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Abstract

Relational databases watermarking aims at protecting the intellectual or industrial property
of a dataset, by applying secret and slight alterations on it. When critical usability constraints of
this dataset must be preserved, finding such alterations (watermarks) is a difficult computational
task, which is not optimized by the current watermarking systems. This is a critical limitation
when considering fingerprinting applications, where several distinct watermarked databases have
to be obtained.

An important property of the watermark is to be resilient to attacks that try to erase it.
Among these attacks, one of the most severe is the collusion attack, that locates the watermark
by comparing several distinct watermarked versions of a database. Such an attack has not been
taken into account by the existing databases watermarking methods, when usability constraints
have to be preserved.
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In this paper, we present an efficient algorithm for collusion-secure fingerprinting that pre-
serves usability constraints. We identify a class of constraints, namely weight-independent con-
straints, that can be translated into an integer linear program. Solutions of this program are
acceptable watermarks. This representation is computed once and for all and has the following
advantages. First, we can rely on state-of-the-art optimizers to reduce the search space and
quickly find a good watermark. Second, for a carefully chosen class of watermarks, producing
every new watermark is immediate, compared with the complete recomputation needed by ex-
isting watermarking methods. Finally, our algorithm addresses the problem of collusion attacks,
by making possible the use of collusion-secure codes while respecting usability constraints.

The formalism of this article permits to handle both relational databases and XML docu-
ments. The effectiveness of our techniques has been established on our open platform Watermill,
that integrates fingerprinting management capabilities to standard relational or XML-native
databases systems.

1 Introduction

Databases watermarking The growth of the Internet and the World-Wide-Web has been fol-
lowed by a drastic increase of digital data exchange. Users are searching for valuable data, whose
elaboration costs time and money. In this setting, data owners are exposed to malicious users who
disseminate unauthorized copies of a copyrighted work.

Watermarking aims at strengthening ownership proofs by hiding copyright information (called
watermark) into the purchased document. The watermark should be invisible, i.e. should not
impact the document usefulness. It must also be robust against attacks performed by malicious
users trying to erase it.

Watermarking techniques are widely studied in the area of multimedia documents (see [6, 10]
for a survey), and several recent efforts have lead to complete solutions for the watermarking of
relational databases [4, 15]. In all these solutions, watermarking is done by altering the data. This
is obviously a limitation for a legitimate purchaser, but it is well known that these alterations are
necessary to achieve watermark robustness. In multimedia watermarking, for example in images
watermarking, alterations are limited so that the image quality is preserved. This quality can be
expressed by signal processing characteristics, like luminance. For databases watermarking, even
small alterations on data may ruin the result of specific queries (e.g. join queries) that are important
for the database purchaser. Hence specific tools for defining databases usefulness according to the
purchaser’s need are required.

Usability constraints Usability constraints (also known as semantic integrity constraints [17, 7))
are used to specify data properties that are crucial from the database purchaser’s point-of-view.
They are designed by the database owner, based on the purchaser’s application specification during
a negotiation phase with the purchaser. For example, a purchaser may require that joins between
some attributes should be preserved, or that some attributes will be used for querying data on the
purchaser’s side. Part of these constraints may be public, so that the purchaser knows the limit of
its data. Part of them may be kept secret to enforce the watermark invisibility. An important point
is that the database owner may refuse to sell its database to a purchaser who asks for usability
constraints leading to non-watermarkable data (e.g. a purchaser requiring no alteration at all).
However, it is certain that a purchaser will prefer data with controled alterations rather than no
data at all.



Finding watermarks: the greedy method The main problem is then to find robust water-
marks that respect the given usability constraints. A natural method is the greedy search [15].
For a given secret binary message to encode, its first bit is embedded by distorting a small set of
tuples. Then, usability constraints are checked on all the dataset, involving the computation of
several queries. If usability constraints are preserved, the following bit is considered. If usability
constraints are not respected, changes are discarded on the current set of tuples, and another set
is considered.

Watermarking speed and fingerprinting FExperimental evidence shows that the greedy method
may find acceptable watermarks (distortions) in one pass, but sometimes, no valid watermark is
found, and backtrack is necessary. Hence finding acceptable watermarks is difficult and computa-
tionnaly intensive, since all usability constraints have to be tested for each hidden bit.

A natural extension of watermarking is fingerprinting, where a different watermarked data is
distributed to each member of a group of purchasers [18] sharing the same usability constraints. A
classic application of this technique is traitor tracing, i.e. proving which purchaser is the source of
an illegal diffusion. This extension is challenging, since now several acceptable watermarks are to
be computed.

For this application, the computational effort of the greedy method is tremendous. Each con-
straint is checked on each bit insertion, and for T" watermarked versions, this expensive operation
must be iterated 7' times.

One may argue that since watermarking is done once and for all in the life-cycle of a document,
speed is not an issue. On the contrary, we think that speeding up the watermarking process may
become a real requirement. Indeed, several onerous datasets like meteorological measurements [3]
have a huge commercial or scientific value, but during a finite time window. For example, weather
forecasts for the next week are not valuable anymore after the current week. Thus, if watermarking
for ten purchasers needs five days of computation to proceed, its applicability is reduced. Also,
due to this limited time window, caching techniques can not be used. So, for critical applications,
watermarking time complexity is an important issue and should be lowered.

Our contribution In this paper, we propose an optimized watermarking and fingerprinting
method. To do so, we provide a declarative language for usability constraints definition. Then we
locate specific patterns in these usability constraints where optimization can be performed. These
patterns include aggregate and join computations, which are central in the design of usability
constraints used in real-world datasets [13]. It should be noted that this approach, in the spirit of
databases query optimization, was not addressed by previous works. Note also that the optimization
techniques we use for watermarking are different from those used in standard query optimization.

This technique leads to the following new capabilities (that will be defined and discussed in the
following): (1) speeding-up the watermarking/fingerprinting process and (2) resisting attacks from
a collusion of purchasers while respecting usability constraints.

Speeding-up watermarking and fingerprinting We decompose the watermarking process in
two phases. (i) In the first, compilation phase, we analyze the usability constraints and the database
given by the owner, looking for specific constraint patterns, namely weight-independent constraints.
Matching constraints will be translated into an integer linear program (ILP) whose solutions are
potentially good watermarks. Constraints that do not match these patterns will be treated by the



greedy method. (i) The second phase is the proper watermarking phase. It consists in finding one
or several solutions to the previous linear program and modifying the database accordingly.

