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Abstract. Variational data assimilation consists in estimating control
parameters of a numerical model in order to minimize the misfit between
the forecast values and some actual observations. The gradient based
minimization methods require the multiplication of the transpose jaco-
bian matrix (adjoint model), which is of huge dimension, with the deriva-
tive vector of the cost function at the observation points. We present a
method based on a modular graph concept and two algorithms to avoid
these expensive multiplications. The first step of the method is a propa-
gation algorithm on the graph that allows computing the output of the
numerical model and its linear tangent, the second is a backpropagation
on the graph that allows the computation of the adjoint model. The YAO
software implements these two steps using appropriate algorithms. We
present a brief description of YAO functionalities.

Key words: Data assimilation, numerical model, modular graph, ad-
joint model, automatic differentiation, backpropagation

1 Introduction

Numerical models are widely used as a tool for studying physical phenomena.
A direct numerical model is a discretization of the equations that represent the
physical phenomenon under study. The space structure of the phenomenon can
be 1D, 2D, 3D; often an additional dimension is added to represent the time evo-
lution. Most of the time the model is used to forecast or analyse the evolution of
the phenomenon. Since the model is imperfect, discrepancy between its forecast



values and actual observations may be important due to model parametrization,
numerical discretization, uncertainty on the initial conditions and boundary con-
ditions. New methods which use both the direct model of the phenomenon and
inverse problem method have been introduced to overcome this difficulty, the
so-called data assimilation. Data assimilation seeks a good compromise between
the actual observations at some points of the space/time location and the corre-
sponding outputs of the numerical model. The observations constrain the control
parameters (initial conditions, model parameters, . . . ) in order to force the direct
model to reproduce the desired behavior.

One can distinguish between two types of data assimilation methods: se-

quential and variational ([1–6]). The present paper is dedicated to variational
methods which are more suited for observations which are not given regulary
in time and space. Variational methods consist in defining a cost function J

which measures the misfit between the direct numerical model outputs and the
observations. Their aim is to minimize the function J which depends on the
control parameters. This can be done by operating a local minimization using
a gradient method. Normally, the user programs the direct (dynamic) model,
computes the gradient of the cost function by programming the adjoint model
and schedules the operations of minimization according to the selected scenario.
From the data-processing point of view this yields two types of problems:

– If a direct model program has been implemented, it is necessary, for the
assimilation purpose, to implement the program which provides the adjoint
model and sometimes also its tangent linear model.

– Once all these models have been implemented, it is necessary, to schedule
the various calculations according to a certain scenario and to the chosen
minimization method.

The first problem leads to use automatic differentiation softwares ([7–9]) and
the second problem to design specific softwares ([10]). The YAO software, which
we develop at LOCEAN laboratory, concerns these two tasks and aims to deal
with the two previous problems simultaneously. With YAO, the user specifies,
using specific directives, the type of discretization and the specification of the
direct model. YAO generates the direct model, the tangent linear model and the
adjoint model. It also allows to choose, according to the specific scenario, an
implementation for the minimization function J .

In the following, section 2 deals with the notations of variational data assimi-
lation; section 3 introduces the modular graph which is the YAO basic formalism;
section 4 presents the basics algorithms used by YAO; section 5 deals with the
decomposition of an application by a modular graph; section 6 makes a brief
presentation of YAO functionalities and some applications which were already
implemented; section 7 presents a simple example showing how to get a YAO
graph from a direct model.



2 Theoretical Principles and Notations

Variational assimilation requires the knowledge of a numerical model, the so-
called direct model M which describes the physical phenomenon evolution under
study. If we take for example a geophysical problem, the direct model allows to
link together the geophysics variables and the observations. The assimilation
consists in modifying the control parameters so that the model reproduces the
observations as good as possible. The control parameters can be for example
the initial conditions or unknown parameters of M . In this section, we present
the formal mathematical notations. We adopt the formalism and the notations
presented in [11]:

– M : direct model describing the evolution (that is in general nonlinear) be-
tween two time steps of discretization ti, ti+1.

– x(t0): initial input state vector - we suppose thereafter that it corresponds
to the control variables.

– Mi(x(t0)) or M(t0, ti): state model at time ti beginning from t0. We will
denote x(ti) = Mi(x(t0)).

