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ABSTRACT

Gated experts (GE) neural networks have been developed in order to retrieve atmospheric liquid water content
over ocean from radiometer data. Gated experts neural networks are statistical models, which can model any
general class of function. This paper focuses on the case where the complex transfer functions can be split on
different simpler functions in order to improve the accuracy. Two atmospheric quantities are considered: the
integrated cloud liquid water (iclw) and the surface rain rate (RR). In the case of iclw, the GE neura network
finds two modes, splitting the problem into low and high iclw values. The physical meaning of those modes is
discussed. A comparison with a standard regression algorithm and a multilayer perceptron neural network is
done on simulated data and an “‘indirect comparison’ is done using Special Sensor Microwave Imager (SSM/
1) data. In the case of RR, the focus is on the ability of GE neural networks to perform a classification between
rainy and nonrainy situations. Tropical Rainfall Measuring Mission (TRMM) dataare used for rain-rate validation:
rain-rate retrieval from the GE algorithm applied to actual TRMM Microwave Imager (TMI) measurements are
compared with collocated precipitation radar (PR) rain rate.

1. Introduction

Nonlinear regression is widely used in geophysicsin
order to propose nonlinear models relating measured
quantities to significant geophysical parameters under
study. In many cases, the theoretical direct model that
predicts some relationship between the physical param-
eters and the measurementsis strongly nonlinear (Thiria
et al. 1993). Thus, the determination of the inverse mod-
el (from measurements to physical parameters) leads to
very difficult inverse problems. Moreover, the possi-
bility of many different direct models can lead to am-
biguity in the inverse problem.

a. The geophysical problem

Atmospheric liquid water content (in cloud or rain)
is an important parameter of the atmosphere. Its knowl-
edge is essential for awide variety of applications, such
as meteorological forecasting by means of data assim-
ilation, climate process, hydrological balance, and radio
communications (among many others, Marécal et al.
2001, 2000; Hou et al. 2000). This study focused on
the use of two particular spaceborne microwave radi-
ometers, the Special Sensor Microwave Imager (SSM/
1) (Hollinger et al. 1990) and the Tropical Rainfall Mea-
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suring Mission (TRMM) Microwave Imager (TMI)
(Kummerow et al. 1998), that provide brightness tem-
peratures with a very wide spatial coverage (see Table
1). The aim of this study is thus to determine adequate
inverse models to compute two atmospheric contents,
the integrated cloud liquid water (iclw) and the surface
rain rate (RR) from the radiometer signal (brightness
temperatures). In this section, after presenting the pa-
rameters we want to retrieve and the quantities we can
measure with radiometers (brightness temperatures), we
will briefly expose the physical basis of the use of mul-
tifrequency microwave radiometry for remote sensing.

In the atmosphere, water is present in three different
phases. vapor, liquid, or ice. Liquid water is present in
clouds and rain. From a physical point of view, themain
difference between cloud water and rainwater isthe size
of the droplets. The boundary between these two at-
mospheric components is generally considered to be
around 100 um.

In passive microwave remote sensing, a radiometer
records the radiant energy emitted naturally by asource,
namely the earth’s surface and atmosphere. The signal
is detected by a downward-looking radiometer on board
asatellite. The power of the signal istypically expressed
as brightness temperature (TB) and includesinformation
about the polarization state of the signal. The signal
results from emission and scattering by rain and ice,
emission by clouds, atmospheric gases (such as H,O
and O,), and the earth’s surface.
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TaABLE 1. Main characteristics of the different instruments used in the study.
Center frequency (f in GHz)
10.65 13.8 19.35 21.3 22.23 37.0 85.5

SSM/I

Polarization H, V \ H, V H, V

Footprint (km X km) 69 X 43 50 X 40 37 X 29 15 X 13
T™MI

Polarization H, V H, V Vv H, V H, V

Footprint (km X km) 59 X 36 30 X 18 23 X 16 16 X 10 7 X4
TRMM PR

Horizontal resolution (km?) 43 X 4.3

Vertical resolution (m) 250

The advantage of using the microwave portion of the
spectrum is that microwave radiation penetrates clouds
and interacts strongly with cloud droplets. Remote sens-
ing isaviable approach to iclw estimation only for clear
or cloudy sky. In fact, in rainy situations, the TBs are
strongly affected by the rain particles and the iclw in-
formation contained in the TBs is thus not usable for
the frequency considered here.

The brightness temperature is a frequency-dependent
complex function of the vertical profiles of atmospheric
temperature, pressure, water vapor density, cloud liquid
water, and liquid and ice rain. Other parameters, such
as the size of hydrometeor droplets and characteristics
of the earth surface emission and reflectivity, must also
be considered. The relation between these geophysical
quantities and measurable radiometric brightness tem-
peratures can be modeled by the radiative transfer equa-
tion, which is based on theoretical consideration. This
equation takes into account the vertical distribution of
the different involved quantities. The influence of the
different quantities depends on the frequency.