In our framework, once the compilation phase is over, producing a watermarked version benefits
from state-of-the-art techniques from integer linear programming. Furthermore, if we restrict our
attention to a carefully chosen class of watermarks, finding a large number of watermarks for
fingerprinting is immediate. Our experiments show (section 7) that the computation time can be
greatly lowered with this method.

Collusion-secure fingerprinting When distributing several fingerprinted versions of a database,
the owner is exposed to collusion attacks. In this setting, several malicious purchasers may collude
to compare their watermarked versions. By locating positions where their documents differ, they
can discover where watermark bits have been inserted. By modifying documents on these posi-
tions, they may obtain a new version without a readable watermark, hence evading detection. The
design of efficient collusion-secure fingerprinting codes is a long-standing effort [5, 9, 16]. In order
to be collusion-secure, watermark messages must be carefully chosen from a precise codebook, and
inserted in the same positions in all the distributed versions.

We show that for the aforementioned weight-independent constraints, a family of good water-
marks can be quickly found, so that bit encoding is performed always on the same positions. Hence
using a collusion-secure code is possible, while preserving usability constraints.

Outline of the paper Section 2 recalls basic concerns about watermarking, and introduces
XML watermarking as a natural extension. Our declarative language for usability constraints is
defined in section 3. We then study the optimization of watermark discovery for specific kinds of
usability constraints: by using pure integer linear programming in section 4, and by focusing on a
specific family of solutions in section 5. Collusion-secure fingerprinting is addressed in section 6.
Section 7 presents experiments on our open prototype Watermill [1], that integrates fingerprinting
management capabilities to standard relational or XML-native databases systems.

Related work Several recent works consider relational databases watermarking [4, 15, 8, 12, 11].
Agrawal and Kiernan’s method [4] hides information in the least significant bits (LSB) of numerical
attributes. The database owner can control the alteration on attributes by setting the number of
LSB that can be modified. Although a small overall distortion on the mean of the watermarked
attributes is observed, more general usability constraints are not considered. Their technique was
extended [12] to collusion-resilient fingerprinting by using collusion-secure codebooks [5]. But again,
usability constraints are not handled.

Sion, Atallah and Prabhakar [15] have introduced the greedy method for watermarking with
usability constraints. They handle potentially any constraint type by repeatedly calling external
checking programs (usability plugins). This very general method is not optimized in the sense
used in the introduction, as the syntactical form of usability constraints is not explored. Their
method applies also for fingerprinting, but the computational effort is tremendous. Combining their
method with collusion-secure codebooks is also possible but with limitations: there is absolutely
no guarantee that the same watermark positions will be found for all watermark messages in the
codebook since their method is greedy.

Weight-independent sum constraints were considered by one of the authors of the present paper
from the theoretical point of view [8]. This specific query pattern is studied in order to obtain



<mills year=2003>
<windmill> <place>Bretagne</place>

<x>30</x><y>53</y>
<prod>125</prod>
</windmill>
<windmill> <place>Vendee</place>
<x>62</x><y>56</y>
<prod>223</prod>
<height>90</height>
</windmill>
<mill> <x>5b</x><y>22</y>
<prod>443</prod>
<height>5</height>
</mill>
<mill> <x>22</x><y>51</y>
<prod>53</prod>
<height>2</height>
</mill>
<geothermic><place>Dijon</place>
<prod>33</prod>
<prod>66</prod>
</geothermic>
</mills>

Figure 1: mills.xml

a lower bound on the number of distinct acceptable watermarks that one is likely to discover.
The algorithmic counterpart of this previous paper is less suited for practical applications. The
present paper considers better algorithms that behave correctly with large datasets. Moreover, the
algorithms of this previous work were not blind, while our new algorithms are. Finally, linearizable
constraints and collusion attacks were also not considered.

2 Databases and XML watermarking

2.1 Example

Semi-structured documents The following example is used throughout the paper. A data
owner has spent time and effort to build the following accurate document mills.xml (Figure 1),
that represents different kinds of powerplants on a map. A powerplant can be a windmill, a mill
or a geothermic installation. Other elements are the (x,y) GPS positions on this map, the place
where they are located, energy production measures carried out on these units during year 2003,
and the height of the installation.

This document respects the schema and key constraints of Figure 2. Consequently, any x, y,
prod or height element for a windmill can be uniquely determined by the value of the place
element. This point will be central in the sequel.



Schema for mills.xml:

mills -> (windmill|mill|geothermic)x*
windmill -> place x y prod (height)?
mill -> x y prod height

geothermic -> place prodx

Key constraints for mills.xml:

<xs:key name="keyl">
<xs:selector xpath="/mills/windmill"/>
<xs:field xpath="/place"/>

</xs:key>

<xs:key name="key2">
<xs:selector xpath="/mills/mill"/>
<xs:field xpath="/x"/>
<xs:field xpath="/y"/>

</xs:key>

Figure 2: Schema and key constraints for mills.xml

Watermarking A data server (e.g. a Web service) may be interested in such data, to provide
information about powerplants on a Web site. This server answers queries to final users. A
malicious server may copy the document and try to sell it on his own.

To prevent this, the aim of watermarking is to hide information in the original document in
order to prove ownership once a suspect document is discovered. The data owner will insert a
watermark into the original document, i.e. will slightly modify several element values. For the sake
of simplicity, we restrict ourselves to real number values, but other types can be considered. As an
example, documents mills2.xml and mills3.xml of Figure 3 are examples of watermarked copies
of mills.xml. They differ on several positions, e.g. prod and height elements of windmill Vendee.

When a suspect copy is discovered, the owner will extract the watermark from the suspicious
document, and compare it to the inserted one. If these two watermarks are similar (in a way defined
later), he can claim ownership of the document. We call the marker the algorithm for watermark
insertion, and detector the algorithm for watermark detection.

Adversarial model In a naive setting, the stolen document is kept identical with the purchased
one. In this case, the two watermarks are identical, and the ownership proof is strong. In a more
realistic, adversarial setting, the purchaser may alter the stolen document (up to a realistic extent)
in order to erase the watermark.

