
Efficient Reductions for LTL Formulae

Verification

Serge Haddad a and Jean-François Pradat-Peyre b

aLAMSADE-CNRS UMR 7024 Université Paris-Dauphine, Place du Maréchal de
Lattre de Tassigny, 75775 Paris Cedex 16, FRANCE

bCEDRIC-CNRS EA 1395, Conservatoire National des Arts et Métiers, 292 rue
Saint Martin, 75141 Paris Cedex 03, FRANCE

Abstract

Structural model abstraction is a powerful technique for reducing the complexity of
a state based enumeration analysis. We present in this paper new efficient ordinary
Petri nets reductions. At first, we define “behavioural” reductions (i.e. based on
conditions related to the language of the net) which preserve a fundamental property
of a net (i.e. liveness) and any LTL formula that does not observe reduced transitions
of the net. We substitute these conditions by structural or algebraical ones leading
to reductions that can be efficiently checked and applied whereas enlarging the
application spectrum of the previous reductions. At last, we illustrate our method
on significant and typical examples.

1 Introduction

It is currently admitted that the use of formal methods is essential to obtain
less error-prone complex software. Such a process is decomposed in two steps:
a modelling stage which must lead to a model as close as possible to the
analysed software and a verification stage involving properties expression and
model checking via appropriate algorithms.

In this context, there are two kinds of verification techniques: state enumera-
tion based and structural algorithms. In case of finite state systems, the former
ones lead to a complete verification but the analysis is restricted by the inher-
ent combinatory explosion factor. Moreover it does not give insight on how to
identify and correct the faulty parts of the software. Structural methods do
not generally ensure the complete correctness of the modelled system. How-
ever they are efficient and they produce results that allow practitioners to do
pertinent modifications.

Preprint submitted to Elsevier Science 20 January 2004

Thus, an attractive trade-off would be to first perform structural abstractions
in order to obtain a simplified model on which an enumeration based method
can more easily be applied. Usually, the model may be abstracted in two
ways. Data abstraction maps the range of a variable to a smaller domain
and propagates this transformation on the control flow. Operation abstraction
merges consecutive instructions into a virtual atomic one whose effect is the
composition of the effects of these instructions.

In this work, we will focus on the latter abstraction. The main advantage of
such a transformation is the drastic reduction of the combinatory explosion
due to the elimination of the intermediate states. In the context of software
engineering, different solutions for this kind of transformations have been pro-
posed; e.g. [Cor98], [Mis03], [FQ03a,QRR04] or [Hol03].

However they suffer three drawbacks: they are language dependent, they are
only partially automated and at last, due to the lack of formal semantics of
the analysed languages, they cannot be fully theoretically justified.

Thus, we have chosen to develop abstractions for a low-level model with a
formal semantic: the Petri nets. The advantages of this approach are threefold:

• Due to the formal semantic, the set of properties to be preserved can be
easily expressed with some temporal logic and the preservation of this set
by an abstraction is fully proved.

• Dealing with a low level model leads to abstractions useful for a wide range
of applications.

• The developed abstractions can be straightforwardly adapted or specialised
for a target high-level model.

Our work on these abstractions is an important generalisation of the reduc-
tion method proposed by Berthelot in [Ber83, Ber85]. We focus here on the
most important reductions proposed by this author: the pre-agglomeration and
the post-agglomeration. These reductions merge sequential transitions into an
atomic one reducing considerably the number of reachable states. Original
application conditions of Berthelot’s reductions rely only on structural con-
ditions. Thus, the time complexity application is linear w.r.t. the size of the
Petri net. Nevertheless, since the conditions are purely local they are quite
restrictive and lead to a limited range of possible applications.

We proceed here in a different way: first, we characterise a set of behavioural
conditions that ensure the preservation of the considered properties. Indeed,
defining behavioural conditions simplifies the search for alternative sets of
sufficient structural conditions. Secondly, we give structural sufficient condi-
tions for the behavioural ones. In order to obtain the less restrictive possible
conditions while keeping the possibility to check them easily and efficiently,
we include algebraic constraints in our structural conditions. These ones are

2

based on the description of linear programs including the linear invariants of
the net for which efficient algorithms are known. Such constraints express re-
strictions on the global behaviour of the net which were not taken into account
by the previous reductions. At last, for each family of properties, we detail the
required subset of conditions in order to enlarge their application.

The paper is organised as follows. The second section emphasises the interest
of Petri nets and temporal logic in the context of concurrent software engi-
neering and presents alternative approaches. In the third section, we define
two behavioural agglomerations including their conditions of applications, the
transformation rule and the preserved properties. The forth section develops
structural and algebraic sufficient conditions for the behavioural ones. Then,
we illustrate our reductions on significant and typical examples.