The difficulties generally encountered when building
retrieval algorithms are due to the complexity and the
nonlinearity of this radiative transfer equation. More-
over, the presence of hidden parameters (such as water
vapor content and ocean surface characteristics) increas-
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es the difficulty. Multifrequency measurements are thus
necessary to take into account the contribution of the
different components. For example, a channel in the
water vapor absorption line (near 22 GHz) allows us to
take the water vapor contribution into account (Ulaby
et al. 1981). Neglecting the noise introduced by the
sensor and setting the other variables that affect TB—
the so-called **hidden™ variablesin estimation theory—
to standard values, the five lower SSM/I channels allow
an estimation of the integrated cloud liquid water in a
unique way. But at these frequencies the sensitivity of
TB to the hidden variables is very important, as will be
shown in Fig. 1.

First, we notice that the hidden variables do not affect
the TBs in a similar way. The lower frequencies are
more sensitive to the variation of the ocean surface than
are higher frequencies, explaining the larger dispersion
of iclw at all magnitudes at 19 GHz. Thus, the 37-GHz
frequency is better correlated to iclw.

Second, we notice that for both the 19- and 37-GHz
frequencies, the dispersion depends on the magnitude
of iclw. Two modes can be detected, one mode for the
lower values of iclw with a large dispersion and one
mode for the higher values of iclw, characterized by a
saturation phenomena of the signal. The problemisthen
to be able to split the input space into several partsin
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Fic. 1. Brightness temperature (TB) at 19 GHz (left) and 37 GHz (right) in the horizontal
polarization vs iclw. The contour lines represent the frequency distribution of TB as a function
of iclw. Units of contour lines numbering are in (K kg m~2) -1, Dataset consists of 1000 points.
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a way that estimates as well as possible the transfer
functions for each mode.

b. Why gated experts network?

In this study, we propose a general method to solve
such inverse problems by using gated experts (GE) net-
works. The introduction of the mixture of experts con-
cept into the neural network community is relatively
recent (Jacobset al. 1991); the term gated experts, which
stands for nonlinearly gated nonlinear experts, was pro-
posed by Weigend et al. (1995) for a specific mixture
of experts. In their paper Weigend et al. (1995) dem-
onstrate the efficiency of GE in the context of times
series prediction and analysis. The GE networks are a
generalization of the well-known multilayer perceptron
(MLP) (Rumelhart et al. 1986) widely used for transfer
function approximation (Thiria et al. 1993). Like MLP,
GE are adaptive, providing a flexible and easy way of
modeling a large variety of physical phenomena. Here
adaptive meansthat the method is ableto processalarge
amount of data or deal with new relevant variables. Even
if the calibration of the network takes a long time, its
use during an operational phase is very efficient. But
in addition to MLP, GE provides a more general class
of functions. In fact, GE can represent any arbitrary
conditional probability distribution in the same way that
MLPs can represent arbitrary functions (Bishop 1995).
It is particularly interesting for solving difficult inverse
problems when multimodal functions are considered; in
that case one looks for different possible values as pos-
sible predictions of the physical parameter. During the
calibration of a GE network, a partition of the mea-
surement space is automatically done, a dedicated MLP
being adapted simultaneously on each part. Inthat sense,
it can be said that a GE network proposed different
transfer functions, and each one is dedicated to a par-
ticular subprocess. In the case of geophysical phenom-
ena presenting different regimes, looking separately at
the different subprocess defined by a GE network allows
retrieval of these different regimes and study of their
behavior.

In a GE network each subprocess, which is classical
MLP, is named ‘“expert.” And the gating network,
which is a particular MLR, allows choice of the regime.
So a GE network consists of a nonlinear gating network
and several (also nonlinear) competing experts. Each
expert is devoted to a part of the input space; it learns
alocal model from the data. The gating network learns
to predict the probability of each expert, given the mea-
surements, and to split the input space.

c. Strategy

In what follows, attention is mainly focused on the
retrieval of integrated cloud liquid water from SSM/I
in non-rain situations. In a more succinct way, the re-
trieval of rain rate from TMI is also shown to illustrate
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the capability of the GE to perform rain rate classifi-
cation. For iclw retrieval with SSM/I data, numerous
algorithms have been devel oped and validated that allow
us to evaluate the performance of the GE network. For
RR retrieval, the TMI presents two advantages: its spa-
tial resolution is better than that of SSM/I for this ap-
plication, and the presence of the precipitation radar
(PR) on the same satellite allows an easy validation with
actual data.