Classic types of attack are:

e data alteration: In the random data alteration attack, a subset of data is randomly distorted.
The amplitude of this alteration is limited so that the dataset is still valuable. In the rounding
attack, least significant bits of the data are erased;

e data loss: a subset of data is suppressed;

e miz-and-match: new data from another source is added to the dataset.



mills2.xml

<mills year=2003>

<windmill>
<place>Bretagne</place>
<x>35</x><y>53</y>
<prod>127</prod>

</windmill>

<windmill>
<place>Vendee</place>
<x>62</x><y>56</y>
<prod>203</prod>
<height>91</height>

</windmill>

<mill>
<x>55</x><y>22</y>
<prod>463</prod>
<height>5</height>

</mill>

<mill>
<x>22</x><y>51</y>
<prod>53</prod>
<height>2</height>

</mill>

<geothermic>
<place>Dijon</place>
<prod>33</prod>
<prod>66</prod>

</geothermic>

</mills>

mills3.xml

<mills year=2003>
<windmill>

<place>Bretagne</place>

<x>40</x><y>53</y>
<prod>125</prod>

</windmill>

<windmill>
<place>Vendee</place>
<x>62</x><y>56</y>
<prod>203</prod>
<height>90</height>

</windmill>

<mill>
<x>55</x><y>22</y>
<prod>423</prod>
<height>5</height>

</mill>

<mill>
<x>22</x><y>51</y>
<prod>63</prod>
<height>2</height>

</mill>

<geothermic>
<place>Dijon</place>
<prod>33</prod>
<prod>66</prod>

</geothermic>

</mills>

Figure 3: Two watermarked instances



Hence a good watermarking system should be robust
against such alterations. As in [4, 15, 8], we suppose that any attack on the document keeps
keys unchanged. This assumption is natural when keys have a public meaning. For example, the
windmill element with <place>Bretagne</place> can not be changed to <place>Paris</place>
without misleading all users of a stolen dataset.

Watermarking identified values The main hypothesis, used also in [8, 15, 4] in the relational
setting, is that modified values (i.e. watermark positions) must be in the scope of a primary key.
This way, modified values are clearly identified, and this helps watermark recovery in the adversarial
setting (this is one of the main differences with classic multimedia watermarking, where keys do
not exist.)

Let d be an XML document. A leaf element e in d is said to be identified if this precise element
e can be pinpointed in the entire document using a key constraint (ks, kp, ke) and a key value kv:

e (ks, kp) are respectively key selector and key path in a key constraint;
e kv is a key value;
e ke is a path relative to element ks[kp = kv] leading to element e.

In our example, the height of the windmill of Vendee is clearly identified, with
ks = /mills/windmill, kp = /place, kv = Vendee and ke = height. Its value is 90 in the
original document mills.xml, and 91 in mills2.xm]l.

We denote by Z(d) the set of identified values of the document d. In our example, Z(mills.xml)
contains all prod elements for key values in { Bretagne, Vendee, (55,22), (22,51)} (recall that for a
mill element, keys are x and y elements). The two elements prod from the geothermic node are
not listed, since they is no way to differentiate them using keys. The set Z(mills.xml) contains
also height elements.

We sometimes use key values to denote an identified element: for example Prodg, epagne 1S the
unique element prod identified by the key value Bretagne. For N = |Z(d)|, we can also consider
the set of identified elements as a large vector #(d), where for all i € {1,..., N}, 9(d)[7] is the value
of the identified element ;.

Watermarking method (starting point) We recall here the Agrawal and Kiernan’s method
[4] for the watermarking of relational databases. We expose this method in the XML setting (which
is immediate), and we will use it as a reference for the subsequent algorithms. Note also that the
different method from Sion et al. [15] can also be used, but we will not consider it due to lack of
space.

The method relies on a pseudo-random generator S whose production are difficult to predict if
one does not know the secret seed. Several parameters are used: the secret key X, the ratio ~ of
watermarked elements, the maximum number £ of least significant bits (LSB) one can distort, and
the maximum probability o of detection errors'.

The algorithm respects the following steps: for each identified elements %, the random number
generator is seeded with I concatenated with 4. If the first number produced then by S is 0 mod +,

!The number v of relational attributes available is also used, but this notion disappears here since we consider
XML documents as a flat vector of identified values. Hence v = 1.



then the value is considered for watermarking. In this value, a bit position is chosen according to
the next integer from S, computed modulo £. This bit position will be replaced in the value by a
mark bit. Finally, the value of this mark bit is given by the parity of the third production of S.

The detection algorithm proceeds identically by locating bit positions in a suspect documents.
The found bit mark is then compared with the intended one, and the number of correct matches is
recorded. If the match ratio exceeds a given threshold (which is a function of «), the document is
declared suspect.

This method exhibits several important properties: robustness, accuracy, incremental updata-
bility, public system and blindness (see [4] for a complete discussion). Among them, blindness means
that the original dataset is not needed for detection: only the watermarking parameters (K, 7, ¢, a)
and the suspect dataset are required. This is critical for very large documents watermarking, since
their backup, copy or transmission to a trusted authority may not be easy.

Usability constraints Purchasers, e.g. a group of Web servers, buying the document mills.xml,
may answer queries on the document for final users, as ”total production during year 2003 for
windmills and mills powerplants”. We refer to this particular query as query 1, expressed in
XQuery:

¢ =for $a in /mills/(windmill|mill)

return sum($a/prod).

Since data will be modified by watermarking, the result of 1; may change on watermarked
documents, and final users of the Web sites might be impacted. Hence, before the owner watermarks
the document, owner and servers must agree on usability constraints to respect, in order to control
the impact on final users. As in [15, 8], we distinguish between the set of local usability constraints
L, that concern basic elements values, and the set of global usability constraints G, that apply on
a whole subdocument.

In our example, for accuracy purposes, we may apply the following local constraints £ =
{Cla 027 03}:

__ map positions should not be modified by
~ more than 10 units;

_ height of windmill should not be altered
" by more than 1 meter;

1

Co

Co=2 production measure is bound to a 20
3 =
KW error.

An element e is a modifiable value of d if e is in the scope of at least one local constraint in £ (a
formal definition is given in the next section). In this paper, watermark insertion is done only on
elements values that are both identified and modifiable. We denote by M(d) the set of these
elements. By definition, M(d) C Z(d).

We now enrich our example with a set of global constraints G = {C4, C5, Cs,C7,Cs, Cy}. Con-
straint C4 controls the variation of query ;:

_ result of query v should not vary more
*~ than 10 KW.



Constraint Cy expresses that, for legal reasons, productions under 60 KW should be still under this
limit after watermarking.

C = productions lower than 60 KW should re-
5= . e .
main under this limit.

Constraint Cg imposes that the distance between the Bretagne powerplant and a power collector
located in position (10,10) on the map should not be distorted by more than 5 units.

_ distance between Bretagne and (10,10)
~ should not vary more that 5 units.

Cs

Constraint C'; states that production units with equal heights should still have equal heights after
watermarking (but not necessarily with the same value).

_ the set of powerplants that join on height
7= .
should remain the same.

This kind of constraints is very useful to preserve foreign key relationships between parts of the
document.
Calls to an external checking program on the owner’s side can be used.

_ program qualityChecker should accept
" the watermarked dataset.

