = 2

3.x + y = 5

2.x + y = 2

cut area

Figure 2: A valid inequality obtained with (5)
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Applications to (PON )

Let A be a subset of nodes : A ⊂ V \{v0}. We have the identity:

∑
i∈A

∑
j∈A|[i,j]∈E

fkji =
∑
i∈A

∑
j∈A|[i,j]∈E

fkij k = 1, 2, 3

Then, when summing Equations (3) for all i ∈ A we get:

∑
i∈A

u3i =
∑
i∈A

m2z2i +
∑
i∈A

∑
j /∈A|[i,j]∈E

(f3ji − f3ij)−
∑
i∈A

ai ≥ 0

⇒
∑
i∈A

ai ≤
∑
i∈A

∑
j /∈A|[i,j]∈E

(f3ji − f3ij) +m2
∑
i∈A

z2i

⇒
∑
i∈A

ai ≤
∑
i∈A

∑
j /∈A|[i,j]∈E

f3ji +m2
∑
i∈A

z2i (6)

By denoting: α =
∑
i∈A ai (= total demand in A), β = m2, x =

∑
i∈A z2i and

y =
∑
i∈A

∑
j /∈A|[i,j]∈E f3ji, we get an equation of the type βx + y ≥ α, with

x,y ∈ N.
From the preliminary results, with r = α−

⌊
α
m2

⌋
m2 > 0 and then q+1 =

⌈
α
m2

⌉
,

we get the following valid inequality:

Proposition 4.∑
i∈A

∑
j /∈A|[i,j]∈E

f3ji +
(
α−

⌊ α
m2

⌋
m2
)∑
i∈A

z2i ≥
(
α−

⌊ α
m2

⌋
m2
)⌈ α

m2

⌉
(7)

is a valid inequality for (PON ).

To get an interesting inequality, we must choose A such that A∩C 6= ∅ (α > 0)
and such that α =

∑
i∈A ai is not multiple of m2.

Now, we show how obtaining new valid inequalities.
From Equations (2) we have:

z2i + u2
i =

∑
j|[i,j]∈E

(f2ji − f2ij) +m1z1i

Since u2
i ≥ 0, by summing Equations (2) for all i ∈ A, we get:∑

i∈A
z2i ≤

∑
i∈A

∑
j /∈A|[i,j]∈E

(f2ji − f2ij) +m1
∑
i∈A

z1i

⇒
∑
i∈A

z2i ≤
∑
i∈A

∑
j /∈A|[i,j]∈E

f2ji +m1
∑
i∈A

z1i (8)

8
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Then, from Equations (6) and (8), we have:

α =
∑
i∈A

ai ≤
∑
i∈A

∑
j /∈A|[i,j]∈E

(
f3ji +m2f2ji

)
+m2m1

∑
i∈A

z1i

Let x =
∑
i∈A z1i , y =

∑
i∈A

∑
j /∈A|[i,j]∈E(f3ji + m2f2ji), and β = m1m2. We

get other valid inequalities of type βx + y ≥ α, with x,y ∈ N. With r =
α−

⌊
α

m1m2

⌋
m1m2 > 0 and q + 1 =

⌈
α

m1m2

⌉
, we obtain:

Proposition 5.∑
i∈A

∑
j /∈A|[i,j]∈E

(
f3ji +m2f2ji

)
+
(
α−

⌊ α

m1m2

⌋
m1m2

)∑
i∈A

z1i ≥
(
α−

⌊ α

m1m2

⌋
m1m2

)⌈ α

m1m2

⌉
is a valid inequality for (PON ).

Here, we shall choose A such that A ∩ C 6= ∅ (α > 0) and α =
∑
i∈A ai not

multiple of m1m2.

