
Linear Reformulations of Integer Quadratic

Programs

Alain Billionnet and Sourour Elloumi and Amélie Lambert

February 21, 2010

Abstract

Let (QP) be an integer quadratic program that consists in minimiz-
ing a quadratic function subject to linear constraints. In this paper, we
present several linearizations of (QP). Many linearization methods for
the quadratic 0-1 programs are known. A natural approach when consid-
ering (QP) is to reformulate it into a quadratic 0-1 program. However,
this method, that we denote BBL (Binary Binary Linearization), leads to
a quadratic program with a large number of variables and constraints.

Our new approach, BIL (Binary Integer Linearization), consists in re-
formulating (QP) into a particular quadratic integer program where each
quadratic term is the product of an integer variable by a 0-1 variable.
The obtained integer linear program is significantly smaller than in the
BBL approach.

Each reformulation leads to an integer linear program that we improve
by adding valid inequalities. Finally, we get 4 different programs that we
compare from the computational point of view.

keywords : Integer programming, quadratic programming, linear re-
formulations

1 Introduction

Consider the following linearly-constrained integer quadratic program:

(QP)

Min f(x) = xT Qx + cT x
s.t x ∈ X ⊂ Nn

with Q ∈ Sn (space of symmetric matrices of order n), c ∈ Rn and X is defined
as the set of integer solutions of a system of linear equalities and inequalities:

X =

8>>>><>>>>:x :

Ax = b (1)
Dx ≤ e (2)
xi ≤ ui i ∈ I (3)
xi ≥ 0 i ∈ I (4)
xi ∈ N i ∈ I (5)

1

where A ∈Mm,n (set of m ∗ n integer matrices), b ∈ Nm , D ∈Mp,n, e ∈ Np,
u ∈ Nn, I = {i : i = 1, . . . , n}. Without loss of generality, we shall suppose X
non empty.
We denote R = {r : r = 1, . . . ,m}, S = {s : s = 1, . . . , p}, E = {(i, k) : i =

1, . . . , n, k = 0, . . . blog(ui)c} and N = |E| =
nX

i=1

(blog(ui)c+ 1).

A lot of applications in operations research and industrial engineering in-
volve discrete variables in their formulation. Some of these applications can
be formulated as (QP). For instance, such a formulation is used in [1] for the
chaotic mapping of complete multipartite graphs.

In the state-of-the-art, a majority of resolution methods of quadratic dis-
crete problems are designed only for quadratic 0-1 programs. This is why a
natural way to solve (QP) consists in replacing each integer variable by its bi-
nary decomposition. The number of additional variables is hence equal to N .
Thereafter each integer product becomes an expression of binary products, that
we standardly linearize. The idea of the standard 0-1 linearization [2] consists in
adding a set of new variables and a family of inequalities that we substitute to
the binary quadratic terms. The main drawback of this approach, that we call
BBL (Binary Binary Linearization) is that the size of the obtained linear prob-
lem is O(N2). Possible improvements of the standard 0-1 linearization were
introduced by Sherali and Adams [3] and consist in adding a family of valid
inequalities. These improvements can be easily applied to the BBL approach,
giving a reinforced linearization method that we call BBLr.

Our new approach, that we call BIL (Binary Integer Linearization), consists
also in replacing each integer variable by its binary decomposition. Then, in
each product of two different integer variables we replace only one of them by
its binary decomposition. Thus, each integer product becomes an expression of
products of a binary variable by an integer one. Finally, we linearize these new
products by the standard binary-integer linearization [4]. The BIL approach
hence leads to an integer linear program of size O(nN) that is significantly
smaller than the program of size O(N2) provided by the BBL method. Moreover,
we improve this reformulation in term of integrality gap, by adding new valid
inequalities. We denote by BILr the reinforced version of the BIL method.

Finally, we get 4 linear reformulations that we compare from the compu-
tational point of view. Our experimentations are carried out on the Integer
Quadratic Knapsack Problem (IQKP).

The paper is organized as follows. In Section 2, we present the BBL approach
and its reinforcement BBLr. In Section 3, we describe the BIL approach and its
reinforcement BILr. Finally, in Section 4, we present our computational study
of these different methods. Section 5 is a conclusion.