Finally, suppose that heights are expressed in feet for a windmill, and in meter for a mill.
Constraint Cy expressed that, for administrative reasons, the sum of two specific powerplants’height
should not exceed a given limit in meter.

_ Height of Vendee and mill located at

Co = (55,22) should not exceed 30 meters.

A watermark is a good watermark if it preserves both local and global constraints defined in £
and G. Finding a good watermark may be a difficult task, as we will see in the sequel.

In Figure 3, you may observe that documents mills2 and mills3 respect local constraints
C1,Co and C3. Document mills2 respects global constraints Cy and Cs, but not document mills3
(because the overall production variation is bigger than 10, and because a production jumps over
60.)

Relational setting While this paper is focused on XML documents, its techniques apply also in
the relational setting. Indeed, all watermarking operations (insertion, detection) are done on the
vector structure ¥(d). If primary keys identifying attributes are available in the relational database,
a corresponding vector structure can be constructed (if primary keys are not available, pseudo-keys
can be constructed [4]).

3 Declarative watermarking constraints

Example In order to ease the owner’s work, we provide a simple declarative formalism to express
usability constraints. Before giving a formal semantic, we begin by translating constraints from the
previous example:

10



local 10 on //x, //y, # C1

local 1 on //windmill/height, # C2
local 20 on //prod, # C3
global 10 on ( # C4

for $a in /mills/(windmill|mill)
return sum($a/prod)

),

invariant ($a in /mills/(mill|windmill))
where $a/prod < 60, # C5
global 5 on ( # C6

for $a in /mills/windmill
where $a/place=Bretagne
return sqrt(sqr($a/x-10)+sqr($a/y-10))
)
invariant($a in /mills/mill/height, # C7
$b in /mills/mill/height)
where $a/height = $b/height,
check "qualityChecker" # C8
linear( # C9
$a=/mills/windmill[place=Vendee] /height,
$b=/mills/mill[x=55] [y=22] /height,
0.304 * $a + $b < 30)

Semantic We now give the formal semantic of these constraints. In the sequel, ¢(d) denotes the

resultset of query ¢ on document d. Given an XPath query ¢, its identified part Z(p,d) is the

subset of elements in ¢(d) that is contained in Z(d) .

checked.

e A local constraint has the following form:

I'=10cal p on ¥,

This property can be easily and statically

where p € R and % is an XPath identifying query. For k local constraints with queries

P1,-..,P, the set of modifiable values M(d) is the set of all identified elements of 91, ..., ¥,
ie. M(d) = UL, Z(d, ).

Recalling that a watermarked document dz is such that, for all 1 € M(d),
(dw)li] = 9(d)[i] + @ld],
document d3 is said to respect the local constraint I' if and only if Vi € Z(d, 9), |@][i]| < p.
e A global constraint has the following form:

I' = global p on 1,

where p € R but now v is any query returning a numerical value. This query may be expressed
e.g. in the XQuery language as in our example. A document d; is said to respect the global
constraint I if and only if [1/(d) — 1(dz)| < p. Hence this property is a global property of the
watermark w, not a local property of a unique w[i].

11



e An invariant constraint is defined as follows:
I' = invariant ($a; in ¢1,...,8a; in @) where 9.

Queries @1, . . . , ¢} are XPath queries. Query 7 is any boolean query on parameters $a1, ..., $a;.
We define the set E(d, ) of tuples in Z(d, ¢1) X --- X Z(d, ) that verify 1. A watermarked
document d; satisfies this constraint if E(d, ) = E(dg, ).

e A check program clause represents a call to an external program that checks constraints
(e.g. a computation not easily definable in XQuery). This clause is respected by document
dg if the program answers ”yes” with d and d;z as input. This corresponds to the usability
plugins of [15].

e The semantic of the obvious 1inear constraint is not given, due to the lack of space.

Finding alterations of the document that respect such constraints may be a difficult computa-
tional task. The next section shows how to detect interesting patterns in these constraints, in order
to optimize the watermarking process.

4 Fingerprinting as an optimization problem (first approach)

4.1 Overview

Fingerprinting If we want to prove not only ownership on the document, but also that a given
purchaser is the one that performs unauthorized copies, we should distribute several distinct wa-
termarked versions of the document. This latter technique is known as fingerprinting. In this new
setting, we do not want only one watermarked document, but several, according to the number of
servers we want to populate. Observe that, to do so, one has now to find several good and distinct
watermarks, which may be computationnaly intensive.

Overview of the optimization method First, we consider check constraints. Since they are
only defined as an external oracle, there is no hope of finding any heuristic to gain computing time.
In that case, the greedy method [15] presented in the introduction is probably the most suitable.
We will refer to this method as the following function:

GreedyMark (message m,identifiers M,secret K,constraints L,G).

This function returns a watermark  that hides message m into identified modifiable values
pointed by M, while respecting constraints in £ and G. The encoding uses the secret key K.

For the remaining constraints, we are searching for patterns that can be translated into linear
constraints. Hence we split the set G of usability constraints into two sets: the set Lin of linear
constraints, and the remaining set Gen of general constraints. We will first resolve usability con-
straints from Lin, obtaining a partial instantiation of a good watermark vector, say w;. Watermark
positions left undefined will be denoted by M /. Finally, constraints from Gen will then be ex-
plored using the greedy method GreedyMark on positions M /4, obtaining a complete watermark
vector 0.

12



4.2 Translation into linear constraints

Example Translation of constraint Cy is immediate. Constraints C; to Cs of our previous exam-
ple result in the following ILP system on document mills.xml:

-10 S w[XBretagne] S 10 C1
—-10< w[yBretagne] <10 cC1
—-10 S w[XVendee] S 10 C1
—-10 S w[YVendee] S 10 C1
—1<  |heightpresagne] <1 c2
—1<  d@lheightyengee) <1 (2
—20 S w[pIOdBretagne] S 20 cs3
—20 < W[prodyendee] <20 C3
—20 < [prod(ss 22)] <20 C3
—20 < [prod(as s1)] <20 C3
-10 S w[pIOdBretagne] + w[pIOdVendee] C4

+1[prod ss,22)] + Wlprod(ass1)] <10

53 + w[prod(n,sl)] <60 Cb

0.304 * Wheightyenaee] + Wlheight (ss02)] <30 €9

Constraints Cs and Cg can not be linearized: there is no way to know if Cyg has a linear counterpart,
and Cj needs squaring of values. Observe also that C7 can be linearized (as explained in the sequel),
but its conditions do not hold in the original document.