In the same way, with Equations (7) and (8), we get:∑
i∈A

∑
j /∈A|[i,j]∈E

f3ji+
(
α−

⌊ α
m2

⌋
m2
)∑
i∈A

∑
j /∈A|[i,j]∈E

f2ji+
(
α−

⌊ α
m2

⌋
m2
)
m1
∑
i∈A

z1i ≥
(
α−

⌊ α
m2

⌋
m2
)⌈ α

m2

⌉
Let α′ =

(
α−

⌊
α
m2

⌋
m2
) ⌈

α
m2

⌉
and β′ =

(
α−

⌊
α
m2

⌋
m2
)
m1. We get the follow-

ing proposition:

Proposition 6. Let

• q′ =
⌊
α′

β′

⌋
=
⌊

1
m1

⌈
α
m2

⌉⌋
• r′ = α′ −

⌊
α′

β′

⌋
β′ =

(
α−

⌊
α
m2

⌋
m2
) (⌈

α
m2

⌉
−
⌊

1
m1

⌈
α
m2

⌉⌋
m1
)

• x′ =
∑
i∈A z1i

• y′ =
∑
i∈A

∑
j /∈A|[i,j]∈E f3ji +

(
α−

⌊
α
m2

⌋
m2
)∑

i∈A
∑
j /∈A|[i,j]∈E f2ji

Then, r′x′ + y′ ≥ r′(q′ + 1) is a valid inequality for (PON ).

We choose A such that α (> 0) is not multiple of m2 and
⌈
α
m2

⌉
is not a

multiple of m1; then: r′ is strictly positive.

We could obtain other valid inequalities by using different combinations of
the flow constraints. We shall see in Section 5 that these cuts are efficient for
solving the problem (PON ).

4 Graph reductions

The graph G = (V,E) defined in section 2 has generally a great number of nodes
(several thousands) but a very low density. In this section, we propose some
reductions inspired by those used for the Steiner tree problem (see [9]). They
are applied recursively to G. These reductions reduce drastically the number

9
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of nodes and make easier the use of integer linear programming to solve the
problem, as it will be seen in Section 5.

An edge [v, w] of E is simply note vw, Γ(v) denotes the set of nodes adja-
cent to v. In the following, if we ”remove” a node v with Γ(v) = {w} then we
remove the edge vw and we set aw = aw + av. If we ”remove” a node v /∈ C
with Γ(v) = {t, w} then we replace the edges tv and vw by an only edge tw
with capacity btw = min(btv, bvw).

Let v be such that Γ(v) = {t}: if v /∈ C, it is clear that v can be removed
from the graph.

We assume now that Γ(v) = {t, w} and v /∈ C. Considering a solution So
with splitters on v, we are going to show that we can obtain a better (or equal)
solution S∗ by ”moving” these splitters to t or to w. Doing so, we prove that
there is an optimal solution without splitters in v and thus, v can be removed
from the graph. ”Moving” a splitter from v (in So) to t (in S∗) means that in S∗
there is one less splitter in v and one more in t and so the cost relative to the
splitters is the same in So as in S∗; the fibers connected to this splitter are the
same but in S∗ they originate (or end) at t while in So they originate (or end) at
v, all the other fibers remain unchanged (see Figure 3), so the cost of the fibers
in S∗ differs from the one of So only for the cost relative to the fibers connected
to the moved splitters. We note ∆S = cost(So) − cost(S∗). In addition, the
transformation from So to S∗ is possible only if the capacity constraint on vt is
verified (the flow remains unchanged on all the other edges). A splitter can be
moved from v to w in a similar way.

Remark: in the following, we only consider solutions such that the number
of level k splitters is (locally) minimized at each node, i.e. it is the minimum
number necessary to produce the level k+ 1 fibers originated at this node. This
property is obviously verified by any optimum solution.

We explain first in which direction (t or w) we move level 2 splitters. We
define some more variables:

ϕ3
vt (resp. ϕ3

vw) is the total number of level 3 fibers produced by all the level
2 splitters in v and routed to t (resp. w). In So, from the previous remark,

we have: zo2v =
⌈
ϕ3

vt+ϕ
3
vw

m2

⌉
. ∆S = ∆2

vt (resp. ∆2
vw) is the variation of the cost

when a level 2 splitter is moved from v to t (resp. w). It takes into account
the modifications of the level 2 fibers that connects the splitter and of all the
level 3 fibers produced by this splitter. Recall that dkvt = lvtγ

k. We assume that

γi ≤ 2γj for all (i, j) ∈ {1, 2, 3}2, which is compliant with reality as explained in

the beginning of Section 2; this implies γi ≤ γj + γk for all (i, j, k) ∈ {1, 2, 3}3.