The appendix A contains the syntax and the semantics of Petri nets whereas
the appendix B deals with the proofs of the different propositions and theorems
given in the paper.

2 Concurrent software verification

In many contexts, the introduction of concurrent activities enables to mimic
the structure of the application domain in which natural parallelism and coop-
eration often occur. The implementation is simpler and it gains in scalability.

However, while providing many advantages, concurrency introduces also spe-
cific difficulties due to the non determinism and to the numerous interactions
between activities (e.g. deadlock occurrence or fairness violation).

Standard test methods are not sufficient to detect these kinds of problems. For
instance, it is well-known that reproducing an error is a difficult task. Thus
verification methods must be applied to enforce confidence in concurrent soft-
ware. The main difficulty is then to cope with the combinatory explosion.
Among several strategies, abstracting a sequence of actions as an atomic one
is very efficient since it reduces the interlacing of processes. Here, the main
problem is to exhibit conditions which, on the one hand, are not too restric-
tive and on the other hand preserve the significant part of the application
behaviour.

3

2.1 Petri nets and the atomicity problem

2.1.1 Informal presentation of Petri nets

The Petri nets model [Rei83] is a suitable formalism for the representation
of concurrency. It combines a simple syntax with a precise semantic and it
supports numerous analysis tools which either use a state-space exploration
technique or exploit the structure of the model. In particular, some structural
techniques, like invariants computation, give “high-level” information about
the structure of processes, variable bounds, repetitive sequences, and so on,
without needing any execution of the model [Mur89].

Furthermore, there exist abbreviations of Petri nets, like coloured nets [Jen91],
that allow a more concise description of systems while preserving analysis abil-
ities by maintaining an equivalence with ordinary Petri nets. In a coloured net,
a place contains typed (or coloured) tokens instead of anonymous tokens, and
a transition may be fired in multiple ways (i.e. instantiated). More precisely,
to each place and each transition is attached a type (or a colour) domain. An
arc from a transition to a place (resp. from a place to a transition) is labelled
by a linear function called a colour function. This function determines the
number and the type (or the colour) of tokens that have to be added to (or
removed from) the place upon firing the transition with respect to a colour
instantiation. By definition, a coloured net is always an abbreviation of an
ordinary Petri net, called the underlying Petri net.

We illustrate our reductions with coloured nets models because they provide
“high level” description capabilities. However, since they remain equivalent to
ordinary Petri nets 1 , we look here for an abstraction method applicable to
Petri nets. In a subsequent work, we will show how to directly work at the
coloured Petri net level.

2.1.2 Illustration of the atomicity problem

Let us model a variable incrementation, VarX := VarX + 1, performed by a
process.

Depending on the data type, the programming language, the compiler and the
operating system, different semantics are possible. We give below two mod-
ellings of such a statement. In the left model of the figure Fig.1 the statement
is considered to be atomic. In the right model, this statement is considered to
be performed in three steps; first a local copy of the variable is made, then
the local copy is incremented (atomically) and, third, the local copy is written

1 This equivalence is based on the finite nature of the colour domains.

4

into the global variable.

< X >

q

p1

p2

< X >

< X >

<V0>

< X+1 >

r

< Y >

< X >

< X >

t1

t2

t3

q

r

<V0>

t

< X >

< X+1 >

VarX : C

VarX : C

Fig. 1. Are these two assignments equivalent and for which properties ?

In both nets, the place q models the process state before the assignment and
the place r the state after the statement. These two places contain ordinary
tokens. 2 Place VarX models the variable to be incremented, and is coloured
upon a colour domain named C that represents the domain of the variable.
This place always contains a single token whose colour is the value of the
variable.

In the first model, the transition t may be fired as soon as a process is in state
q (i.e. the place q is marked). Then the variable X is bound to the colour of
the token contained in the place VarX. This token is consumed and replaced
by a token of the next value (i.e. the value of the expression X+1). The process
changes its state (i.e. the neutral token moves from q to r). Observe that X

is a variable of the coloured Petri net local to the transition t which should
not be confused with the program variable VarX modelled by the eponymous
place.

In the second model, the transition t1 produces a token in place p1 with the
same colour as the one in VarX letting this token unchanged. The places p1 and
p2 both model the state of the process and the value of the local copy of the
variable. Then the firing of the transition t2 performs the local incrementation
of the value by producing an appropriate token in place p2. At last, the firing
of t3 replaces the value of the variable VarX by the computed value. Note that
transition t3 may be potentially fired for any instance of the domain C × C
corresponding to the variables X and Y. Here, Y is bound to the current value of
VarX, whereas X is bound to the current value of the local copy of the process.

2 Note that these places may be coloured upon a domain reflecting more precisely
a state of a process, including, for instance, the process identifier, the value of local
variables, or other useful informations.