2

2 The BBL approach

Let xi =

blog(ui)cX
k=0

2ktik be the unique binary decomposition of xi. We replace

the xi variables by the set of tik binary variables. Then each product xixj

leads to an expression of products tiktjl, that we linearize by adding new binary
variables yikjl. We obtain the following program:

(LPBBL)

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

Min fBBL(x, y) =

nX
i=1

nX
j = 1

qij 6= 0

qij

blog(ui)cX
k=0

blog(uj)cX
l=0

2k+lyikjl +

nX
i=1

cixi

s.t. (1)(2)(3)

xi =

blog(ui)cX
k=0

2ktik i ∈ I (6)

yikjl ≤ tik (i, k), (j, l) ∈ E, qij < 0 (7)
yikjl ≤ tjl (i, k), (j, l) ∈ E, qij < 0 (8)
yikjl ≥ tik + tjl − 1 (i, k), (j, l) ∈ E, qij > 0 (9)
yikjl ≥ 0 (i, k), (j, l) ∈ E, qij > 0 (10)
yikjl = yjlik (i, k), (j, l) ∈ E, i < j qij 6= 0 (11)
yikik = tik (i, k) ∈ E, qii 6= 0 (12)
yikil = yilik (i, k), (i, l) ∈ E, k < l, qii 6= 0 (13)
tik ∈ {0, 1} (i, k) ∈ E (14)

Observe that for any optimal solution of (LPBBL), as variables yikjl are
present only in the objective function and in Constraints (7)-(13), the following
properties are satisfied:

- If qij < 0 then yikjl = min (tik, tjl)
- If qij > 0 then yikjl = max (0, tik + tjl − 1)

ensuring yikjl to be equal to the product tiktjl if Constraints (14) are satisfied.
Constraints (11) and (13) follow from the equality tiktjl = tjltik. Constraints
(12) follow from the property that if tik ∈ {0, 1} then t2ik = tik.

The size of (LPBBL) is O(N2). As the yikjl variables and related constraints
are not defined when qij = 0, the actual size depends on the density of matrix
Q. In our computational results of Section 4, matrix Q is fully dense.

Improving the BBL approach

Here we improve the BBL approach by adding valid inequalities in (LPBBL)
following the same ideas as in [3]. We generate valid inequalities by multiplying
the initial constraints (1) and (2) by the binary variables, then we linearize the
obtained quadratic constraints. We obtain the following reinforced program:

3

(LPBBLr)

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Min fBBLr(x, y) =

nX
i=1

nX
j=1

qij

blog(ui)cX
k=0

blog(uj)cX
l=0

2
k+l

yikjl +
nX

i=1

cixi

s.t. (1)(2)(3)(6)(14)
yikjl ≤ tik (i, k), (j, l) ∈ E (7′)
yikjl ≤ tjl (i, k), (j, l) ∈ E (8′)
yikjl ≥ tik + tjl − 1 (i, k), (j, l) ∈ E (9′)
yikjl ≥ 0 (i, k), (j, l) ∈ E (10′)
yikjl = yjlik (i, k), (j, l) ∈ E, i < j (11′)
yikik = tik (i, k) ∈ E (12′)
yikil = yilik (i, k), (i, l) ∈ E, k < l (13′)

nX
i=1

blog(ui)cX
k=0

2
k
ariyikjl = brtjl (j, l) ∈ E, r ∈ R (15)

nX
i=1

blog(ui)cX
k=0

2
k
dsiyikjl ≤ estjl (j, l) ∈ E, s ∈ S (16)

nX
i=1

dsixi −
nX

i=1

blog(ui)cX
k=0

2
k
dsiyikjl ≤ es(1− tjl) (j, l) ∈ E, s ∈ S (17)

We multiply the equality Constraints (1) by variable tjl to get Constraints (15).
Similarly, we multiply the inequality Constraints (2) by tjl (resp. (1 − tjl)) to
get Constraints (16) (resp. (17)). Doing this introduces variables yikjl in the
new constraints (15)-(17). Hence we need to define Constraints (7’)-(13’) inde-
pendently from the sign of qij . Moreover, variables yikjl become needed even
when qij = 0. The size of (LPBBLr) does no longer depend on the density of
matrix Q.

3 The BIL approach

Here again we use the unique binary decomposition xi =

blog(ui)cX
k=0

2ktik. We lin-

earize the square terms x2
i by use of variables yikil that represent the product

tiktil as in the BBL approach. However, for quadratic terms xixj with i 6= j, we

use the equality xixj =

blog(ui)cX
k=0

2ktikxj , that we linearize by introducing new vari-

ables zijk to replace each quadratic term tikxj . Then we add a set of inequalities
that ensure zijk to be equal to tikxj . We obtain the following program:

4

(LPBIL)