– M(ti, ti+1): tangent linear matrix which is the jacobian of model M calcu-
lated at x(ti).

– The tangent linear matrix of the model Mi calculated at x(t0) is defined by:

M i(x(t0)) =

0
∏

j=i−1

M(tj , tj+1) .

– The adjoint matrix of the model Mi calculated at x(t0) is defined by:

M i(x(t0))
T =

i−1
∏

j=0

M(tj , tj+1)
T .

– xb: a background vector which is an estimate of the vector x(t0).
– yo: set of observations at different time. The vector yo

i thus represents the
observations at time ti, this vector can be empty if there are no observations
at time ti.

The model M allows to estimate quantities which are generally observed with
the observation operator (H). In the field of geophysics this operator allows, for
example, to compare the model M outputs which calculates the temperature at
sea surface with observations recorded by a satellite radiometer. We denote:

– H: observation operator which allows to calculate, starting from the direct
model outputs at x(ti), yi=H(x(ti)), the quantity yi being the equivalent
of the observation variables yo

i . It is supposed thereafter that: yo
i =yi+εi (εi

is a random variable of null average).
– Hi: tangent linear model matrix of the H operator calculated at x(ti).



The assimilation consists in minimizing a cost function J which measures the
misfit between the direct numerical model outputs and the observations by im-
proving the control variables. Generally the cost function is defined as:

J(x(t0)) =
1

2

n
∑

i=1

(yi−yo
i )

T R−1(yi−yo
i )+

1

2
(x(t0)−xb)T B−1(x(t0)−xb) . (1)

With yi = H(x(ti)), R the covariance matrix estimation on the observation
errors εi, B the covariance matrix estimation on the error background vector xb

and n the total number of time intervals. The gradient ∇x0
J is equal to:

∇x(t0)J =

n
∑

i=1

MT
i (x(t0))H

T
i [R−1(yi − yo

i )] + B−1(x(t0) − xb) . (2)

The minimization procedure, which is a gradient type method, is carried out by
choosing a particular implementation among the set of those proposed by the
optimization techniques([12]). These methods need to calculate the cost function
gradient (2) with respect to the control parameters; Fig. 1 depicts the basic
iteration.

composition
direct model cost function derivative

adjoint modelmodification
parameters

y J

∇xJ ∇yJx
y0x0

Fig. 1. Basic iteration of the variational data assimilation: the misfit between the
direct model output y and the observations yo is defined by the cost function J . The
derivative vector ∇yJ is used to compute the matrix product defined by the first term
of expression (2), x0 is the vector x(t0) at the first iteration.

In order to facilitate the convergence in some specific problems, we can use
an approximate gradient descent method, called incremental algorithm [13]. The
incremental algorithm consists in modifying locally the J function. The mini-
mization of the function J entails to initialize the minimization algorithm with
an initial state xg(t0), so that the control vector parameter we look for can be
defined by x(t0) = xg(t0) + δx(t0). We use the tangent linear approximation:

yi = H(Mi(x(t0))) ≃ H(Mi(x
g(t0))) + Hi(M i(x

g(t0)))δx(t0) . (3)



If we pose di = yo
i − H(Mi(x

g(t0))) we can express J as:

J [δx(t0)] =
1

2

n
∑

i=1

[HiM i(x
g(t0))δx(t0)−di]

T R−1[HiM i(x
g(t0))δx(t0)−di]+

(4)

+
1

2
[δx(t0) − (xb

− xg(t0))]B
−1[δx(t0) − (xb

− xg(t0))] .

This new formulation of J represents a quadratic expression with respect to
δx(t0) and corresponds to a J(δx(t0)) approximation around xg(t0). The prob-
lem is to minimize J(δx(t0)) depending on the vector δx(t0) only, since the
other function terms of (4) are constants. This phase of minimization is denoted
as the internal loop. In each internal loop iteration, we have to calculate the
gradient:

∇δx(t0)J =

n
∑

i=1

MT
i (xg(t0))H

T
i R−1 [HiM i(x

g(t0))δx(t0) − di] + (5)

B−1
[

δx(t0) − (xb
− xg(t0))

]

.