Automatic translation Based on the previous example, we identify a set of constraint patterns
that can be directly translated into a linear program. Theses patterns express useful usability
constraints on the data and can be easily recognized.

We consider four patterns: local constraints,
weight-independent sum constraints, cluster constraints and join constraints. For each pattern,
we give its general syntactic form, specific restrictions that must be checked, and its translation
into a linear inequation.

1. Local constraints (e.g. C1, Co, Cs3)

e Pattern: I' = local p on v
e Restrictions: none
e ILP constraint: Vi € ¢(d), —c < @[i] < ¢

2. Weight-independent sum constraints (wis-constraints): a constraint is said to be weight-
independent if the set of value identifiers involved in the query computation is the same,
whatever the perturbations are on identified values.

For example, constraint Cy is weight-independent: even if we modify the prod values, the set
of windmill or mill that are involved does not change. This property allows for computing
once and for all the set of identified values used in a query computation, and for linking
variables to these values into the linear system.

The weight-independence property is fulfilled by any constraint that do not use modifiable
elements in its conditions. This can be statically verified. The formal pattern is the following:
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e Pattern: I' = global p on ¢
e Restrictions: ¢ has the following pattern:

for ($a in ¢1)
return sum($a/p2),

where 1 is an XPath query that do not involve modifiable elements, and @4 is an XPath
query that defines modifiable elements.

e ILP constraint:
-p< Y, dli<p

1€Z(dyp1/p2)

An example of weight-dependent constraint is given below:
global 10 on (

for $a in /mills/windmill [prod<100]

return sum($a/prod)
).
If a prod is equal to 99, watermarking it to 100 will exclude it of the previous linear encoding.
The weight-independent sum pattern can be easily extended to handle the mean aggregate.
However, the useful statistical variance operator can not be handled, as it is not linear.

3. Cluster constraints (for example C5)

e Pattern: I' = invariant ($a in @) where $a/1 Oc.

e Restriction: 9 is an XPath query pointing to a modifiable element, § € {=, <, >} and
ceR

e ILP constraint: for all element 7 in Z(d, ¢):
wli] + 9(d)[i] 6 c.

4. Weight-independent join constraints (for example C7)

e Pattern: I' = invariant ($a; in ¢1,3a2 in ¢9)
where $a1 /91 = $ag /1.

e Restriction: 11 and 1o are XPath expressions defining modifiable elements, ¢1, o are
XPath expressions that do not depend on any modifiable values.

e ILP constraint: for any pair of elements (7,j) in the resultset of the join defined by
($3a1,$az), we add the constraint:

4.3 The algorithm

Clearly, any watermark satisfying the linear system respects all Lin constraints. Our aim is then
to extend Agrawal and Kiernan’s algorithm [4] so that only good watermarks are selected. The
sketch of the resulting algorithm is as follows:

14



e We compute the distortion A[7] that Agrawal and Kiernan’s method would have chosen for
an element ;

e We create a new integer (0,1)-variable 5[¢| in the linear system for each i, meaning that
element 7 is a good candidate for watermarking while preserving constraints;

e We force the watermark [i] to be 0 if 5[i] = 0, and A[i] otherwise (this is expressible in a
linear system since A[7] is a constant);

e We choose the watermark that maximizes the number of 5[i] equals to 1, i.e. we solve an
integer linear program.

For detection, we look at positions ¢ where 5[i] = 1, extract the corresponding bits and compute
the correlation with the hidden bits. The overall algorithm is depicted in Figure 4. It includes
Li, Swarup and Jajodia ’s extension [12] to fingerprinting of the initial Agrawal and Kiernan’s [4]
algorithm, using a majority voting (this procedure, thresholdMajority, returns the word formed
by bits with the highest vote. We do not include it here.) Symbol S;(k) denotes the output number
t of a pseudo-random generator seeded by k (see [4].)

Blindness This algorithm is blind in the sense of [15]: it does not require the original dataset for
detection. But, as explained in [15], positions used for a constraint-preserving watermarking must
be recorded for future detection (here, positions ¢ where 3[i] = 1). This is not a limitation since
this set can be efficiently compressed (by e.g. simple interval encoding).

Robustness It should be observed that, when no usability constraints are to be preserved, this
algorithm yields exactly the same watermark as Agrawal and Kiernan’s (i.e. all 5¢] equal 1). Hence,
its robustness against attacks is the same. When considering usability constraints, the robustness
depends on the intrication of these constraints. A too complex group of constraints may yield
a non-watermarkable dataset, but experimental evaluations shows that on practical constraints,
watermarks are still available (see section 7.)

Generality of the method In our example, constraints Cs and Cs do not have a direct char-
acterization in terms of linear constraints. But, from the theoretical point of view, it should be
noted that Integer Programming is N P-complete. Hence the method potentially applies to any set
of constraints in NP, though not in a straightforward manner.

Problem reduction State-of-the-art ILP solvers (like Ilog Cplex, Dash Xpress-Mp, IBM OSL,
etc.) can handle classically up to 10* variables. If the number of modifiable values exceeds this
limit, which is likely to occur on large datasets, several methods can be used:

¢ apply standard reduction techniques to lower the number of useful variables [14, 19];
e work only on active identifiers, i.e. those used in query evaluation;

e choose a random subset of variables, or group them according to a secret.

15



LinearMark(document d, message m, constraints [, Lin,Gen,
parameters K,&,7)

P:=empty linear program
foreach element i in M(d)
if(S1(ioK) mod y=0) // try mark this element
j:=52(i0K) mod £ // bit index
k:=53(i 0 K) mod |m| // letter index

mask:=54(i o K) mod 2;
mark:=m[k] ® mask // mark bit

mualue: =0li];
mualue[j]:=mark
A[i]:=(3[i] — mvalue)
// compute distortion € {—27,0,2/}
add linear constraint to P:
(0<s[i) <1, integer)
(i) = Ald].s[i])

add translation of Lin to P

W :=solve (P, maxz(#s; =1))
W:=GreedyMark (m , M /w1,K, L, Gen)
return (¥ + ,3)

LinearDetect (suspect document d,5,word size [,key K,&)

for all p in {1,...,I}
vote[p] [0] :=0
vote[p] [1]:=0

for each element i in d appearing in §
Jj:=S2(ioK) mod £ // bit index
k:=S3(i oK) mod! // letter index
mask:=S4(i 0o ) mod 2 // mask bit
readMark :=0[i][j] ® mask // read the mark

vote[k] [readMark] :=vote[k] [readMark]+1
// voting

return thresholdMajority(vote)

Figure 4: Watermarking with ILP (first approach)
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5 Fingerprinting as an optimization problem (second approach)

Pairing algorithm In this section we develop a construct that allows to find not one good
watermark, but a large number of good watermarks, by analyzing the form of constraints. We will
obtain a set of [ watermark positions where all binary messages of size [ can be encoded. This
means that for any message, their encoding will necessarily lead to good watermarks that respects
usability constraints. The main point is that these positions are to be computed only once. No other
usability constraint checking is needed for further message encodings (for constraints respecting our
patterns).