The aim of the present paper is to show that GE
networks are able to model a large class of complex
inverse nonlinear models. The method is presented in
detail and can easily be extended to a large class of
inverse problems. In section 2, the database used to
retrieve the liquid water content (in rain or cloud) from
space-based passive microwave measurements is pre-
sented. Section 3 gives an overall presentation of GE
networks. Section 4 describes in detail how they have
been used in this work and display the obtained results
concerning iclw retrieval. A comparison with those of
more traditional methods developed on the same dataset
is also presented. A validation with rea data is then
performed. Section 5 presents the obtained results con-
cerning RR retrieval.

2. The simulated data

Like MLPs, GE networks must be calibrated using a
dedicated learning dataset. This learning dataset, which
has to be carefully processed, consists of input/output
pairs of multifrequency TBs and a corresponding at-
mospheric parameter (iclw or RR). A large amount of
TB data is available in the microwave remote sensing
community. However, the scarcity of in situ meteoro-
logical data concerning cloud or rain systems necessi-
tates tackling this problem through simulated data.

a. Atmospheric profiles and radiative transfer models

A large set of atmospheric profiles and surface char-
acteristics are used to compute iclw or RR and the cor-
responding TBs. The atmospheric profiles are obtained
from the European Centre for Medium-Range Weather
Forecasts (ECMWF) model (Tiedtke 1993). From these
atmospheric profiles, TBs at the top of the atmosphere
are computed through microwave radiation transfer
models. These models consider the radiative transfer of
polarized radiation through a horizontally infinite plane-
parallel atmosphere.

In our learning dataset we keep only the atmospheric
profiles obtained over the ocean and between 60°S and
60°N. For historical reasons two sets of ECMWF sim-
ulations are used. One set consist of 1.125° X 1.125°
resolution, 36-h forecast experiment for 1 August 1992,
1 August 1996, and 1 March 1996. These data are used
only for the iclw retrieval, and they are resampled at
higher resolution (Gérard et al. 1998) to ensure simu-
lated TBs as similar to spaceborne radiometer measured
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TABLE 2. Characteristics of the database for rain-rate retrieval.
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TaBLE 3. Characteristics of the database for cloud liquid retrieval.

Ice

Liquid precipitation

rain rate rate* Iclw

(mm h1) (mm h-1) (kg m—2)
Mean 2.74 0.78 0.66
Standard deviation 3.47 0.92 0.56
Minimum 0 0 0
Maximum 19.72 5.11 4.09
Number 2458

* Maximum equivalent ice precipitation rate for a profile.

temperatures as possible. Altogether, these simulations
provided 30 000 atmospheric profiles. Then, aradiative
transfer model devoted to non-rain situations is used
(Prigent et al. 1994) to compute brightness temperatures
at the five lower frequencies of the SSM/I radiometer.
It computes the absorption of atmospheric gases (Liebe
et al. 1993), such as oxygen and water vapor, absorption
of cloud liquid water, and the ocean surface emissivity
(Guillou et al. 1996). The cloud liquid water is consid-
ered to be made up of Rayleigh particles with drop radii
less than 100 pm.

The second set of simulations, used for the rain-rate
retrieval, was a 0.5° X 0.5° resolution, 36-h ECMWF
forecast experiment from 10 and 16 February 1998 and
cloud model simulation as described in Viltard et al.
(2000). Altogether, these simulations provided 20 000
atmospheric profiles. In rain situations, because of the
presence of large droplets, anew radiative transfer mod-
el has been devel oped to take scattering phenomenainto
account (Moreau et al. 1999). This model is used to
compute TBs at the seven higher frequencies of the TMI
radiometer.

b. Database

In order to avoid an overrepresentation of the more
frequent cases of iclw or RR, a sampling of profilesis
performed on the primary database. We thus selected
about 10% of the profiles, to create the dataset used to
calibrate and validate the GE models. These profiles
have been selected in order to represent all types of
meteorological situations. For example, for cloudy sit-
uations the TBs are more sensitive to water vapor (WV)
than to other parameters such as the surface temperature
or the surface wind speed. In the fina database, all
ranges of iclw and WV are thus represented with similar
proportions. This selection ensured that the data would
be well uncorrelated. Tables 2 and 3 present the main
characteristics of the two databases used for the devel-
opment of iclw and RR algorithms.

The neural network methodology divides each sim-
ulated database into three parts named learning, vali-
dation, and test set (Bishop 1995). In this study the size
of the learning dataset represents half of the total da-
tabase, and each of the validation and test databases

lclw Water vapor
[kg m~?] [g cm?]
Mean 0.20 3.56
Standard deviation 0.46 1.64
Minimum 0.00 0.19
Maximum 2.03 7.53
Number 2610

represent one-quarter of the data. The learning dataset
is used for calibrating the GE. The validation dataset is
used for evaluating the performances of GE during this
calibration phase and to choose an optimal GE network.
The test dataset is used to measure the performance of
the calibrated GE for actual use; therefore, the test da-
taset should be completely independent of the data used
during calibration (learning and validation). Using the
test set makes it possible to compare with other algo-
rithms and methods. For a more realistic performance
evaluation, we present in section 5 comparison exper-
iments using actual radiometric measurements.