5

Now the fundamental problem for the application designer is to have some
guarantee that the two models are equivalent and more precisely to know for
which kinds of properties the equivalence is ensured. It should be clear that
such an equivalence depends on the global behaviour of the program. The
topic of this work is exactly to characterise such behaviours by mean of sets
of conditions.

2.2 Expressing and verifying properties

Verification of a concurrent software system aims to check that the dynamic
behaviour of the software satisfies some properties. There are two kinds of
properties the designer is interested with: generic properties like termination,
deadlock occurrence, etc. or specific ones related to the functionalities of the
applications. Such properties are often defined with the help of a temporal logic
which considers either the execution as a computation tree (i.e. branching time
logics) or as a set of states and/or actions sequences (i.e. linear time logics). We
focus here on the latter logics whose a typical representative is the linear time
temporal logic (LTL for short) defined by Pnueli [Pnu81]. In LTL, properties
are described by mean of logic formulae using atomic propositions (involving
states for “state-based logic” or actions for “action-based logic”), boolean
operators (and, not, or) and specific temporal operators (Until, Next, etc.).
Our work does not depend on a particular logic and is action based whereas
usual transformations from state-based logics to action-based ones [DV90]
may be used to extend our results. Since we merge transitions firings we solely
require that the truth of a formula depends only on the projection of the
sequences on action occurrences involved in the formula.

We take into account two kinds of sequences: maximal finite sequences (e.g.
relevant for deadlock detection) and infinite sequences (e.g. for fairness prop-
erties).

2.3 Related works

The first theoretical work concerning reduction of sequences into atomic ac-
tions for simplification purpose was performed by Lipton in [Lip75] which
focused on deadlock property preservation. This work has been extended by
Doeppner, Schneider, Cohen and Lamport in different papers [Doe77, LS89,
Gri96,CL98] aiming at preserving safety or liveness properties. More recently,
Freund, Qadeer and Flanagan [FQ03b, FQ03b, FQ03c, FQ03a] leveraged the
Lipton’s theory of reduction to detect transactions in multithreaded programs
that can be considered as atomic. The main drawback of these approaches is

6

the difficulty to detect conditions allowing to apply the reduction while staying
at a very abstract level.

In Petri nets formalism, the first works concerning reductions have been per-
formed by Berthelot [BRV80,Ber83,Ber85,Ber86]. The author focused only on
specific Petri nets properties preservation such like liveness or boundedness.
The link between transition agglomeration and general properties, expressed
in LTL formalism, is done in [PPP00]. All these reductions lied on “pure”
structural application conditions and then have a quite thin application area.
Weakening of application conditions of the pre and post agglomeration have
been studied in [Had87]. In this work, only specific Petri nets properties are
considered. More recently, Esparza and Schröter, simplify one point in the
original pre agglomeration conditions in [ES01]. However, they consider only
1-safe Petri nets (each place is bounded by 1), the application conditions re-
main purely structural, and as the authors focus only on infinite sequence
preservation, their reductions do not even preserve the deadlock property!

At a software level, several works address the possibility of defining directly
in the source program syntactic constructions enforcing atomicity of sequen-
tial actions. One can cite [Lom77] or [Hol03]. These constructions reduce the
benefit induced by the parallelism of the executions and furthermore they
are not implementable on a architecture that does not support such mecha-
nisms. Alternatively, such annotations can be used to verify that each block
of code annotated as being atomic does not interfere and is not affected by
other threads [FQ03b,HRD04,FF04]. These verifications use either static type
system or model checking techniques.

3 Petri nets behavioural agglomerations

A Petri net reduction is characterised by some application conditions, by a
net transformation and by a set of preserved properties (i.e. which properties
are simultaneously true or false in the original net and in the reduced one).

We propose in this section two net reductions, the pre and the post agglomer-
ation, that preserve a large class of properties (liveness and any LTL formula
that not observing some specific transitions) under simple behavioural hy-
potheses.

The proposed hypotheses rely on the behaviour of the model; so single def-
initions handle a large set of specific cases. Furthermore, as each hypothesis
characterises a specific behavioural constraint, we develop for each of them
sufficient conditions that are based on the structure of the model (i.e. checked
by a direct examination or by the satisfaction of linear problems). These struc-

7

tural conditions are given in section 4.

3.1 Notations

We assume that the reader is familiar with the classical Petri nets definitions.
We only recall in this section needed notations; complete definitions are pro-
vided in Appendix A.