The difference with the previous algorithm is twofold. First, the pairing algorithm does not
consider all possible valid watermarks, but focus on a restricted family. Thus, fewer watermarking
bits can be discovered, but without solving an integer linear program, hence saving computing
time. Second, its algorithm can be easily deployed in external memory, which allows for a better
scalability.

Let Z(d,) be the set of identifiers whose value is used in the computation of a query .
Observe that if 9 is a weight-independent sum constraints, this set Z(d,) is the same, on the
original instance and on the watermarked one (since identifiers used in this query are not affected
by value modifications). Hence the distortion induced by the addition of watermark 4 is only the

sum of marks [:] whose i € Z(d, 9).
We illustrate the algorithm on our example, for the following weight-independent sum con-
straints:

11 = global 0 on (
for $a¢ in mills/windmill
return sum($a/prod))

12 = global 0 on (
for $a in mills/(windmill|mill)
return sum($a/prod)).

These constraints mean that the total production on all mills and windmills should be preserved,
and also the specific total production for windmills only.

In this setting, identified productions correspond to identifiers Bretagne, Vendee, (55,22) and
(22,51) (recall that mills elements are identified by their positions). Values associated with these
identifiers are 125,223,443,53. Query 11 has 125 + 223 as a result, hence depends on prod from
Bretagne and Vendee. Query 9 has 125 + 223 + 443 + 53 as a result, and depends on prod from
Bretagne, Vendee, (55,22) and (22,51). We represent this information in the following dependency
matriz A(y1,19):

Bretagne Vendee (55,22) (22,51)

Py 1 1 0 0
s 1 1 1 1
Let i1,...,49 be the set of available identified values. The aim of the pairing algorithm is to

partition these values into | dependency pairs {(i1,43),...,(i},i?))}, so that, for all j € {1,...,1},

1

o
Y

and z? are involved in the same constraints;

e watermark distortions on zjl and z? will be opposite.
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Going back to our example, productions of Bretagne and Vendee are involved in {1, }. Pro-
ductions of (55,22) and (22,51) impact on {12} only. Hence the first pair will be (Bretagne, Vendee)
and the second ((55,22), (22,51)). When hiding message ”10” for example, the corresponding mark
could be:

e +1 on the prod of Bretagne and —1 on Vendee for the first pair;
e —1 on (55,22) and +1 on (22,51) for the second pair.

Observe that the overall distortion on constraints ; and 1 would always be 0.

Ensuring blindness In order to produce a blind algorithm, the alteration on a pair (i',42) will
only depend on the key of i'. According to this key and the allowed local distortion, we secretely
choose a bit position indezx. If the numerical values #[i'] and #[i%] are equal on this bit position,
we can not use the pair for watermarking. On the contrary, if they differ on this position, we can
permute these bits without altering usability constraints. We act as follows:

e We choose a secret binary mask mask;
e To encode a '1’, we put (1 @ mask) on #[i‘][indez] and (0 ® mask) on ¥i%][index];
e To encode a ’0’, we put (0 ® mask) on ¥[i‘][indez] and (1 ® mask) on ¥i%][index].

Since these bits were different in the original dataset, this operation does not change their sum,
and the contribution of this pair to the global distortion is still zero. The complete algorithm is
presented on Figure 5. It should be observed that, as previous query-preserving algorithms [15],
the set of positions used for watermarking must be recorded for further detection. Anyway, this
set allows for an efficient compact representation.

ComputePairs: efficient pairs computation The core of the method is the pairs computation,
hence its implementation must be optimized to achieve scalability. In our prototype, this task
is mainly devolved to the DBMS by the following mapping. Given n constraints 1, ...,%,, we
populate a table matriz(i, f1,..., fn), such that fy =1 for ¢ if the identified value ¢ is involved in
constraint 1, and zero otherwise (this construction can be done using n update queries). We then
iteratively traverse the table matrizordered by values of (fi,..., fn), using a cursor. This way,
identifiers that impact exactly the same constraints are grouped. Two steps of the cursor yield
almost surely a dependency pair. To enforce security, identified values are first sorted according to
a secret order, known only by the legitimate owner. Hence the exact chosen pairing is secret.

Matrix reduction and non-zero constraints It is possible to reduce the number of lines of
the dependency matrix. Observe first that if 1/; and 19 depends on ezactly the same values, it is
sufficient to use 1; in the dependency matrix, without changing the solution.

Second, this technique fits well for zero distortion constraints. For the sake of simplicity, suppose
that we watermark only with marks +1 or -1, and that all constraints have the same global distortion
t. Hence, if two queries 91 and 1o depend on the same values except on t positions, using only 1/
in the dependency matrix may introduce a maximal distortion of at most ¢t on query . For the
general case, we delete all queries that are identical up to ¢ divided by the maximal allowed local
distortion on each element.
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PairMark(document d,message m, wis-constraints C,
parameters K,&,7)

pairs=ComputePairs(d,C,K)
// pairs of equal classes, with a pseudo-random order
// This computation is done only once.

for each pair (i1,i2) in pairs
if(S1(i1 oK) mod y=0) // try to mark this pair
j:=52(i1 0 K) mod £ // bit index
k:=S3(i1 0 K) mod |m| // letter index

if (ir][4] # li2][§]) // bits 1-0 or 0-1
mask:=S4(i1 o K) mod 2;
mark:=m[k] ® mask // mark bit

dli1][4] :=mark
0lio][j] :=(not mark)

add (i1,42) to markList

return markList

ComputePairs(document d, wis-constraints {¢1,...,9¥r}, K)

for each i € M(d)

set matriz(i, f1,...,fr) to (4,0,...,0)
for each ;

for each ¢ used by v¢; // compute ;

set f; to 1 in matriz(i, fi,..., fr)

sort matriz according to ¢, using secret order(K)
then sort according to (fi,...,fr)
set cursor to the beginning of matriz
repeat

31=next (matrix)
j9=next (matrix)
if(iy =42) on (f1,...,fr) // same dependency ?
add (i1,i2) into pairs
until (end of matrix)
return pairs

PairDetect (suspect document d,markList,word size l,key K,£)

for all p in {1,...,1}
vote [p] [0] :=0
vote [p] [1] :=0

for each pair(iy,iz) in markList
Jj:=S2(i1 0 K) mod & // bit index
k:=S3(i1 oK) modl // letter index
mask:=S4(i1 oK) mod 2 // mask bit
readMark :=0[i1][j] ® mask // read the mark

vote [k] [readM ark] :=vote[k] [read M égk] +1
// voting

return thresholdMajority(vote)

Figure 5: Pairing algorithm (second approach)



Finally, one may observe that, instead of solving a integer linear system A.w < ¢ as proposed
in section 4, the pairing algorithm builds a restricted basis of the kernel A.i = 0.