3. Theory of multiexpert

In this section, we briefly introduce the theoretical
background of the GE networks. As mentioned in sec-
tion 1, we are interested in the general problem of es-
timating conditional probability density functions using
GE networks. In order to investigate a particular phe-
nomena involving two multidimensional related vari-
ables, x 0 Rr and y O R9, a possible approach is to get
arelevant statistical set of pairs of observations, which
composed the learning dataset, D = { (x>, y®), i = 1
... N>} and to study it. More often, the numerical
values are approximations of actual values, and it can
be assumed that the observed data (x°, y°) are real-
izations of random variables with probability density
functions:

p(X, y) = p(y/x)p(X). @)

When the relation between x and y is multivalued, the
best way to describe the underlying phenomena is to
approximate the density probability function p(y/x).

The basic idea of the underlying modeling is to ap-
proximate p(y/x) by a mixture distribution of K Gauss-
ian density probability functions whose parameters are
estimated using a particular class of functions (the GE
networks). The main property of Gaussian mixtures is
that they can approximate any continuous density func-
tion to arbitrary accuracy provided that the mixture has
asufficiently large number K of Gaussians and provided
that its parameters are set up correctly using thelearning
dataset D. In the following (1) is rewritten using q =
1, which means that the desired output is a scalar; the
methodology is easily generalized to any g. The ana-
lytical form of a Gaussian mixture is



APRIL 2002

K
RTINS
k=1
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Fic. 2. Architecture of the GE, where x denotes the inputs vector
(TBs). Each box is anonlinear neural network that generated its own
outputs: w,(x) (retrieved atmospheric parameter) and o (x) (associ-
ated standard deviation). The gating outputs «,(x) weight the expert
outputs u,(x) and o (x). The global output is the density probability
function, defined by: p(y/x) = 2K, o, (X)gi(Y/X).

K
POYR) = 2, a0)gy), (2)
where g, is a Gaussian density function whose mean is
1 (X) and standard deviation o (X):
Iy — mdX)I?
IX) = —exp|l —————F—] (3

In (2) the mixing coefficients «, (x) represent the a pos-
terior probability that the observation x has been gen-
erated by the distribution g,. These coefficients are nor-
malized: 3K, a(x) = 1.

The problem is thus to estimate the K*(q + 2) pa-
rameters of the mixture models: w,(x), a(x), and o (X)
withk = 1...K. Thisis done by maximizing the like-
lihood of the set of the observations D. In GE networks
the K*(q + 2) parameters that maximize the likelihood
are determined by using the Expectation Maximization
algorithm (Jordan and Xu 1995). Let us introduce the
opposite of the log-likelihood where the K*(q + 2) pa-
rameters are to be estimated (Bishop 1995):

E(py -+« iy 04«2 Oy @« .. Qy)

NObs K

= —Zl In kZl ay (XP) G (YP=/XP™). (4)
Maximizing the likelihood is equivalent to minimizing
(4).
In the following we used a particular architecture pro-
posed by Jordan and Jacobs (1995) (see Fig. 2). In this
network one can isolate different subnetworks (named
expert), linked by a gating network, which compute the
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mixing coefficients a, (x). The K subnetworksare ML Ps
with two outputs, w,(X) and o, (x). Thegatingisan MLP
whose K output neurons have an exponential transfer
function. Each expert k defines a function F, (x, W,)
from Re to R, which estimates the Gaussian function
0., the W, being the weights of the K different MLPs.
The gating network F,.(X, W) is afunction from Re
to (R")*, which estimates the mixing coefficients «,(x),
W, being the weights of the gating MLP. In the ex-
periments presented in sections 4 and 5, we assumed
that the K standard deviations o (x) of the different
Gaussians do not depend on x and are estimated during
the learning process. The learning phase allows us to
determine the weights W = {W,, ... \W,, W} of the
different experts by minimizing the opposite of the log-
likelihood E(W). Using the experts and the gating, the
cost function becomes

Nobs K

E(W) = _Z In Z Fk(xv Wk)Fgate(Xi Wgale)' (5)

At the end of the learning phase, each expert becomes
specialized and represents agiven Gaussian. The outputs
of expert k provide an estimation of the conditional
mean value u, = E(y/x, k) and o; the k outputs of the
gating network define the probability of choosing one
expert given the observation x. The value 2§,
a, (X) e, (X) represents the global expected value E(y/x).
This model assumes that each expert is assigned to a
specific work, which has been automatically determined
during the learning process. When an observation x is
presented, it is distributed among the different experts
according to the probabilities provided by the gating
network. As each expert becomes specialized, it can be
used after learning for the study of the phenomenait is
representing.