After processing an internal loop (minimization iterations) for computing
δx(t0), we restart the minimization algorithm at the new initial state xg(t0)) +
δx(t0) and run again the internal loop for some more iterations. This initial
state setting phase is called external loop.

In this paper we present the incremental method which uses a two-stage
scenario for the minimization process. Others scenarios, as the Dual formalism
which takes into account the possible error of model M , lead to others and
sometime more sophisticated computations([14, 15]). The goal of this paper is
not to present all the possible scenarios but to focus on the complexity of the
algorithm needed for their implementation. Equations (2) and (5) show that
gradient calculations require matrix products of type MT

i δy and M iδx for any
i. However, generally the matrices MT

i and M i being of huge dimensions, it is
not so easy to calculate their product. We present in section 4 two algorithms to
compute these matrix products without the explicit knowledge of the matrices.

3 Modular Graph

We define the following terms:

– Module: a module F is an entity of computation; it receives an input vector
and calculates an output vector. A module receives inputs from other mod-
ules or from the external graph context and it transmits outputs to other
modules or to the external graph context.

– Basic connection: if the jth output of a module Fp is transmitted to the ith
input of a module Fq, we can modelize this transmission by a connection
between the output j of the module Fp and the input i of the module Fq



which we denote thereafter by (i, q) and (j, p). We call this connection basic

connection. Data transmission towards the external context of the graph
will be represented by a basic connection starting from a module output and
ending at a special node called output data point. Data transmission towards
the interior of the graph will be represented by a basic connection starting
from a special node called input data point and ending at an input of a
module.

A modular graph is a set of several interconnected modules. The modules rep-
resent the graph vertices; an arc from module Fp to the module Fq means that
there exists at least one basic connection from Fp to Fq (Fig. 2a). The modular
graph thus describes the scheduling of the modules execution (Fig. 2b).
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Fig. 2. (a) Basic connections between modules, input data points xT = (x1p, x2p, x2l)
and output data points yT = (y1q, y1r, y2r). (b) Corresponding modular graph.

The modular graph summarizes the sequential order of the computations: an
arc from Fp to Fq indicates that Fq must start its execution only after Fp has
been executed. The modular graph is an acyclic graph, so it contains three types
of vertex:

– The modules with no predecessors in the graph, receive data from input data

points only.
– The modules with no successors in the graph, transmit outputs only to output

data points.
– The internal graph modules necessarily receive inputs from one or several

other modules and eventually from input data points and transmit results to
their modules’ successors or output data points.

The input data set of a module Fp constitutes a vector denoted xp and its out-
put data set constitutes a vector denoted yp (yp = Fp(xp)). As a consequence, a
module Fq can be executed only if its input vector xq has already been processed,
which implies that all its predecessor modules Fp have been executed beforehand.
Since the modular graph is acyclic, it is then possible to find a module’s order
(the topological order) which respects the following property: if Fp → Fq is an



arc of the modular graph then Fp precedes Fq in the order of computation. The
topological order allows to correctly propagate the calculation through the graph
from the input points to the output points, all the graph input data points being
initialized by the external context. The propagation of intermediate computa-
tions following the topological order is called forward procedure. This procedure
gives the way to produce the correct final value of the global computation of
the direct model. If we denote by x the vector corresponding to all the graph
input data point values, the forward procedure allows to calculate the vector y

corresponding to all graph output data point values. The modular graph defines
a global function Γ and makes it possible to compute y = Γ (x).

4 Computation of the Tangent Linear and the Adjoint of

the Global Function Γ

4.1 Tangent Linear Computation

We now denote by Γ a graph (composed by its Fq modules) and assume that each
Fq can compute the matrix product dyq = F qdxq, where dxq is the perturbation
of xq and F q is the jacobian matrix of Fq calculated at xq. It is then possible
to compute, as for the forward procedure, the product dy = Γdx where dx

represents the perturbation associated with all the input vectors xq and Γ the
jacobian matrix of Γ computed at an input vector x. This computation is done
on the modular graph using the following algorithm:

Lin forward algorithm. Before determining the linear tangent of the global
function Γ for a given input data x, all the inputs of the different modules xip

have to be determined. This is done by running the forward procedure with x

as input.