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

Min fBIL(x, y, z)

s.t (1)(2)(3)(6)(14)
zijk ≤ ujtik (i, k) ∈ E, j ∈ I, qij < 0, i 6= j (18)
zijk ≤ xj (i, k) ∈ E, j ∈ I, qij < 0, i 6= j (19)
zijk ≥ xj − uj(1− tik) (i, k) ∈ E, j ∈ I, qij > 0, i 6= j (20)
zijk ≥ 0 (i, k) ∈ E, j ∈ I, qij > 0, i 6= j (21)
yikik = tik (i, k) ∈ E, qii 6= 0 (22)
yikil = yilik (i, k), (i, l) ∈ E, k < l, qii 6= 0 (23)
yikil ≤ tik (i, k), (i, l) ∈ E, qii < 0 (24)
yikil ≤ til (i, k), (i, l) ∈ E, qii < 0 (25)
yikil ≥ tik + til − 1 (i, k), (i, l) ∈ E, qii > 0 (26)
yikil ≥ 0 (i, k), (i, l) ∈ E, qii > 0 (27)

with

fBIL(x, y, z) =

nX
i=1

nX
j = 1

qij 6= 0
i 6= j

qij

blog(ui)cX
k=0

2kzijk+

nX
i=1

cixi+

nX
i = 1

qii 6= 0

qii

blog(ui)cX
k=0

blog(ui)cX
l=0

2k+lyikil

In any optimal solution of program (LPBIL) we have:
- If qij < 0 then zijk = min (ujtik, xj)
- If qij > 0 then zijk = max (0, ujtik + xj − uj)

it follows that, if tik = 0 then zijk = 0 and if tik = 1 then zijk = xj . This proves
that in any optimal integer solution, zijk = tikxj . For the same reason as for
program (LPBBL) we also have yikil = tiktil. Hence program (LPBIL) is a mixed
integer linear program that is equivalent to (QP).

The BIL approach produces program (LPBIL) with O(nN) variables and con-
straints. Here again, it is not necessary to define zijk when qij = 0. The actual
size depends on the density of matrix Q.

Improving the BIL approach

We mainly add Constraints (28)-(35) and variables ziik that represent tikxi.
We also need to transform Constraints (18)-(27) into Constraints (18’)-(27’).
All this give the following integer linear program (LPBILr).

5

(LPBILr)

8>><>>:

Min fBILr(x, z) =

nX
i=1

nX
j = 1
i 6= j

qij

blog(ui)cX
k=0

2
k
zijk +

nX
i=1

qii

blog(ui)cX
k=0

blog(ui)cX
l=0

2
k+l

yikil +

nX
i=1

cixi

s.t (1)(2)(3)(6)(14)
zijk ≤ ujtik (i, k) ∈ E, j ∈ I (18′)
zijk ≤ xj (i, k) ∈ E, j ∈ I (19′)
zijk ≥ xj − uj(1− tik) (i, k) ∈ E, j ∈ I (20′)
zijk ≥ 0 (i, k) ∈ E, j ∈ I (21′)
yikik = tik (i, k) ∈ E (22′)
yikil = yilik (i, k), (i, l) ∈ E, k < l (23′)
yikil ≤ tik (i, k), (i, l) ∈ E (24′)
yikil ≤ til (i, k), (i, l) ∈ E (25′)
yikil ≥ tik + til − 1 (i, k), (i, l) ∈ E (26′)
yikil ≥ 0 (i, k), (i, l) ∈ E (27′)
blog(ui)cX

k=0

2
k
zijk =

blog(uj)cX
l=0

2
l
zjil i, j ∈ I (28)

blog(ui)cX
k=0

2
k
zijk ≥ xiuj + xjui − uiuj (i, k) ∈ E, j ∈ I (29)

ziik =

blog(ui)cX
l=0

2
l
yikil (i, k) ∈ E (30)

blog(ui)cX
k=0

2
k
ziik ≥ xi i ∈ I (31)

nX
i=1

arizjil = brtjl (j, l) ∈ E, r ∈ R (32)

nX
i=1

dsizjil ≤ estjl (j, l) ∈ E, s ∈ S (33)

nX
i=1

(dsixi − dsizjil) ≤ es(1− tjl) (j, l) ∈ E, s ∈ S (34)

nX
i=1

(dsixiuj − dsi

blog(ui)cX
k=0

2
k
zijk) ≤ es(uj − xj) j ∈ I, s ∈ S (35)

Here we describe how we get the above valid inequalities (28)-(35):

• Constraints (28) follow from the fact that in any product xixj either xi

or xj can be replaced by its binary decomposition.

• Constraints (29) follow from the inequality (xi − ui)(xj − uj) ≥ 0.

• Constraints (30) define variables ziik that represent tikxi for an integer
solution.