4. Integrated cloud liquid water retrieval

The first application concerns the retrieval of iclw
from SSM/I brightness temperatures. In this section we
consider the notation used in the GE genera presen-
tation (section 3): x is a vector of the five SSM/I bright-
ness temperatures corresponding to the three lower fre-
quencies and its different polarization (Table 1), and y
designates the iclw. During the training phase, many
experiments have been performed with different num-
bers of experts, architectures, initial weights, and learn-
ing rates. All experiments lead to the same number of
experts: i.e., only two experts survived. We selected the
best architecture for the expert, this with the smallest
number of weights and giving the best results on the
validation set. Under these considerations, our GE mod-
el is composed of two experts with two hidden layers
respectively composed of three and two hidden neurons,
and one gating network with two hidden layers respec-
tively composed of three and two hidden neurons. We
have found coincidentally that the selected experts and
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Fic. 3. (top) Output of experts (a) w, and (b) w, vs desired iclw values. (bottom) Mixing
coefficients (c) «, and (d) «, vs desired iclw values. GE,,,, algorithm used on learning simulated

dataset.

gating subnetworks have the same architecture. In the
following this GE model is noted GE,,, .

a. The split between the two experts

The gating network has one output «, for each expert
k. Its goal is to estimate the probability that a given

E(lcw/Tb) [kg/m?]
o o -
o J - nN

o
>
P

I
)

(=)

0 0.2 04 0.6 0.8 1 12 1.4 16 1.8 2
Desired Iclw [kg/m?]

FiG. 4. Global output vs desired iclw values for the GE,y,
algorithm used on the test simulated dataset.

input X was generated by expert k. Figure 3 shows the
results obtained on the learning set. Similar results are
obtained on the validation set (not shown). Figure 3a
shows the output w, of expert 1 and Fig. 3c the cor-
responding mixture coefficient «, vs reference, i.e. de-
sired iclw values. Figures 3b and 3d are the same as
Figs. 3aand 3c for expert 2, and Fig. 4 shows the global
output of the GE,,,, i.e. the sum of the contributions
from experts 1 and 2.

In Figs. 3a, 3b, and 4, thefalling diagonal corresponds
to an output equal to the desired iclw value. As shown
inFig. 4, these pointsfollow the line quite well. Looking
simultaneously at the output of the experts and at the
probability given by the gating, it is clear that highiclw
values are well represented only by expert 1:

a; =1, a, =0, and p, = E(y/x, 1)
for iclw > 0.6 kg m=2.
And low values are well represented by expert 2:
a, =0, a, =1 and wu, = E(y/X, 2)
for iclw < 0.3 kg m2,

The global output E(Y/X) = a,u, + a,u, isthus equal
to w, for high values and to w, for low values. The
competition is soft; the gating outputs «, can take any
value between 0 and 1, and for points close to the bound-
ary between the two regimes both experts contribute to
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Fic. 5. Separation of experts on the validation data in the reduced
input space after a principal component analysis computation. Dots
represent a, > 0.5 (corresponding to expert 1) and crosses represent
a, > 0.5 (corresponding to expert 2). The contours represent the
water vapor content (g cm~2).

the global output. The built-in constraint that the gating
outputs sum to unity implements the competition be-
tween the experts.

Thus the partition of the input space is fashioned in
a manner that for points close to the boundary between
two regimes the corresponding expert outputs are very
close together:

a, and a,#{0,1} ad u, = u,
for 0.3 < iclw < 0.6 kg m=2,

We found that we do not have a partition in clear
(iclw = 0) and cloudy (iclw # 0) skies, but in low (iclw
< 0.3 kg m~2) and high values (iclw > 0.6 kg m~2).
To better understand the physical meaning of this par-
tition, Fig. 5 shows the separation of experts in the
reduced input space after principal component analysis
computation. The original input space dimension is
equal to five, corresponding to the five TBs. The prin-
cipa component analysis reduced the input space to two
components, keeping 93% of the explained variance.
The principal component space also exhibits the clear
differences between the two modesidentified by the two
experts. Contours of water vapor are also displayed on
the same diagram showing that one of the modes (expert
1) covers a large range of water vapor content (from O
to 7 kg m~2), while the other mode (expert 2) covers
the higher values of the water vapor content (from 3 to
7 kg m~2).

The relation between the brightness temperature at
19 and 37 GHz and the iclw is unique that is there can
only be one value for iclw for a given TB and vice-
versawhen all other atmospheric and surface parameters
arefixed. Figure 5 showsthat thelarge variation of water
vapor creates a dispersion on the brightness temperature
since the ‘‘noise level”” of the brightness temperatureis
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TaBLE 4. Algorithm performances on the validation dataset.