Proposition 7. Let v be such that Γ(v) = {t, w}. There is an optimal solution
with at most two splitters of level 2 in v and with ϕ3

vt < m2 and ϕ3
vw < m2.

Proof. We can consider that
⌊
ϕ3

vt

m2

⌋
level 2 splitters in v produce m2

⌊
ϕ3

vt

m2

⌋
level

3 fibers routed to t and that
⌊
ϕ3

vw

m2

⌋
level 2 splitters produce m2

⌊
ϕ3

vw

m2

⌋
level 3

fibers routed to w, that is each one of these splitters produce m2 fibers routed
either all to t or all to w. If we move from v to t a splitter producing fibers
routed to t, the cost is not increased since:

10
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if the splitter is connected to a level 2 fiber routed from t then ∆2
vt =

−d2vt −m2d3vt < 0
else ∆2

vt = d2vt −m2d3vt = lvt(γ
2 −m2γ3) ≤ lvt(γ2 − 2γ3) ≤ 0 (since m2 ≥ 2

and γ2 ≤ 2γ3).
In addition, the capacity constraints are verified since the flow on vt is de-

creased by at least m2 − 1 ≥ 1.
The proof is similar for moving to w a splitter producing m2 fibers routed

to w.
Let S∗ be obtained from So by moving these

⌊
ϕ3

vt

m2

⌋
splitters to t and

⌊
ϕ3

vw

m2

⌋
splitters to w: S∗ is a solution at least as good as So. The number of level

2 splitters remaining in v is at most two since z∗2v = zo2v −
⌊
ϕ3

vt

m2

⌋
−
⌊
ϕ3

vw

m2

⌋
=⌈

ϕ3
vt+ϕ

3
vw

m2

⌉
−
⌊
ϕ3

vt

m2

⌋
−
⌊
ϕ3

vw

m2

⌋
≤ 2.

They produce ϕ3
vt − m2

⌊
ϕ3

vt

m2

⌋
< m2 level 3 fibers routed to t and ϕ3

vw −

m2
⌊
ϕ3

vw

m2

⌋
< m2 level 3 fibers routed to w (plus possibly unused fibers). If

ϕ3
vt − m2

⌊
ϕ3

vt

m2

⌋
= 0 and (resp. or) ϕ3

vw − m2
⌊
ϕ3

vw

m2

⌋
= 0 there is 0 (resp. 1)

splitter in v.

Figure 3: Moving from v to t or to w a splitter connected to t

Now we consider solutions verifying Proposition 7 and we can give the fol-
lowing proposition:

Proposition 8. Let v be such that Γ(v) = {t, w}. There is an optimal solution
with at most one splitter of level 2 in v.

Proof. If 0 ≤ ϕ3
vt+ϕ3

vw ≤ m2 there is at most one level 2 splitter in v. Consider
now a solution So with two level 2 splitters in v: ϕ3

vt + ϕ3
vw ≥ m2 + 1 ≥ 3, thus

ϕ3
vt ≥ 2 and/or ϕ3

vw ≥ 2. From Proposition 7, ϕ3
vt < m2 and ϕ3

vw < m2; so we
can consider that one of the splitters produces ϕ3

vt fibers routed to t and the
other produces ϕ3

vw fibers routed to w. If ϕ3
vt ≥ 2 (resp. ϕ3

vw ≥ 2), we modify
So by moving the splitter producing these fibers to t (resp. to w): the capacity
constraints are verified since the flow is decreased by at least ϕ3

vt − 1 ≥ 0 on vt
(resp. ϕ3

vw − 1 ≥ 0 on vw). The cost is not increased: ∆2
vt ≤ d2vt − ϕ3

vtd
3
vt =

lvt
(
γ2 − ϕ3

vtγ
3
)
≤ 0 since ϕ3

vt ≥ 2 and γ2 ≤ 2γ3 (resp. similarly ∆2
vw ≤ 0).