Capacity One may wonder if we will really find such pairs with equal classes, or if too many
different classes will appear. Theoretical arguments [8] show that we are likely to find such pairs.
We assess this property by our experiments in section 7.

Handling join constraints This technique can be extended also to take into account join con-
straints. For a condition w[i] = [j], we suppress j from the set of modifiable identifiers M. When
a value is assigned to [i], we propagate it to w[j].

Handling cluster constraints We simply reduce the allowed distortion on each identified value
in a cluster constraint.

Robustness An attacker that performs random alterations is more likely to destroy a pair than
a single position. Hence a watermark bit built on a pair is less robust than a bit that uses only
a single position. This is the price to pay to obtain the computation speed-up and the collusion
security explained in the following section. But this phenomenon is balanced by the large amount
of pairs discovered by the pairing algorithm. This allows for a large repetition of the bit encoding,
which enforces robustness. Experimental evaluations (section 7) assess this property.

If an attacker knows which usability constraints are preserved in his watermarked dataset, a
more sophisticated attack may be ruled. By running the ComputePairs algorithm (which is natu-
rally assumed to be public), the attacker may find the dependency of identified values. but although
the attacker knows that pairs are chosen to have the same dependency, no other information on
the exact pairing leaks. Indeed, the pairing is chosen according to a secret order, known only by
the data owner.

Summary In the following table we sum up the number of query computations needed to find
T distinct watermarks. Parameter n; denotes the number of linearizable constraints and ng the
number of non-linear constraints. Remember that each query must be computed on a likely huge
number of tuples.

Method #(query computation) (ILP solving)

Greedy T.(ng+mny)
Linear n;+T.ng
Pairing n; +T.ng

o|N|o||#

6 Collusion-secure fingerprinting

Example In the previous sections we focused on simple fingerprinting, i.e. giving to each client
a different watermarked version. But in a strong adversarial setting, a collusion of malicious
clients can compare their watermarked databases, detect the set of positions where they differ, and
replace these positions by a different value. Note that finding a good value is not an easy task for
the malicious clients, since they should respect global and local distortions. But this gives them a
serious hint to attack the watermark.
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Suppose that we want to sell a document to three clients ¢1, c2 and c3. In order to track back
to a malicious purchaser, we will actually distribute distinct watermarked versions, with different
embedded messages m1, ms and ms. When a suspect document is discovered with e.g. the message
m1 in it, we can consider ¢; as guilty. But ¢; may be a victim of clients ¢ and c3, who actually
built the suspect document by a collusion attack. Client ¢; has been framed by ¢ and cs.

This issue has been extensively studied, and frameproof and collusion secure codes have been
designed to resist such attacks [5, 9, 16]. The idea is to produce watermarks by encoding a message
m; for each client j, chosen from a well designed codebook T' = {m1,...,mr}.

For our example, the following codebook is frameproof: I' = {100,010,001}. Suppose that
bits are encoded on positions 41,72 and 3. Observing their documents, ¢ and c3 could not see a
difference on their document on position i1, so they would not modify bits in this position. Hence,
the codeword for ¢; can not be produced by this coalition, and ¢; can not be framed.

The important point for this codebook to work is that watermarks must by encoded on fized
positions, since these positions are used to detect differences. Hence one should be able to find
several good watermarks that distort on the same positions. The same requirement holds for
collusion-secure codes.

Greedy method The greedy method does not meet this requirement. It may hide the correct
codebook message ”100” for client ¢; on positions, say, 75 to 47. It may also succeed in encoding the
codewords for ¢, and c3 on positions ig to i1g, i.e. completely different positions. Hence documents
of ¢; and ¢ differ on all watermarked positions, and all bits of ¢; are exposed. Thus, although
we chose good messages, the fixed position requirement of these codebooks is not satisfied by the
greedy method.

A natural enhancement of the greedy method is as follows. For the first codeword m; to encode,
we record the found positions {i1,...,4,}. For the remaining codewords, we force their encoding
on positions {i1,...,4,}. If usability constraints are not checked, we discard the codeword and try
another one. This gives good watermarks according to the collusion secure fingerprinting principle,
but the code rate may be smaller than the one guaranteed for the code itself.

Using the pairing algorithm We would like to pinpoint that encoding messages in pairs ob-
tained from our pairing algorithm leads always to good watermarks. If a large number of such
pairs has been discovered, then a good strategy is to use these solutions as a seed for the greedy
algorithm, since we are sure to walk around a subset of good watermarks. This gives the algorithm
of Figure 6.

7 Experimental results

Context The previous methods are implemented into our open platform Watermill [1]. The
following experiments were performed on a Dell Latitude D600 laptop with an Intel Pentium M 1.7
GHz - 2 MB L2 cache CPU, 512 MB RAM, and a 5400 RPM hard disk. The system is a Ubuntu
4.10 GNU/Linux standard installation, with Sun JDK 1.4.2, Postgresql 7.4.5 with no special tuning.
Swap space is 1 GB.

Benchmark documents FExperiments were performed on two different benchmarks: the Forest
CoverType database from the UCI KDD archive [2] and a synthetic benchmark.
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Fingerprint(document d, codebook I',client number n,
constraints £, Lin, Gen, wis-constraints C)

repeat
choose an unused codeword m;
w:=PairMark(d, m;, C, ...)
until (L,Lin,Gen satisfied)
return o

Figure 6: Optimized collusion-secure fingerprint computation

e The Forest CoverType database describes several measures on forest parcels, for a total of
581,012 tuples. We have restricted our attention to the elevation and aspect attributes.
The dataset was equipped with virtual primary keys, that do not exist in the original data. We
have watermarked the aspect attribute, with local distortion 1. We have split the elevation
values into 50 random overlapping intervals. The 50 corresponding usability constraints
impose that the mean (i.e sum) of aspects of data with elevation in the same interval should
not be altered by more than 1 unit (hence a 1 global distortion, which is very restrictive?).

e A synthetic relational database. We have considered a sales database, with n products, each
product having a given cost. A number of p shopping carts are filled with random subsets
of k products. We denote such an instance by B(n,p, k). We have considered the following
watermarking problem for various values of n, p and k: we would like to watermark the cost
attribute, so that:

— the distortion on cost is limited to 1 Euro;

— the distortion on the total cost for each shopping cart is bound to 1.