Bias Standard deviation
Algorithm (10— kg m—2) (102 kg m2)
GE gy -0.33 4.40
MLP —-1.70 3.70
LL -3.20 5.80

directly correlated to the possible variation of the water
vapor. Each expert is specialized to a region character-
ized by a different noise level. This analysis of the split
of the input space deduced from Fig. 5 is also confirmed
by the standard deviation associated with each expert.
For the expert devoted to the noisy dataset we obtain
o, = 0.01 kg m=2, that is to say 29% of the relative
value, and for the other one we obtain o, = 0.12 kg
m~2, only 9% of the relative value.

b. Comparisons with other statistical methods

The GE,,, algorithm will be compared to aregression
algorithm (denoted LL hereafter) and an MLP. These
two algorithms are developed on the same training da-
taset used for the GE,,, calibration. The form of the
regression algorithm isiclw = a, + 25, a, 10g[280 —
x(i)] wherex(i) denotesthe five lower channelsof SSM/
| and a; denotes the regression coefficients (Gerard et
al. 1998). The log-linear form linearizes the iclw—TB
relationship. This linearization is valid only for an op-
tically thin atmosphere. It should be mentioned that
there are other regression-based algorithms that utilize
combinations of only two or three SSM/I channels (e.g.,
Karstens et a. 1994) or a linear combination of some
or all SSM/I channels (e.g., Alishouse et a. 1990).

Several MLP aretested for different hidden units. The
number of inputsis fixed at five as for the GE. The best
performances are obtained with six units in the first
hidden layer and four units in the second hidden layer.

The comparison is made on the test data subset, which
was not used during the learning phase. The bias and
standard deviation of the three algorithms are summa-
rized in Table 4. As shown, the two neural network
algorithms have somewhat better performances than the
log-linear one. The globa root-mean-square error is
equal to 0.042 kg m~2 for the GE,,, as compared to
0.066 kg m~2 for the log-linear algorithm. Globally the
performances of the GE,,, and the MLP appear very
close.

The performances of GE,,,,, MLP, and LL functions
of iclw values are shown in Table 5. The two neural
network algorithms provide a significant gain in accu-
racy for all range values of iclw. The relative low ac-
curacy of LL at high iclws is due to the fact that the
linearization isonly valid for optically thin atmospheres.

Next, we investigate the three algorithms' perfor-
mances for iclw = 0. This clear sky statistic is sum-
marized in Table 6. For al algorithms, the bias is neg-
ligible. The standard deviation for LL is significantly
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TABLE 5. Bias and standard deviation in the iclw retrievals on the
test dataset containing 558 points for three algorithms: GE,,,, MLP,
and LL. The first (last) range of iclw corresponds to the validity

domain of expert 1 (expert 2). Units: kg m—=2.

Range Bias (10-2 kg m=2) Std dev (kg m—2)

of iclw
(kgm=) 0-0.3 0.3-06 0.6-20 0-0.3 0.3-0.6 0.6-2.0
GE 0.05 025 —0.30 0.010 0.035 0.12
MLP —-0.10 -040 -0.75 0.012 0.035 0.10
LL 030 -—-380 -36 0.030 0.05s8 0.14

higher than those of GE,,, and MLP. GE,,,, shows the
lowest minimum and maximum values and the lowest
standard deviation of 0.7 X 10-2 kg m~2. The differ-
ences between GE,,, and MLP are small. This com-
parison shows that the GE,,, algorithm gives somewhat
better results than the LL algorithm. These results are
confirmed by those of Jung et al. (1988), which show
that MLP algorithms outperform regression algorithms
for iclw retrieval.

In this application, we found that using GE,,, ago-
rithms rather than MLP algorithms did not increase ac-
curacy. The main advantage of GE,,, is its capacity to
split a problem into several simpler subproblems, and
in providing a physical meaning of each mode. With
classical neural networks such as MLP, the link between
the neural function and the physical problem is often
very hard to find. With GE,,,, this information is par-
tially present in the physica meaning of each mode.
The validation of the methodology presented in this pa-
per using SSM/I TBs is presented in the next section.

c. Performances comparison on actual data

Real validation of iclw retrieval algorithms is very
difficult to perform. The main reason is the difficulty
of measuring this atmospheric parameter in situ. There-
fore, we have applied the GE,,, to actual SSM/I bright-
ness temperatures to compare these performances with
other more classical algorithms developed for the SSM/
| radiometer. The main point we have validated concerns
the retrieval of the zero value of iclw. First, because of
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TaBLE 6. Algorithm performances on the test dataset for the
expected clear sky value (iclw = 0 mm h~*). Units: kg m=2.