So we consider now solutions with at most one level 2 splitter in v. For the
level 1 splitters, we have:

Proposition 9. Let v be such that Γ(v) = {t, w}. There is an optimal solution
with at most one splitter of level 1 in v.

11
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Proof. Let So be a solution with zo2v ∈ {0, 1} and zo1v ≥ 2. We build first a
solution S∗ with z∗1v ≤ 2 and then a new one with z∗1v ≤ 1. The proof is very
similar to the proof for splitters of level 2 and we leave it to the reader. Notice
that the fact that zo2v ≤ 1 from Proposition 8 makes the proof easier.

Now, we can consider solutions with z1v ∈ {0, 1} and z2v ∈ {0, 1} and we give
the last proposition.

Figure 4: Moving a splitter connected to another splitter at v

Proposition 10. Let v be such that Γ(v) = {t, w}. There is an optimal solution
such that z∗1v = z∗2v = 0

Proof. We study two cases in v: in the first one, we can have one splitter or two
splitters that are not connected (see Figure 3); in the second one, there are two
splitters connected by a level 2 fiber (see Figure 4).

For each case, we propose a new solution S∗ without splitter in v such that
the capacity constraints are verified and the cost is not increased.

CASE 1 Consider a level k splitter in v that is not connected to another
splitter in v, k ∈ {1, 2}. We assume, w.l.o.g., that it is connected to t (see
Figure 3). If it is moved to t we have ∆S = ∆k

vt = −dkvt+
(
ϕk+1
vw − ϕk+1

vt

)
dk+1
vt =

lvt
(
−γk +

(
ϕk+1
vw − ϕk+1

vt

)
γk+1

)
. If it is moved to w we have ∆S = ∆k

vw =

dkvw + (ϕk+1
vt − ϕk+1

vw )dk+1
vw = lvw

(
γk + (ϕk+1

vt − ϕk+1
vw )γk+1

)
.

1. If ∆k
vw ≤ 0 then the splitter is moved to w.

The cost is not increased. Let us verify the capacity constraint on vw:
γk +

(
ϕk+1
vt − ϕk+1

vw

)
γk+1 ≤ 0 and γk+1 ≤ 2γk ⇒

(
ϕk+1
vt − ϕk+1

vw

)
γk+1 ≤

−γk ≤ − 1
2γ

k+1 ⇒ ϕk+1
vt − ϕk+1

vw ≤ − 1
2 ⇒ ϕk+1

vt − ϕk+1
vw ≤ −1 since the

flows are integral. The flow on vw is increased by 1 +
(
ϕk+1
vt − ϕk+1

vw

)
≤ 0.

2. If ∆k
vw > 0 then the splitter is moved to t.

∆k
vw > 0 ⇒ ∆k

vt < 0 so the cost is decreased. Moreover, ∆k
vt < 0 ⇒(

ϕk+1
vw − ϕk+1

vt

)
γk+1 < γk ⇒ ϕk+1

vw − ϕk+1
vt < γk

γk+1 ; since the flows are

integral and γk

γk+1 ≤ 2 we obtain ϕk+1
vw − ϕk+1

vt ≤ 1. The flow on vt is

increased by −1 + ϕk+1
vw − ϕk+1

vt ≤ 0 so the capacity constraint is verified.

12
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CASE 2 There is a level 1 splitter connected to a level 2 splitter in v. (See
Figure 4).

To simplify the notation, we set a = ϕ2
vt, b = ϕ2

vw, c = ϕ3
vt, d = ϕ3

vw and
we assume w.l.o.g. that the level 1 splitter is connected to t. Let us study each
case:

1. a+ c+ 1 = b+ d : splitters are moved either both to t or both to w

The capacity constraints on vw and vt are verified if we move both splitters
either to t or to w.

If −γ1 + (b− a)γ2 + (d− c)γ3 ≤ 0 then we move both splitters to t (case
2.1-a), otherwise γ1 +(a− b)γ2 +(c−d)γ3 ≤ 0 and we move both splitters
to w (case 2.1-b); and we have ∆S ≤ 0

In the following, a+ c+ 1 6= b+ d

2. a ≥ b− 1 and c ≥ d : both splitters are moved to t

b+ d− 1 ≤ a+ c so the capacity constraint on vt is verified.

