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Abstract. This paper is devoted to the study of PLS regression in the presence of
noise that could affect the quality of the results. To solve this problem, we suggest
a hybrid approach which combines PLS regression and wavelet-based thresholding
techniques. The proposed method is validated via a simulation study and subse-
quently applied to petroleum data. Empirical results show the relevance of the
selected approach and contribute to a better modelling of the series of study.
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1 Introduction

In numerous data analysis applications, statisticians are confronted with sev-
eral problems such as missing or incomplete data, the presence of a strong
collinearity between the explanatory variables or the case where the number
of variables exceeds the number of observations. To cope with these problems,
several statistical approaches have been developed, among them, a data anal-
ysis method initially proposed by Wold and al. (1983). It is known as Partial
Least Squares (PLS) regression.

Although PLS regression has proven to be of great performance in a wide
range of applications, the model variables are usually corrupted by noise
which may adversely affect the results drawn from the PLS regression in
terms of modelling and prediction accuracy (Tenenhaus and al. (1995)).

To deal with this problem, we discuss, in this paper, a hybrid data analysis
method based on the combination of wavelet thresholding techniques and PLS
regression.

2 The Wavelet-PLS method

The Wavelet-PLS regression entails several steps. As a first step, we pre-
process the variables in the following manner: if the explanatory data vectors
are not of dyadic lengths (i.e. powers of 2), we extend the data samples by
applying a so called ”zero-padding” method. This method consists in adding



786 Benammou, S. et al.

zeros to the beginning and/or end of each time domain sequence in order to
attain the next dyadic length. This pre-processing step is needed for the im-
plementation of the Discrete Wavelet Transform (DWT) algorithm (Mallat
(2000)) which requires a dyadic length time series. It should be stressed here
that the wavelet coefficients relating to the zero-padding operation are subse-
quently eliminated while performing the Inverse Discrete Wavelet Transform
(IDWT) signal reconstitution.

In the second stage, the DWT is performed to the exogenous variables.
This requires a precise choice of the wavelet system to be used. In this work,
we rely on Daubechies wavelet bases possessing attractive properties such as
vanishing moments, orthogonality and especially support compactness which
results in significant computational gains (Daubechies (1992)).

In the third step, the obtained wavelet coefficients are thresholded by
means of the wavelet-based denoising techniques (Donoho and Johnstone
(1998)). In the fourth step, we carry out an IDWT to reconstruct the set of
explanatory variables which are now practically noise-free. Finally, the con-
ventional PLS regression is applied to the new set of regressors. The Wavelet-
PLS approach is illustrated in Fig.1:

Fig. 1. Overview of the Wavelet-PLS regression.

3 Application

In order to assess the relevance of the Wavelet-PLS regression scheme, we
consider a real world data set. The response (dependent) variable Y repre-
sents the crude oil (petroleum) production in barrels denoted ”oil” in a given
oil field composed of four wells. The data measurements are made on a daily
basis during the period from May 1, 2003 to March 31, 2006 thus totalling
1024 observations. Here the response variable Y depends on 16 explanatory
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variables corresponding to the features of the wells. The independent vari-
ables are:

• (Choke i), i = 1, . . . , 4: the choke valve position in the oil well i, i =
1, . . . , 4. This variable takes integer values ranging from 1 to 64. In fact,
the choke valve is variably positionable defining 64 incremental positions
allowing to regulate the flow rate.

• (FTHP i), i = 1, . . . , 4: Flowing Tubing Head Pressure of the well i (in
bars). Actually, oil extraction is assured by the difference between the
underground pressure in the oil reservoir and the pressure at the top of
the well. The pressure at the top of the well, which is the extraction
pressure, is a key parameter and is defined as the Flowing Top Head
Pressure (FTHP).

• (Pressure at Choke i), i = 1, . . . , 4: pressure on the level of the choke in
the well i (in bars).

• (WC i), i = 1, . . . , 4: (Water cut) Percentage of water. It is the ratio of
water produced to the volume of total liquids extracted from the well i.

4 PLS Regression on the raw data set

Using the cross validation technique, we retrain a PLS model with four com-
ponents. The regression of y on t1, t2, t3 and t4 gives the following equation:

ŷ = (0.29716)t1 + (0.199871)t2 + (0.34454)t3 + (0.167767)t4

The normalized distances to the model in the X space are reported on Fig.2.
Remember that the observations with NDmodX exceeding the critical limit

Fig. 2. Normalized distances to the model NDModX.

at the 95% are regarded as outliers in the X space.
It is remarkable to note here that 98 observations i.e. 9.6 % of the total

sample are regarded as outliers.
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5 Wavelet-PLS regression results

5.1 Wavelet-based denoising

In order to eliminate the noise from the set of predictors, we first apply a
DWT curtailed at the resolution level j = 5 to each exogenous variable us-
ing the D(8) Daubechies compactly supported wavelet. The DWT results
in five levels of wavelet detail coefficients and a single level approximation
coefficients. Next, the obtained detail coefficients are subject to a wavelet
thresholding operation. In our case, we opt for a soft thresholding function.
The choice of the threshold value is done according to the Minimax proce-
dure. This is due to the fact that the raw variables’ series exhibit several dis-
continuities and abrupt changes. The Minimax procedure is well adapted for
handling such features. It should be noted that associating the soft threshold-
ing and the Minimax criterion defines the so called ”Risk-Shrink” procedure
(Donoho and Johnstone (1994)).