1. Initializing by the external context, the perturbation dx, by assigning to
each input data points i of the graph its corresponding perturbation dxi.

2. Passing through all the modules by following the topological order. For each
module Fq we consider its input perturbation vector dxq. This can be done
by transmitting computed perturbations from the output of its predecessors
modules or from those initiated by the external context. Then we compute
dyq = F qdxq (the jacobian F q is computed at the point xq).

3. Recovering the vector result dy on the graph output data points. This vector
represents the perturbation of the global function Γ .

4.2 Adjoint Computation

As in the case of the tangent linear model, we suppose that for each module
Fp, with an input vector xp and receiving in its output points a perturbation
vector dyp, we can calculate the matrix product dxp = F T

p dyp. F T
p is the

transposed jacobian matrix of the module Fp calculated at the point xp. We



can prove that it is possible to compute the matrix product dx = Γ T dy, where
Γ T is the transposed jacobian of the global model Γ calculated at the input
vector x and dy is a perturbation vector defined at each output data point. This
computation is done by passing through the modules of the graph in the reverse
topological order (backpropagation). The backward algorithm, requires, for each
module Fp, the definition of two vectors αp and βp. The vector αp has the same
dimension as the module Fp input vector and we denote by αip its ith input
element. The vector βp has the same dimension as the module Fp output vector
and we denote by βjp its jth output element. Moreover, the α parameters are
also defined for the output data points and the β parameters are defined for the
input data point. We denote by αi the parameter of the output data points i and
by βj the parameter of the input data point j.
If (j, p) is the index of the jth output of Fp, we denote by:

– SUCCM(j, p) the set of indices (i, q), ith input of module Fq, which take
the value of (j, p) as input.

– SUCCO(j, p) the set of all the output data points which take the value of
(j, p) as input.

If j is an input data point we denote by SUCCI(j) the set of indices (i, q), ith
input variables of the modules Fq, which take their value from the j input data

point.

Backward algorithm. Before running this algorithm, all inputs xip of all
modules Fp should have been calculated. For that, it is necessary to run the
forward algorithm with the input vector x. For every output data point j we
suppose that its corresponding perturbation is already defined by dyj .

1. Initializing the parameters αi relative to the graph output data points i by
assigning αi = dyi.

2. Passing through all the modules in the reverse topological order. For each
module Fp computes βp and αp as follow:

– For all its output indices (j, p), performs the following operations (in
order to compute βp):
• Assign βjp = 0.
• If SUCCM(j, p) is not empty then compute

βjp =
∑

(i,q)∈SUCCM(j,p) αiq.

• If SUCCO(j, p) is not empty then compute
βjp = βjp +

∑

i∈SUCCO(j,p) αi.

– Computes αp = F T
p βp, where F T

p is the transpose of the jacobian matrix
computed at point xp.

3. For each j input data point, compute βj =
∑

(i,q)∈SUCCI(j) αiq.

The vector dx, whose components are the βj of all the graph input data points,
verifies dx = Γ T dy. dy is the vector whose components are the values dyi

defined at the graph output data points.



Remark 1. The two algorithms lin forward and backward first suppose that we
can compute the tangent linear and the adjoint of each module Fp. Modules
could have very different complexities. In a simple case, where the module is
an analytical function, we can calculate the jacobian matrix F p explicitly and
calculate the product F pdxp and F T

p dyp. Moreover it is important to define the
modular graph in order to have “small” modules (small entity of computation)
so the analytical calculation of F p becomes easy. Concerning more complex mod-
ules, we can use programs which make these computations (i.e. a code obtained
using automatic differentiation software [7–9], or even another modular graph).
So the modular graph formalism, and its related algorithms, makes possible to
merge different numerical codes to build complex numerical models.

5 Representation of an Application with a Modular

Graph

Running simulations or data assimilation using an operational numerical model
Mi(x(t0)) = M(ti−1, ti) ◦ M(ti−2, ti−1) ◦ . . . ◦ M(t0, t1) require the definition
of a modular graph representing the sequence of the computations. A numerical
model operates on a discreet grid, where the physical process is computed at each
time step and at each grid point. As the phenomenon under study is quite the
same at each grid point, there is a large amount of repetitivity. So the modular
graph Γ , associated with the numerical model M , must take into account this
concept of repetitivity:

– A modular sub-graph (Γg) describes all the computations needed at time t

for a given grid point (Fig. 3a).
– The (1D, 2D, 3D) graph is thus a modular graph whose vertices are the sub-

graph Γg and the arcs represent the information exchanges between them
(Fig. 3b).