∆S has the same sign as δ = −γ1 + (b− a)γ2 + (d− c)γ3.

If a ≥ b− 1 and c ≥ d+ 1 then δ ≤ −γ1 + γ2 − γ3 ≤ 0.

If a ≥ b and c = d then δ ≤ −γ1 ≤ 0.

3. a ≤ b and c ≤ d and a+ c ≤ b+ d− 2 : both splitters are moved to w

1 + a+ c ≤ b+ d so the capacity constraint on vw is verified.

∆S has the same sign as δ = γ1 + (a− b)γ2 + (c− d)γ3.

If γ2 ≤ γ3 then δ ≤ γ1 + (a+ c− b− d)γ2 ≤ γ1 − 2γ2 ≤ 0.

If γ3 ≤ γ2 then δ ≤ γ1 + (a+ c− b− d)γ3 ≤ γ1 − 2γ3 ≤ 0.

4. a ≥ b+ 1 (and c ≤ d− 1): the level 1 splitter is moved to t.

b+ 1 ≤ a+ 1 so the capacity constraint on vt is verified.

∆S has the same sign as δ = −γ1 + (b− a+ 1)γ2 ≤ −γ1 ≤ 0.

It remains one level 2 splitter in v and we are back to CASE 1: this splitter
is moved to t or w.

5. c ≥ d+ 2 (and a ≤ b− 2): the level 2 splitter is moved to t.

d+ 1 ≤ c so the capacity constraint on vt is verified.

∆S has the same sign as δ = γ2 + (d− c)γ3 ≤ γ2 − 2γ3 ≤ 0.

It remains one level 1 splitter in v and we are back to CASE 1: this splitter
is moved to t or w.

6. a ≤ b− 3 (and c = d+ 1): the level 1 splitter is moved to w.

1 + a ≤ b so the capacity constraint on vw is verified.

∆S has the same sign as δ = γ1 + (a− b+ 1)γ2 ≤ γ1 − 2γ2 ≤ 0.

It remains one level 2 splitter in v and we are back to CASE 1: this splitter
is moved to t or w.

All the possibilities have been studied since each case for a and b (a ≤
b− 3, a = b− 2, a = b− 1, a = b, a ≥ b+ 1) has been coupled with each case for
c and d (c ≤ d− 2, c = d− 1, c = d, c = d+ 1, c ≥ d+ 2).

13
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Reduction Let v be a node with exactly two neighbors t and w. If v /∈ C,
then v can be removed. Let v be a node with a single neighbor t, then v can be
removed.

Proof. If v with two neighbors has no demand, from Proposition 10 there is a
solution without splitter on v, thus v can be removed from the graph as it is
explained at the beginning of Section 4. For each vertex v removed, a solution
S in the initial graph (network) is obtained from a solution S∗ in the reduced
graph by setting: fktv = fkvw = f∗ktw and fkwv = fkvt = f∗kwt for k = 1, 2, 3. This is
done recursively, in reverse order from the order considered to reduce the graph.
If now we consider a vertex v with a single neighbor t, we are in a special case
of the case with 2 neighbors where ϕkvw = 0 for k ∈ {1, 2, 3} thus there is an
optimal solution without splitter in v; the fibers routed on vt are used to satisfy
the demand in v: we can add this demand to the demand in t and remove v from
the graph. For each vertex v removed, a solution in the initial graph (network)
is obtained from a solution S∗ in the reduced graph by setting: f3tv = av.

5 Numerical tests

5.1 Test description

The objective of the performed tests is to assess the efficiency of Branch & Bound
approaches for solving the problem, and particularly to measure the benefit ob-
tained through the proposed reduction schemes and by adding the valid inequal-
ities. Tests have been performed on real data from Orange. Two categories of
areas have been focused on, they are representative of where FTTH deploy-
ments have already started or are impending. We distinguish areas with high
density of population (typically corresponding to the largest cities in France)
and areas with moderate density of population as small towns. Instances where
the existing civil engineering infrastructure and the location of the Clients are
represented for both cases in Figures 5 and 6.