• Constraints (31) follow from inequality x2
i ≥ xi that is satisfied by any

integer xi.

• Constraints (32) are obtained by multiplying the initial equality Con-
straints (1) by tjl.

• Constraints (33) are obtained by multiplying the initial inequality Con-
straints (2) by tjl.

• Constraints (34) are obtained by multiplying the initial inequality Con-
straints (2) by (1− tjl).

6

• Constraints (35) are obtained by multiplying the initial inequality Con-
straints (2) by (uj − xj).

As in the BBLr method, the multiplication of Constraints (1) and (2) by the
variables introduces variables zijk in the new constraints (32)-(35). This is why
we need to define Constraints (18’)-(27’) independently from the sign of qij .
Moreover, variables zijk become required even when qij = 0.

4 Computational results

We choose to perform numerical experiments on the Integer Quadratic Knapsack
Problem (IQKP) that consists in minimizing a quadratic function subject to a
linear inequality constraint:

(IQKP)

8>>>>><>>>>>:

Min f(x) = xT Qx + cT x

s.t

nX
i=1

dixi ≤ e

0 ≤ xi ≤ ui i ∈ I
xi ∈ N i ∈ I

We generate instances with 10, 20, and 30 variables. The coefficients are
randomly generated as follows:

• the coefficients of Q and c are reals in the interval [−100, 100]

• the di coefficients are integers in the interval [1, 50]

• e is equal to 20 ∗
nX

i=1

di

• we generate a first class of instances, (IQKP1), with all ui = 50, and a
second class, (IQKP2), with all ui = 100.

For any size n = 10, 20, or 30, we generate 5 instances in each class giving a
total of 30 instances.

Our experiments are carried out on a Linux operating system based on an
Intel core 2 duo processor, 2.8 GHz with 1024 MB of RAM. We use the modeler
and the linear programs solver XPress-Mosel version 1.6.1 (2005) [5].
The results of the four formulations are presented in Tables 1 and 2, where each
row corresponds to one instance.

Legenda of the tables:

• n: number of integer variables

• gap: | b−l
b | ∗ 100 where b is the value of the best known solution and l is

the optimal value of the LP relaxation at the root node (in %).

• nodes: number of nodes visited by the branch-and-bound algorithm

7

Table 1: Resolution of (IQKP1) (ui = 50)
(LPBBL) (LPBBLr) (LPBIL) (LPBILr)

n gap nodes time gap nodes time gap nodes time gap nodes time

10 69 1462 51 35 549 88 44 787 9 9 169 15
10 37 478 22 21 423 49 19 449 5 2 13 2
10 59 2316 83 29 577 92 41 886 14 6 66 7
10 41 573 19 31 301 30 19 389 4 0.4 75 5
10 41 403 17 20 129 30 22 319 3 0.3 45 5
20 37 13030 3303 24 863 *(3%) 16 1740 82 0.04 15 22
20 44 10000 *(7%) 26 956 *(7%) 25 3339 169 0.07 5 119
20 55 10000 *(7%) 35 866 *(13%) 33 9322 545 7 95 75
20 45 8218 *(11%) 28 758 *(9%) 23 4355 317 0 1 0
20 38 6435 *(3%) 29 485 *(10%) 23 6323 318 0.6 146 114
30 47 2632 *(36%) 36 270 *(27%) 25 10000 *(8%) 4 148 441
30 79 3288 *(55%) 51 159 *(42%) 52 4813 *(30%) 24 1086 *(11%)
30 45 5833 *(23%) 26 293 *(19%) 22 13739 *(3%) 0.05 81 193
30 84 195 *(60%) 58 171 *(43%) 60 10000 *(40%) 28 1103 *(15%)
30 48 2933 *(6%) 33 175 *(29%) 27 10000 *(11%) 3 568 2088
∗(g%) means that the branch-and-bound is stopped after 1 hour with a MIP gap of g%

• time: CPU time (in seconds) required by the branch-and-bound algorithm.
This time is limited to 1 hour of CPU time.