Algorithm Min Max Avg Std dev

GE,, —-33 X102 22X 102 1.8 X 103 0.7 X 102
MLP —45 X102 31X 10?2 21 x10°% 11X 10?2
LL —73X 102 85X 102 —-45X 102 25X 102

the lack of in situ measurement areal validation isim-
possible; however, we can assume that the more prob-
able iclw value in the atmosphere is zero and thus use
this assumption to compare the different algorithms.
Second, because of the influence of water vapor and
surface emissivity in clear sky conditions, the zero value
is particularly difficult to measure. Finally, if an algo-
rithm presents many errors for the zero value, we can
suppose it will also present many uncertainties for all
low values. Some algorithms produce negative values
of iclw. The simplest way to correct these errors is to
suppose that these negative values correspond to zero
values; however, we can conclude that the direct model
or the inverse model presents an error near zero and
thus we can suspect errors for all low values. The com-
parison is performed using SSM/I data over the Indian
Ocean on 23 September 1995. Figure 6 presents the
histogram of iclw retrieved by the three algorithms. The
GE,.,, and the MLP both present a probability density
function with a maximum at the zero value, then the
probability density function decreases as the iclw in-
creases. This shape seems more realistic than those ex-
hibited by the LL algorithm (Fig. 6¢), where an even
probability density function is found from 0 to 0.1 kg
m~2. Applied to real data, all the three algorithms pro-
duced few negative values.

5. Application to RR retrieval

This second application concerns the retrieval of RR
from TMI brightness temperatures. The input vector, X,
is now a vector of the seven TMI brightness tempera-
tures corresponding to the four higher frequencies (Ta-
ble 1) and the output scalar, y, designates the RR. The

25 25 25
20 a 20 b 20 (o}
32 2 W 2
< c <
S 15 S 15 S 15
Q. o o
S 10 S 10 S 10
2 IS S
5 5 5
-0.2 0 0.2 0.4 -0.2 0 0.2 0.4 -0.2 0 0.2 0.4

Retrieved Iclw [kg/m?]

Retrieved Iclw [kg/ m2]

Retrieved Iclw [kg/m?]

Fic. 6. Normalized frequency distribution of the retrieved iclw from actual SSM/I measurements taken over the
Indian Ocean for different algorithms: (a) GE,,,, (b) MLP, and (c) LL.
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TaBLE 7. Rain-rate retrieval algorithm performances on TRMM data.
Mean/max GEr—RR at 19 2A12-RR at 37
—1 —1 —1
Number (mm h-?) (mm h-t) (mm h-?)
of points RR at 19 RR at 37 Bias Std dev Bias Std dev
Global All (RR = 0) 9616 1.4/31 1.4/40 0.04 1.40 1.55 5.50
Rain (RR > 0.2) 3656 3.6/31 3.5/40 0.06 2.30 4.00 9.30
Homogeneous All (RR = 0) 2944 1.7/18 1.7/22 0.46 1.45 2.17 7.14
Stratiform Rain (RR > 0.2) 940 5.5/18 5.5/22 1.39 2.30 6.73 11.35

10-GHz channel is not used because the plan parallel
hypothesis used in the method is incompatible with its
very low resolution. Using the same methodology de-
scribed before, the optimal GE configuration has two
experts. Each experts network is composed of two hid-
den layers with respectively four and two neurons. The
gating network is composed of two hidden layers with
respectively six and four neurons.

After the learning phase one expert was found to
specializein non-rain conditions (RR = 0) and the other
expert to rain situations (RR > 0). For RR retrieval,
compared to iclw retrieval, we have the opportunity to
perform a extensive validation with real data. That is
why the results obtained during the training and test
phases on simulated data are not presented here. On
board the TRMM satellite, the first spaceborne radar
devoted to rain measurement, a PR is also present; thus
an abundance of TMI/PR collocated data are available.

We first compare the performances the GEr; model
with the standard TMI algorithm (2A12). The 2A12
algorithm [also known as the Gprof algorithm (Olson
et a. 1996; Kummerow et al. 1996, 2000)] being used
for TMI makes use of the Bayes theorem to relate the
observed TBs to the rain rate provided by an a priori
database. The rain retrieved from the PR, as described
by Ferreira and Amayenc (1999), is taken as the ref-
erence. In asecond part we show the ability of the GEr,
network to work as a classifier to obtain a flag between
rain and non-rain situations.

a. Validation data

The validation is performed on four case studies lo-
cated on the Pacific Ocean, three in August and one in
February 1998. The February 1998 case corresponds to
aparticular situation with heavy stratiform precipitation;
the one measured in August 1998 corresponds to low
precipitation; and the two others correspond to convec-
tive areas with lots of small rain structures.