Figure 5: Local area in Paris (capital
of France)

Figure 6: Local area in the surround-
ings of Nantes (West part of France)

Each instance is characterized by the structure of the existing civil engi-
neering and the demand in fibers. The demand is described through both the
number of points of cumulative demand (i.e. the number of Clients), denoted

14
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by nbClient and the average demand per Client, denoted by dClient. Description
of the test instances is given in Table 1.

Instance Existing infrastructure Fiber demand
|V | |E| nbClient dClient

Data 1 342 375 184 72.7
Data 2 920 1000 570 73.0
Data 3 1072 1163 667 78.2
Data 4 932 951 583 75.9
Data 5 1478 1614 1010 77.2
Data 6 712 772 441 82.6
Data 7 3044 3337 2061 79.0

Data 8 1265 1365 497 26.2
Data 9 2853 3139 1301 25.2
Data 10 844 905 327 21.1
Data 11 2076 2280 973 24.7
Data 12 901 996 347 24.1
Data 13 181 218 46 31.7
Data 14 3276 3639 1652 25.9

Table 1: Test instances features.

Two major observations can be made on this set of real instances. First the
indicator dClient clearly enables us to identify instances from local areas of high
population density (Data 1 to Data 7) and those from local areas with moder-
ate population density (Data 8 to Data 14): the average ratio between those
two categories is 3 (76.9 versus 25.6). Second we note the underlying graphs
corresponding to the civil engineering are graphs of low density : the mean value

of the ratio |E||V | is 1.1 (with a maximum of 1.2) with no significant difference

between the two types of areas. This feature is characteristic of access networks
that are close to tree graphs.

The architecture considered corresponds to the description given in the pre-
vious sections, with two levels of splitters (and three levels of fibers) and linear
costs of fibers are compliant with the hypothesis used in the reduction schemes
in Section 4. In our tests, splitters of both levels have the same capacity 1:8
(i.e. mk = 8, k = 1, 2).

Finally, let us precise that all mixed integer programs have been solved with
the dedicated commercial solver Cplex 11.0, with computation time limit set to
1 hour.

5.2 Numerical results

Several strategies have been tested and the best results have been obtained by
designing and performing the algorithm according to the the following steps:

• reduce the graph using preprocessing schemes designed for nodes of degree
1 and 2, as described in Section 4;

• add valid inequalities (described in Section 3) at the root node, with a
maximum number of inequalities set to 1000;

15
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• perform a Branch & Bound algorithm on the resulting mixed integer linear
program using Cplex.

These results are summarized in Table 2, where the indicator ”Size” denotes
the number of nodes visited in the Branch & Bound tree during the process.
To measure the quality of the solution, the ”UB” indicator represents the best
(feasible) solution found during the process and ”LB” the best lower bound
: precisely ”LB” is the minimum of the values of the continuous relaxations
performed at the leaves of the Branch & Bound tree at the end of the solving
process. Classically the indicator ”Gap” refers to the relative difference between
these two values, Gap= UB−LB

UB .

Instance Size (B&B tree) UB LB Gap (%)
Data 1 616009 80598 80528 0.08
Data 2 876711 257089 256324 0.30
Data 3 954926 302175 301203 0.32
Data 4 702446 265894 265249 0.24
Data 5 598893 452732 451166 0.35
Data 6 11729991 199857 199434 0.21
Data 7 283240 931339.6 922673 0.93

Data 8 538494 158896 156673 1.40
Data 9 209571 383986 377728 1.63
Data 10 662166 88318 87050 1.44
Data 11 291528 281501 276454 1.79
Data 12 633018 106634 105340 1.20
Data 13 1039895 21163 20902 0.57
Data 14 138503 504803 496829 1.58

Table 2: Synthesis of results (obtained in 1 hour).