– The complete graph Γ , which takes into account a time interval, is obtained
by duplicating the graph as long as necessary.

As defined previously, we used the same concept of input data and output data

points for each module of the complete graph. The basic connections coming
from the external context of Γ could be, for example, initializations or boundary
conditions. Outgoing basic connections transmit their values to compute, for
example, a cost function.

6 YAO Presentation

We have presented in the above sections the basic concepts and algorithms of
the YAO software. We present, briefly in this section, the overall structure of
YAO and the various directive files that allow to generate applications. YAO per-
mits the user to work with 1D, 2D, 3D problems and the time dimension. The
user focuses on the application design and does not care about hard program-
ming work. He specifies its problem using a specific language (YAO description
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Fig. 3. Two graph abstraction levels: at the lower level (Fig. a), we build the graph Γg;
at the space level (Fig. b), the same graph Γg is repeated for each grid point (2D in
this example). The space connections between the Γg graphs correspond to the basic
connections between the modules.

language) and YAO automatically generates the associated modular graph. As
already indicated, the description of the modular graph and the three related al-
gorithms, is similar to a program giving the direct numerical model, the tangent
linear and the adjoint. Moreover, YAO allows to define specific minimization
scenarios. Figure 4 gives a schematic representation of the basic YAO architec-
ture. The description and the instructions files have to be written by the user of

Modules
Assimilation

YAODesription
programExeutable resultsYAO instrutions

Fig. 4. Schematic representation of YAO: code generation starting from the descrip-
tion file (which is a model specification) and the modules files. This generated code
(executable program) runs with an instructions file which will control the results pro-
duction.

YAO as well as the module specifications and the jacobian of each module. YAO
takes into account these files and generates an executable program. We briefly
present the various YAO aspects.



The Description File. This file contains the YAO directives which define the
direct numerical model characteristics. In particular, it is necessary:

– To define the numerical model time steps (denoted as the trajectory).
– To define the discreet space grid mesh (denoted spaces) and its dimension

(1D, 2D, 3D).
– To introduce all the information related to the cost function: observations,

covariance matrix, . . . .
– To define the modules, specifying for each one the number of inputs/outputs,

its participation in the cost function, . . .
– To build the graph by defining the basic connections between the modules.
– To indicate the computational order (the order in which the grid points have

to be considered).

The description file contains all these information which are used by YAO to
generate the executable code.

The Instructions File. This file contains specific instructions (YAO instruc-
tion language) for running the model in a dedicated configuration (duration of
the simulation, time increments, physical size of the space, initial values of the
parameters, . . . ). The YAO instruction language allows to control the execu-
tion flow, to modify some parameters during the runtime and to introduce a
background for the cost function.

The modules Files. These files contain the source code in which the physical
laws of the numerical model, the input parameters and the jacobian are pro-
grammed. Figure 4 displays the YAO architecture: the part into the large rect-
angular frame contains the YAO procedures for generating the modular graph.
YAO also uses the description file and the module files presented above to gen-
erate the executable program (which are out of the frame in Fig. 4). Once the
executable program is created the instructions file is used to execute the user in-
structions. Modifying a model consists in changing some modules or some YAO
directives in the description files. Modifying an execution of a YAO application
consists in changing the YAO instructions in the instructions file.

Although YAO works in C/C++, it is nevertheless possible to make links
with other languages. Since that YAO does not care about the size of each
module, the user may choose the model’s decomposition. From a practical point
of view, this may depend on the module decomposition, and also on how the
gradient of a module is computed. As already indicated, it is possible, in addition
to YAO, to use an automatic differentiator rather than to code manually the
Jacobian matrix. YAO provides some functionalities of an integrated tool. For
example, it manages interfacing with a minimizer such as M1QN3 ([16]); it can
deal with multilayer perceptrons; it includes a general cost function taking into
account background and covariance operators. Moreover, YAO manages multi-
trajectories and multi-dimensional (up to 3D) computations. YAO has already
been tested with success on several models in oceanography. It was applied in
the following applications:



– Ocean color: variational inversion of multi-spectral satellite ocean color
measurements for the restitution of the chlorophyll-a [17, 18].