The difference in spatial resolution between PR and
TMI data (see Table 1) requires averaging the RR radar
to allow a representative comparison. The 2A12 algo-
rithm resolution is the same as the resolution of the 37-
GHz channel (Kummerow et al. 1998). The GEg, a-
gorithm is developed using data simulated with the as-
sumption of horizontally homogenateous atmosphere,
and no particular resolution is considered. By default,
the resolution corresponds to the lower-frequency chan-

nel (19 GHz) resolution used by the GE; algorithm.
The radar RR is thus average at the proper resolution.
We denote RR@19 (RR@37) as the radar retrieval RR
averaged at the 19-GHz resolution (37-GHz resol ution).
The radar RR standard deviation is also computed in
order to select a horizontally homogeneous situations.

b. Algorithm performances

The performance of the two algorithms (GEr; and
2A12) relative to the radar RR are summarized in Table
7. We observe very good agreement between GE., and
radar precipitation estimation. Only homogeneous and
stratiform situations have been simulated because we
are not able to simulate other situations with our radi-
ative transfer model (see section 2a). For these situations
(bottom of Table 7) RR@19 is about equal to RR@37.
The results obtained with all rain-rate values are very
good because alot of points that correspond to non-rain
situations (RR = 0) and negligible errors (see next sec-
tion) are included in this dataset. When we focused on
rain situations we observed a negligible overestimation
of 1.39 mm h-* and a standard deviation of 2.30 mm
h-* that corresponds to a great improvement relative to
the TRMM 2A12 agorithm (6.73 mm h-* and 11.35
mm h-?, respectively).

The global results appear to be better. This is due to
a compensating effect between the positive bias in ho-
mogeneous cases and small negative bias in heteroge-
neous situations (not shown in Table 7). The resulting
bias is closer to zero. The GEg; agorithm not only
performs very well, the value provided by the gated
expert allows use of GExy asarain detector, asexplained
in the following section.

c. GE as classifier

As one expert is devoted to non-rain conditions (RR
= 0) and the second to rain situations (RR > 0), the
gated expert acts as a rain detector. The output of the
gating network can be interpreted as a flag for the pres-
ence of rain. The corresponding classification error ma-
trix is given in Table 8, to allow a comparison between
TMI and PR rain detection. The percentage of good
detection is very high (36.1% + 57.5% = 93.6%). Bad
detection occurs in only 6.4% (4.6% + 1.8%) of the
cases. A pixel according to the radar, is designated non-
rain when RR@19 is lower than 0.2 mm h-1. Various
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TABLE 8. Classification error matrix between rain and non-rain
detection with TRMM data.

RR at 19

Rain No rain
(RRat19= (RRat 19 <
0.2mm h-*) 0.2 mm h?)

36.1% 4.6%
1.8% 57.5%

GEgr Rain (a; = 0.9)

No rain (a, < 0.9)

non-rain rain-rate limits have been tested in the range
0.1-0.5 mm h~*. The percentage of pixels classified as
non-rain by the radar and as rain by the GE; increases
relative to the rain-rate limit selected. In the same way,
the percentage of pixels classified as rain by the radar
and as non-rain by the GE; decreases. Globally no
significant differences occur relative to the percentage
of good and bad detection.

6. Conclusions

The aim of this paper was to show that GE neural
networks are able to improve the integrated cloud liquid
water and the surface rain-rate retrieval over ocean with
respect to classical algorithms. The problem is to infer
atmospheric quantities from spaceborne microwave
data. The transfer function from the radiometer mea-
surements (TB) to the atmospheric water isavery com-
plex nonlinear function. The several modes of the trans-
fer function are found by the gating network. Gated
experts neural networks improve the accuracy of the
computation by allowing the computations to be done
by the adequate expert. Gated experts constitute a pow-
erful tool for modeling alarge class of complex transfer
functions. In fact, the GE are able to solve many prob-
lems encountered in retrievals of physics properties. A
major advantage of GE is their ability to extract infor-
mation in a noisy environment, whatever the noise. We
show that the GE,,,, agorithm has two experts and that
each one is adapted to the noisy level of the data. More
improvements can be done, using GE neural networks
in which the K standard deviations o, (x) depend on the
input X. Those new algorithms are currently under de-
velopment.

Gated experts neural networks are also able to per-
form classification. The GE.; algorithm, in addition to
improving rain-rate retrieval performances, allows clas-
sification of rain and non-rain situations. A comparison
with the rain detection of the PR shows a very high
percentage of good detection (93.6%). Gated experts
neural networks, like classical neural networks, present
many other advantages. It is very easy to take into ac-
count new parameters even if their dependence cannot
be established in an analytical form. In these examples,
it would be easy to investigate how sensitivethe solution
isto the introduction of additional variables, such asthe
neighbor radiometric pixel, in order to take into account
the spatial context.
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