First observation is that no guarantee of optimality has been obtained within
the computation time limit (for no instance); however, observed gaps prove that
the solutions are very good (gap < 1% on average), the best gaps being obtained
for the smallest instances of each category (namely Data 1 and Data 13, with
respectively 0.08% and 0.57%). In addition, the evolution of the gap over time
strongly suggests that the CPU time limitation little influenced the results. We
can also notice quite significant differences in gaps between the two categories
of areas: the average gap observed on the first type of areas is 0.35% whereas
the one of areas of moderate population density is 1.37% (ratio approximately
equal to 4). This is compliant with what we could expect: high demands, i.e.
high values of the data, intuitively favors the quality of continous relaxations.

5.3 Impact of the reduction scheme

The following chart describes the impact of preprocessing on the civil engineer-
ing graph. In addition to the size of reduced graphs, we report three additional
indicators. Let first nbremoved denote the number of nodes or edges removed (we
recall that in the reduction schemes, the number of removed nodes and edges are
equal). Then we denote the reduction factors associated to respectively vertices

and edges by redV = |V |−|V red|
|V | and redE = |E|−|Ered|

|E| (where V red and Ered
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respectively denote the number of nodes and edges of the graph obtained after
reduction).

Instance Preprocessed graph Reduction indicators
|V red| |Ered| nbClient nbremoved redV (%) redE (%)

Data 1 103 136 57 239 70 64
Data 2 260 340 178 660 72 66
Data 3 288 379 195 784 73 67
Data 4 278 368 176 654 70 64
Data 5 393 529 291 1085 73 67
Data 6 200 260 129 512 72 66
Data 7 808 1101 586 2236 73 67

Data 8 533 633 285 732 58 54
Data 9 1253 1539 719 1600 56 51
Data 10 365 426 200 479 57 53
Data 11 897 1101 534 1179 57 52
Data 12 408 503 215 493 55 49
Data 13 107 144 33 74 41 34
Data 14 1624 1987 922 2125 57 52

Table 3: Impact of graph reduction schemes.

The main observation is the significant impact of our preprocessing schemes
on the size of the graphs: the observed mean reduction factors for both vertices
and edges are respectively 63% and 58% . These results are compliant with what
could be expected since, as we mentionned before, initial graphs (corresponding
to existing civil engineering infractructures) are of low density and consequently
are likely to have a great proportion of nodes of degree 1 or 2.

5.4 Impact of valid inequalities on the continuous relax-
ation

The aim of this paragraph is to highlight and quantify the benefit from using the
valid inequalities. We compared the continuous relaxation of our mathematical
program without valid inequalities (denoted by ”no cuts”) and the one obtained
after adding the valid inequalities (denoted by ”with cuts”) (once the reduction
preprocessing scheme performed). Those values are given in Table 4 as well as
the relative gap between them (column ”gap”). As seen in the previous section,
the final gap between the best solution and the best relaxation are small (0.86%
in average over all the tested instances) and thus in order to be more relevent
in our assessment, we introduce 2 additionnal indicators : the first one, denoted
by gapUB is the % of the gap relative to the best solution found that the
valid inequalities enables to close ; gapLB is the same indicator but relatively
to the best lower bound. These indicators aim at measuring the percentages
of initial gaps (at the root of the Branch & Bound) that are closed thanks
to the introduction of valid inequalities in the formulation. We keep previous
notations for best solution and best lower bound (columns ”UB” and ”LB”).
Mathematically speaking, we actually define gapUB = 1− UB−relaxwith cuts

UB−relaxno cuts
and

gapLB = 1− LB−relaxwith cuts

LB−relaxno cuts
.

17



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

For the sake of clarity, the computation of gapLB is illustrated on Data 1
results (see Figure 7). The same reasoning obviously applies to the one of gapUB .

relax
no cuts

= 79753

relax
with cuts

= 80371

LB= 80528

UB= 80598

LB-relax
with cuts

LB-relax
no cuts

Figure 7: Illustration of indicator gapLB computation

On the example given on Figure 7 (which corresponds to Data 1), the initial
gap relative to the indicator gapLB is equal to 775 (= LB - relaxno cuts) if we
do not introduce the cuts while it is equal to 157 (= LB - relaxwith cuts) with
the use of valid inequalities. The ratio between these two quantities, which
represents the percentage of the initial gap that remains to be closed in order
to reach our best lower bound, is equal to 20.3%; conversely considering gapLB ,
it means that 79.7% of the initial gap has been closed only by using our valid
inequalities.