– Marine acoustics: variational inversion of sound speed profile and retrieval
of geoacoustic parameters (celerity, density, attenuation, . . . ) [19, 18].

– PISCES: ocean color variational data assimilation in a biogeochemical model
[20].

7 Numerical Example: The Shallow-Water

This section presents on a simple example the necessary steps to get the YAO
graph of the direct model. At the end of the specification, YAO can generate the
direct code in C++, the linear tangent code and the adjoint code and is able to
make some assimilation experiments. We chose the two dimensions (2D) shallow-
water model in the horizontal plane (x,y), also called Saint-Venant model, which
arises from the vertical integration of three dimensions (3D) Navier-Stokes equa-
tions. This model describes the linear flow of a nonviscous fluid in shallow water
environment with a free surface. In the present study, focus is given on the in-
ternal mode of the two lauer fluid whose densities are slightly different. The
evolution is described by the following system of partial differential equations:

∂u

∂t
= −g∗ ·

∂h

∂x
+ f · v − γ · u

∂v

∂t
= −g∗ ·

∂h

∂y
− f · u − γ · v

∂h

∂t
= −H ·

(

∂u

∂x
+

∂v

∂y

)

– u and v are the horizontal velocities on axes x,y.
– h is the amplitude (the height) of the free surface.
– g∗ is the reduced gravity.
– f is the Coriolis parameter.
– γ is a dissipation coefficient.
– H is the average height of the water.

The system of partial differential equations is resolved spatially by using the
Arakawa C grid. For the temporal axis we use a leap frog discretization followed
by an Asselin filter to ensure stability. The spatial discretization is based on a
regular 2D grid. After initialization the direct numerical model is the following:

– Dynamic variables:

uijt = ûijt−2 + 2∆t

(

−g∗

∆x
[hi+1jt−1 − hijt−1] + (6)

f
4 [vijt−1 + vij+1t−1 + vi+1jt−1 + vi+1j+1t−1] − γ · ûijt−2

)



vijt = v̂ijt−2 + 2∆t

(

−g∗

∆y
[hijt−1 − hij−1t−1]− (7)

f
4 [ui−1j−1t−1 + ui−1jt−1 + uij−1t−1 + uijt−1] − γ · v̂ijt−2

)

hijt = ĥijt−2 − 2∆t · H

(

uijt−1 − ui−1jt−1

∆x
+

vij+1t−1 − vijt−1

∆y

)

. (8)

– Asselin filter:

ûijt = uijt + α(ûijt−1 − 2uijt + uijt+1) (9)

v̂ijt = vijt + α(v̂ijt−1 − 2vijt + vijt+1) (10)

ĥijt = hijt + α(ĥijt−1 − 2hijt + hijt+1) (11)

where ĥ, û and v̂ are intermediate variables. In the following we present the
directives of the YAO description file, which define the basic connections related
to (6–11) and allow to generate the shallow-water modular graph. We assume
that the model is defined on a 50 × 50 grid (∆x=∆y = 5000 meters) and on a
100 time step trajectory (∆t = 1500 seconds, about 1 day and 17 hours).