Observe that for an increasing number of carts, these constraints are very aggressive and hard
to respect simultaneously, even on a small dataset.

All the above constraints are weight-independent, so our technique applies. In the sequel we
compare the pairing algorithm (section 5) with the greedy method (a LSB encoding which uses
on-the-fly constraint checking as in [15]). We did not consider constraints that are not captured by
our framework, since we rely on the greedy method to verify them (hence the computation time
would be identical).

Fingerprinting speed and capacity On the Forest CoverType dataset, checking the 50 con-
straints took about 350 seconds (mean on 10 experiments). For the greedy method, and a watermark
size of 581 bits (0.1% of the dataset size), the estimated watermarking time is (350 x 581 =)203350
seconds, i.e. more than 2 days of computation. Using our method, the computation time decreases
to about 3 hours, and, in this time period, much more watermark positions were found. Results
are summarized in the following table:

*the complete set of constraints is given on our Web site [1]
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Greedy method | Our
method

Hidden bits 581 143872
Watermark density | 0.1% 25%
Precomputation not required 10h28min.
(done once)
Obtaining the first | 2 days 10h28min
watermark + 3h25min.
Obtaining a new | 2 days 3h25min.
watermark

Suppose that we want to embed the following message m="(c)Academic data, client N",
where N is the binary encoding of the purchaser’s number. This message has 208 + logy(N) bits.
In order to increase the embedding robustness, we will repeat each bit e.g. 650 times. The number
of available bits for N is then (143872 —208%650)/650 = 13. Hence, at least 2!3 distinct purchasers
can be identified with this redundancy.

Observe that finding such distinct watermarked documents would require the computation of
all usability constraints on 581,012 tuples for each of the 2!3 clients with the greedy method. On
the contrary, the compilation phase of our method required the computation of usability con-
straints only once on 581,012 tuples. Each watermarked document required no other constraints
computations.

Going back to our introductory example, if the value time-window of the Forest CoverType
dataset was one week, it would not be possible to distribute it to 4 customers using the greedy
method, without raising the computing capacity. Using our pairing algorithm would suffice, even
on a small desk computer.

On the synthetic dataset, we considered the instance
B(100,p,3) (100 products, p shopping carts each filled with 3 random products) for increasing
values of p from 1 to 100. Each experiment was repeated 10 times. The CPU and query evaluation
time, the watermarking capacity (number of valid bits found) and watermarking rate (number of
watermark bits found per time unit) for the greedy and pairing algorithms are depicted in Figure
7.

In should be observed first that the fingerprinting speed is almost constant for the pairing
algorithm, while it is almost linear for the greedy method (since the number of constraints increases
with the number of shopping carts). This is not surprising since the pairing algorithm does not
check any constraints during fingerprinting.

Second, as long as computing time does not come into play, the watermarking capacity
of the greedy method is larger than the pairing algorithm. Indeed, the greedy method has the
ability to explore a wider part of the watermarking space, while the pairing algorithm is restricted
to a specific kind of solution (e.g. looking for pairs divides immediately the capacity by two). But
the found watermarks are of a completely different nature: each set of n positions (pairs)
located by the pairing algorithm can encode any n-bits message. On the contrary, the greedy
method finds a n position watermark for one specific word, and there is no guarantee that the same
positions are valid for another one.

Third, when the number of shopping carts increases, the valid watermarking space reduces
and both techniques hardly find a solution. It is noteworthy that that the gap between the two
techniques decreases.
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Figure 7: Processing time/watermarking capacity/watermarking rate for the greedy and pairing
algorithms

Finally, if we take computing time into account by considering the watermarking rate, the
pairing algorithm appears to deliver bits faster.

Collusion-secure fingerprinting We now turn to the robustness of the watermark against a
collusion of users. It is well known that collusion-secure codes have a small rate. For example,
the code length of Boneh and Shaw’s code [5] is O(c* log(N/e) log(L)), where N is the number of
messages in the codebook, ¢ is the maximum number of users in a collusion, and ¢ is the error
probability of the detection. On the Forest CoverType benchmark, our method locates 143, 872
available bits. With such a code length, if we consider an error probability ¢ = 10~° and that 10%
of our purchasers are malicious, we can distribute N = 50 distinct documents while resisting to
any collusion of size at most ¢ = 5 with error probability e. All these fingerprinted documents
will respect the usability constraints.

Our contribution is on the discovery of large code words that respect usability constraints.
But collusion robustness is related to the code itself, so we refer to the literature for a practical
evaluation and further elaborations on distribution schemes [11].

Robustness study Due to space limitations, standard robustness study can be found in the
appendix.

Conclusion and future work
It this paper, we have presented an optimization technique for the discovery of good watermarks in

a dataset that respects several usability constraint patterns. We have also considered the problem
of collusion-secure fingerprinting under these constraints.
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Natural extensions of this work are the following. First, the number of our constraint patterns
could certainly be increased. Second, we would like to address databases fingerprinting where
purchasers do not share the same usability constraints. Finally, we would like to devise tools for
proving ownership on XML documents after a specific rewriting. For example, one should be able
to map identifiable values from the original document into identifiable values in the suspect one.
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A Robustness study

Data loss attacks We now consider the robustness of our scheme to classical attacks. In the
data loss attack, a malicious purchaser suppresses a (large) fragment of data in order to evade
detection. We have considered this type of attack on the synthetic benchmark. Figure 8 shows the
fraction of recovered mark against destruction of 1 to 100 percent of the dataset.

Data alteration attacks Instead of suppressing data, the purchaser may try to modify the
values in a fragment of the data. Notice that modifying these data is likely to break usability
constraints. Figure 9 presents the percentage of recovered mark (y-axis) against a progressive data
alteration of maximum amplitude 10 (x-axis shows the percentage of altered tuples).

Detection threshold From the previous curves, we can see that choosing 8 = 0.6 leads to a
robust watermarking scheme against random alteration or random data loss of 50%.

recovered mark ——

Figure 8: Fraction of recovered bits (y-axis) vs. data loss attacks (z-axis), on the test dataset with
100 products, 6 purchases, and 30 shopping carts

recovered mark ——

Figure 9: Fraction of recovered bits (y-axis) vs. random alteration with amplitude 10 (z-axis), on
the test dataset with 100 products, 6 purchases, and 30 shopping carts
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