The results obtained on our set of instances are given in Table 4.
First observation is the quite small relative gap between the two continuous

relaxations, equal to 1.5% in average. However, such small absolute gains are
compliant with the small absolute final gaps mentionned earlier and must not
conceal the strength of these valid inequalities. Therefore, let us stress the fact
that the use of valid inequalities enables to close in average 57.7% of the gap
between the raw relaxation (i.e. without added valid inequalities) and the best
solution and 96.8% of the one between the raw continous relaxation and the
best lower bound. These results highlight more strikingly the efficiency of the
valid inequalities.

Once again, a more detailed analysis proves that it is worth distinguishing
between the two categories of instances as significant differences occur: indeed
we have a ratio of 3 between instances corresponding to local areas of high
population density (average gap of 0.8) and those corresponding to local areas
of moderate population density (average gap of 2.2). This is compliant with our
expectations: as mentioned above, the smaller the average demand per Client
is, the worst the continuous relaxation is expected to be because the relaxation
sets very fractional variables, notably for splitters. And we recall that the aim
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Instance UB LB Continuous relaxation % Gap closed
relaxno cuts relaxwith cuts gap (%) gapUB gapLB

Data 1 80598 80528 79753 80371 0.8 73.1 79.7
Data 2 257089 256324 254210 256231 0.8 70.2 95.6
Data 3 302175 301203 298904 301094 0.7 67.0 95.3
Data 4 265894 265249 262716 265142 0.9 76.3 95.8
Data 5 452732 451166 446894 450731 0.9 65.7 89.8
Data 6 199857 199434 197653 199321 0.8 75.7 93.7
Data 7 931339 922673 914984 922567 0.8 46.4 98.6

Data 8 158896 156673 151955 156481 3.0 65.2 95.9
Data 9 383986 377728 370449 377614 1.9 52.9 98.4
Data 10 88318 87050 84433 86821 2.8 61.5 91.2
Data 11 281501 276454 271180 276352 1.9 50.1 98.1
Data 12 106634 105340 102805 105226 2.4 63.2 95.5
Data 13 21163 20902 20587 20902 1.5 54.7 100.0
Data 14 504803 496829 486279 496694 2.1 56.2 98.7

Table 4: Impact of valid inequalities.

of the valid inequalities is precisely to prevent such behavior. First important
conclusion is that these test results confirm that the designed valid inequalities
benefit more to instances with low demand per Client (low population density
areas), which must be kept in mind considering that FTTH is to be deployed
not only in urban areas of moderate population density but also, at term, in
rural areas.

6 Conclusion

Deployment of optical access network appears to be of primary importance
regarding the associated economic stakes, as well deployment costs as oppor-
tunities to gain market shares due to innovative services conveyed by optical
fibers.
This paper deals with the optimization of FTTH optical access networks based
on a specific Point to Multipoint architecture : the Passive Optical Networks.
A mixed integer formulation has been proposed for the decision problem. Then
efforts have focused on the design of valid inequalities based on the polyhedral
structure of the constraints and reduction of the problem size based on the anal-
ysis of optimal solutions. Finally, extensive tests performed on real life instances
prove the relevancy of Branch & Bound approaches to solve the designed model,
highlighting the benefit taken from the proposed preprocessing and formulation
reinforcement strategies. The Orange choice is that clients are served by level
three fibers. Nevertheless, the proposed model is general: it can be applied to
any network without specific structure and could be easily adapted if the politic
of the company is to serve demands at any level of fibers.

A major prospect for this work is undeniably to manage clients’ demand
uncertainty. Indeed, deregulation occurred in most countries in late 70’s, giving
birth to highly competitive markets. As a direct consequence, each competitor
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of the fix access network market has to deploy its own network, not knowing
with certainty who their customers will be: the handling of uncertainty of the
demand location and size is consequently a key point for realistic successful long-
term deployments. Therefore the modeling of this uncertainty and the design
of dedicated solving algorithms is a necessary future step for this work.
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