traj shallow_trajectory 1 100

space shallow_space 50 50 shallow_trajectory

modul Hfil space shallow_space input 3 output 1 tempo cout target

modul Ufil space shallow_space input 3 output 1 tempo

modul Vfil space shallow_space input 3 output 1 tempo

modul Hphy space shallow_space input 5 output 1 tempo

modul Uphy space shallow_space input 7 output 1 tempo

modul Vphy space shallow_space input 7 output 1 tempo

ctin Hfil 1 from Hfil 1 i j t-1

ctin Hfil 2 from Hphy 1 i j t-1

ctin Hfil 3 from Hphy 1 i j t

ctin Ufil 1 from Ufil 1 i j t-1

ctin Ufil 2 from Uphy 1 i j t-1

ctin Ufil 3 from Uphy 1 i j t

ctin Vfil 1 from Vfil 1 i j t-1

ctin Vfil 2 from Vphy 1 i j t-1

ctin Vfil 3 from Vphy 1 i j t

ctin Hphy 1 from Hfil 1 i j t-1

ctin Hphy 2 from Uphy 1 i j t-1

ctin Hphy 3 from Uphy 1 i-1 j t-1

ctin Hphy 4 from Vphy 1 i j t-1

ctin Hphy 5 from Vphy 1 i j+1 t-1

ctin Uphy 1 from Ufil 1 i j t-1

ctin Uphy 2 from Hphy 1 i j t-1

ctin Uphy 3 from Hphy 1 i+1 j t-1

ctin Uphy 4 from Vphy 1 i j t-1

ctin Uphy 5 from Vphy 1 i j+1 t-1



ctin Uphy 6 from Vphy 1 i+1 j t-1

ctin Uphy 7 from Vphy 1 i+1 j+1 t-1

ctin Vphy 1 from Vfil 1 i j t-1

ctin Vphy 2 from Hphy 1 i j-1 t-1

ctin Vphy 3 from Hphy 1 i j t-1

ctin Vphy 4 from Uphy 1 i-1 j-1 t-1

ctin Vphy 5 from Uphy 1 i-1 j t-1

ctin Vphy 6 from Uphy 1 i j-1 t-1

ctin Vphy 7 from Uphy 1 i j t-1

order shallow_space

order YA1 YA2

Hphy Uphy Vphy Hfil Ufil Vfil

forder

forder

The directive traj defines the trajectory called shallow trajectory composed by
an initialization phase (1 time step) and a set of 100 time steps during which
the model run.
The directive space defines a space called shallow space. The space is defined by
two axes of dimension 50×50 and it is linked to the trajectory shallow trajectory.
YAO references the axes by YA1 for the first and YA2 for the second. These
references will be used thereafter to indicate the order to traverse the space in
the directive order.
The directive modul allows to declare modules. The YAO grammar defines key-
words to figure out some attributes that characterize the module. The keyword
modul is followed by the name of the module (for instance Hfil) and then the
keyword space followed by the name of the space linked with the module. The
input and output attributes allow to specify the number of input and output of
the module. tempo indicates that YAO must store the computed states on all
the time steps of the trajectory; this could be useful for derivative computation
and for referencing previous time steps. The keyword target allows to control the
outputs of this module, therefore it is the target of our assimilation process. The
term cost means that the output of this module is related to some observations
and it will take part of the cost function computation. The implementation of
the modules is done in the module files as shown in Fig. 4. In this example the
modules (Hphy, Uphy, Vphy, Hfil, Ufil, Vfil) represents (h,u,v,ĥ, û, v̂).
The directive ctin is used to create the basic connections of the graph. The input
of the first module, at a current point (i,j,t) of the discretized space, takes its
value from the output of the second module at a specified point (refer to after the
module name). The numbers after the first module indicates the number of its
specific input, the number after the second module names indicate the number
of its output.
The directive order defines the execution order of the modules that belong
to a space. This directive allows to coordinate the computation of the various
modules, that is to compute a module only if all its inputs coming from the pre-
decessor modules have already been computed. The axes referred by YAi (YA1



for the 1st axis and YA2 for the second) are fixed and traversed in the mentioned
order. These directives allow YAO to generate the global graph (in space and
time) and the order directive gives a topological order of the graph.

8 Conclusion

The YAO software is dedicated to variational data assimilation in numerical
models. It allows the user, dealing with a discrete numerical model representing
a physical phenomenon, to describe the basic computation at each grid point.
The user has to declare the space size and the number of time steps, specify
the initial conditions and other parameters, present observations in space/time
domain, define the cost function and the scenario chosen for its minimization,
etc.. The YAO software then generates an executable program that enables to
start data assimilation sessions. The current version of YAO allows to deal with
real applications. We presented the modular graph concept which is the core of
YAO and the algorithms that have been implemented in the YAO software. The
modular graph structure opens up prospects for research and improvement. An
analysis of the modular graph’s structure allows to address the automatic gener-
ation of the topological order and the automatic parallelization of the presented
algorithms.
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