5.2 Wavelet-PLS regression on the denoised variables

In the following, we carry out a PLS regression using the obtained denoised
regressors. According to the cross validation estimation results, we choose to
retain four PLS components. The regression equation is then given by:

ŷ = (0.29816)t1 + (0.165487)t2 + (0.261839)t3 + (0.319801)t4

Estimation results for the Wavelet-PLS regression show a slight improvement
for the determination coefficient with an R2 value of 0.919 compared to R2 =
0.916 for the PLS model performed on the raw data set.

Another interesting remark is that the Mean Square Error has decreased
by 10.3% when carrying out a wavelet thresholding on the regressors’ vectors.
Fig.3 report the NDmodX values for the Wavelet PLS procedure. Observe

Fig. 3. Normalized distances to the model NDModX for the Wavelet-PLS regres-
sion.

the effect of noise removal on the regression results.
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The obtained results show that 90 observations among 1024 are outliers
representing 8.7 % of the total sample size. Thus we can state that the denois-
ing procedure has reduced the number of outliers yielding better modelling
results.

6 Simulation

In this simulation study, we apply the Wavelet-PLS regression procedure to
multidimensional fractional Brownian motions with noisy components.

In order to present the n-dimensional fractional Brownian, we restrict
ourselves to the simple case n = 2. The generalization is straightforward.

The processBt = (B1
t , B

2
t )T is a correlated 2-dimensional fractional Brow-

nian motion if:

• The increments B1(t)−B2(t) et B2(t)−B2(s), t > s are independent of
B1(y) and B2(y),∀0 ≤ y ≤ s.

• cov(B1(t), B2(t)) = E(B1(t)B2(t)) = ρt where −1 ≤ p ≤ 1. This implies
that: corr(B1(t), B2(t)) = ρ. Besides, we have: ∀t 6= s, cov(B1(t), B2(s)) =
ρmin(t, s).

In this section, we synthesize 55 realisations of an n-dimensional fractional
Brownian Bt = (B1

t , B
2
t , . . . , B

n
t )T with correlated components. Actually, this

is a positive definite matrix whose elements are formally given by: corr(B(i)
t , B

(j)
t ) =

ρij where ρij is the (i, j)th entry of the matrix of Σ.
Issues related to construction and simulation of the multidimensional frac-

tional Brownian motion are treated in details in the works of Haugh (2004)
and Glasserman (2003).

The simulation study can be divided into three steps: In the first step, we
apply the PLS regression scheme to the 55 realizations of the multidimen-
sional fractional Brownian motion process. In the second phase, we add noise
components to the simulated trajectories and we apply the PLS regression
to the noisy dataset. It should be stressed here that the amount of the simu-
lated noise is pre-specified by the ”signal to noise ratio”. This is the ratio of
a signal power PS to the noise power PN present in the signal. Formally the
SNR is defined as:

SNR = 10 log10(
PS
PN

)

We impose 17 different levels of additive Gaussian noise to the components
of the simulated multidimensional fractional Brownian motions. It should
be remarked here that choosing different SNR levels allows us to assess the
robustness of the denoising technique to a change in the noise amplitude.
The third step consists in applying the Wavelet-PLS method to the 55 noisy
matrices so as to test the relevance of the proposed scheme.
Fig.4 shows the values of4R2

1 which are the differences between the goodness
of fit values for the PLS regression performed on the initial dataset and those
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Fig. 4. Normalized distances to the model NDModX for the Wavelet-PLS regres-
sion.

of the PLS model performed on the noisy data. On the same figure, we have
also plotted associated with simulated cases provided by the the values of
4R2

2 which are the differences between the R2 values for the PLS regression
performed on the initial dataset and those of the PLS model performed on
the denoised data. (4R2) before and after introduction of noise

Remark that, overall, the 4R2
1 values are much closer to zero than the

4R2
2. This shows the effectiveness of the wavelet techniques for noise removal.

Fig. 5. (4MSE) before and after introduction of noise

Fig.5 shows the values of 4MSE1 which are the differences between the
Mean Squared Errors (MSE) for the PLS regression performed on the initial
dataset and those of the PLS model performed on the noisy data. For the
sake of comparison, we have also plotted the values of 4MSE2 which are
the differences between the MSE values for the PLS regression performed on
the initial dataset and those of the PLS model applied to the denoised data.

In view of these results, it is clear that the4MSE2 are much smaller than
those of 4MSE1. This confirms the relevance of the Wavelets-PLS method.
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7 Conclusion

In this work, a novel data analysis method has been proposed and discussed.
It consists of utilizing wavelet based thresholding techniques in association
with PLS regression.

By applying the Wavelet-PLS approach to oil production data sets, we
were able to improve the modelling performance of the PLS regression model.
Indeed, we succeeded in:

• diminishing the number of outliers
• reducing the Mean Square Error
• correcting the observations in the score plot
• ameliorating the model goodness of fit (R2)
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