8

Table 2: Resolution of (IQKP2) (ui = 100)
(LPBBL) (LPBBLr) (LPBIL) (LPBILr)

n gap nodes time gap nodes time gap nodes time gap nodes time

10 38 503 25 31 143 29 17 423 7 0.1 12 3
10 63 667 44 34 168 52 45 299 7 7 69 5
10 33 362 26 19 206 41 14 162 3 0.1 26 6
10 44 531 24 14 313 50 22 364 4 0.1 87 7
10 37 201 12 5 75 2s 15 251 3 0.1 9 1
20 43 5226 *(18%) 21 900 3524 24 2877 256 0.04 12 28
20 52 4617 996 20 708 *(4%) 29 83 1574 0 1 0
20 63 2900 *(20%) 39 484 *(22%) 38 19528 1130 8 118 123
20 64 6347 *(26%) 38 541 *(22%) 42 16630 1039 11 228 152
20 74 6307 *(22%) 30 385 2848 49 7910 920 4 74 74
30 46 1651 *(37%) 29 48 *(29%) 24 8548 *(1%) 0.4 60 488
30 61 99 *(47%) 23 124 *(29%) 37 1591 *(21%) 3 271 3278
30 44 2219 *(37%) 31 48 *(29%) 22 2956 *(4%) 0.6 255 1828
30 53 414 *(62%) 34 61 *(32%) 31 4452 *(17%) 5 499 3080
30 71 2327 *(39%) 56 108 *(49%) 40 5676 *(9%) 17 824 *(4%)
∗(g%) means that the branch-and-bound is stopped after 1 hour with a MIP gap of g%

9

Program (LPBIL) has less variables and constraints than program (LPBBL).
For example, instances of class IQKP1 with n = 20 lead to a program (LPBIL)
(resp. (LPBBL)) with 2820 (resp. 7260) variables and 5061 (resp. 14421) con-
straints. Moreover, we can observe in Tables 1 and 2 that, for all the instances,
the gap associated to (LPBIL) is much smaller than the gap associated to (LPBBL).
Consequently, the BIL approach outperforms the BBL approach with regard to
the number of nodes and the computational time.

For BBL and BIL the reinforced versions significantly improve the gap value.
Consequently, the number of nodes decreases in these reinforced versions. How-
ever, for BBL, the gap improvement is not sufficient to compensate the increase
of the size and finally the CPU time required by BBLr is larger than the CPU
time required by BBL.

For BIL, the reinforced version leads to an important improvement of the
gap, but in this case the improvement of the gap widely compensate the increase
of the size and finally the CPU time required by BILr is generally significantly
smaller than the CPU time required by BIL.

We can also observe in Tables 1 and 2 that the gap values associated with
BBLr and BIL are quite similar. However, the size of BIL being much lower than
that of BBLr, BIL outperforms BBLr from the computational time point of view.

As a conclusion, on these two classes of instances, BILr is the best approach
for the three criteria : gap, nodes and time. However, the computational ex-
periments have shown that this method was unable to solve instances with 40
variables or more within 1 hour of CPU time.

5 Concluding remarks

In this paper, we have presented several linear reformulations of linearly con-
strained quadratic integer programs. The BBL and BBLr methods that consist in
using the standard linearization of quadratic 0-1 programs is not usable because
the binary decomposition combined to this linearization leads to 0-1 quadratic
programs with too many variables and constraints.

Then, we presented a new approach, BIL, using the standard linearization
of the product of an integer variable by a binary one. This method reduces
significantly the number of constraints and variables added, in comparison with
the BBL approach. In our experiments, surprisingly, this size reduction comes
along with a smaller integrality gap. Therefore, BIL is a better approach. More-
over, the valid inequalities added in BILr provide an important improvement.
A further improvement would be to incorporate these valid inequalities into a
branch-and-cut framework.

References

[1] Fu, H. L., Shiue, C. L., Cheng, X., Du, D. Z., Kim, J. M.: Quadratic Integer
Programming with Application in the Chaotic Mappings of Complete Multipartite
Graphs. J. Optim. Theory Appl. 110 (3), 545–556 (2001)

10

[2] Fortet, R.: Applications de l’Algèbre de Boole en Recherche Opérationelle. Revue
Française De Recherche Opérationelle. 4, 17–25 (1960)

[3] Sherali, H.D., Adams, W.P.: A tight linearization and an algorithm for zero-one
quadratic programming problems. Management Science. 32(10), 1274–90 (1986)

[4] McCormick, Garth P.: Computability of global solutions to factorable nonconvex
programs: Part I - Convex underestimating problems. Mathematical Programming.
1(10), 147–175 (1976)

[5] Dash Optimization, Xpress-Mosel version 1.6.1.: Xpress-Mosel language Reference
Manual 1.4., http://www.dashoptimization.com/ (2005)

[6] Körner, F.: A New Bound for the Quadratic Knapsack Problem and Its Use in a
Branch and Bound Algorithm. Optimization. 17, 643–648 (1986)

[7] Körner, F.: An efficient branch and bound algorithm to solve the quadratic integer
programming problem. Computing. 30, 253–260 (1983)

11