• We note 〈 P, T, W +, W−, m0 〉 a marked Petri net;
• The transitions linked to a place, or the places linked to a transitions are

defined by :
· ∀p ∈ P , •p = {t|W +(p, t) > 0} and p• = {t|W−(p, t) > 0};
· ∀t ∈ T , •t = {p|W−(p, t) > 0} and t• = {p|W +(p, t) > 0};
· We also extend in a natural way this notation to subsets of places and

transitions.
• λ defines the empty sequence of transitions;
• If s is a sequence of transitions, |s| denotes the length of s (that is recursively

defined by |λ| = 0 and |s.t| = |s| + 1);
• ΠT ′(s) denotes the projection of the sequence s on a subset of transitions

T ′ and is recursively defined by ΠT ′(λ) = λ, ∀t ∈ T ′ , ΠT ′(s.t) = ΠT ′(s).t
and ∀t /∈ T ′ , ΠT ′(s.t) = ΠT ′(s),

• |s|T ′ = |ΠT ′(s)| denotes the number of occurrences of transitions of T ′ in s.
• Pref(s) = {s′ | ∃s′′ s.t. s = s′.s′′} denotes the set of prefixes of s.

3.2 Agglomeration scheme

We suppose on the sequel that the set of transitions of the net is partitioned
as : T = T0

⊎
i∈I Hi

⊎
i∈I Fi where I denotes a non empty set of indices. The

underlying idea of this decomposition is that a couple (Hi, Fi) defines tran-
sitions sets that are causally dependent : an occurrence of f ∈ Fi in a firing
sequence may always be related to a previous occurrence of some h ∈ Hi in
this sequence. Starting from this property, we will develop conditions on the
behaviour (or alternatively on the structure) of the net which ensure that we
can restrict the dynamics of the net to sequences where each occurrence h ∈ Hi

is immediately followed by an occurrence of some f ∈ Fi without changing
its behaviour w.r.t. to a set of properties. This restricted behaviour is the
behaviour of a reduced net as shown in the next definitions and propositions.

Definition 3.1 (Reduced net) Let (N, M0) be a Petri net and suppose that
T = T0

⊎
i∈I Hi

⊎
i∈I Fi The reduced Petri net (Nr, m0r) w.r.t. this partition is

defined by:

8

• Pr = P and Tr = T0 ∪i∈I (Hi × Fi).
One denotes by hf the transition (h, f) of Hi × Fi;

• ∀tr ∈ T0, ∀p ∈ Pr, W−
r (p, t) = W−(p, t) and W +

r (p, t) = W +(p, t)
• ∀i ∈ I, ∀hf ∈ Hi × Fi, ∀p ∈ Pr W−

r (p, hf) = W−(p, h.f) and W +
r (p, hf) =

W+(p, h.f) (see Appendix A)
• m0r = m0

From now, we note H = ∪i∈IHi and F = ∪i∈IFi. The firing rule in the reduced
net is noted 〉r (i.e. m[s〉rm

′ denotes a firing sequence in the reduced net).

We want to compare the behaviour of the reduced and the original nets. How-
ever the sets of transitions are not identical. Thus, the following one to one
homomorphism allows such a comparison.

Definition 3.2 We note φ the homomorphism from the monoid T ∗
r to the

monoid T ∗ defined by:

∀t ∈ T0, φ(t) = t and ∀i ∈ I, ∀h ∈ Hi, ∀f ∈ Fi, φ(hf) = h.f

This homomorphism is extended to an homomorphism from P(T ∗
r) to P(T ∗)

and from P(T∞
r) to P(T∞).

Among sequences of the original net, some of them look like more or less as
sequences of the reduced net. It depends on the way the transitions of Hi are
immediately followed by a transition of Fi.

Definition 3.3 (Simulateable sequence) Let J ⊆ I, A sequence s ∈ T ∗

(resp. T∞) is said to be J-simulateable or simulateable for short when J = I
if there exists a decomposition of s:
s = φ(s1).s

′
1.φ(s2).s

′
2 . . . φ(sn).s′n (resp. s = φ(s1).s

′
1.φ(s2).s

′
2 . . . φ(sn).s

′
n . . .)

with ∀m, sm ∈
⊎

i∈J Hi × Fi and s′m ∈ (T0
⊎

i/∈J(Hi ∪ Fi))
∗

Remark 1 A sequence s is simulateable iff there exists sr such that s = φ(sr).
Since sr is unique, one denotes sr by φ−1(s).

As mentioned previously, three kinds of properties are of interest when per-
forming model checking :

• The liveness of the net which is a central property.
• Properties of a linear temporal logic evaluated on finite maximal sequences

(including for instance the presence of deadlock markings).
• Properties of a linear temporal logic evaluated on infinite sequences (includ-

ing for instance fairness properties).

The next basic theorem states in a formal way that the behaviour of the
reduced net is a subset of the original behaviour.

9

Theorem 1 Let (N, m0) be a net. Then:

(1) ∀sr ∈ T ∗
r , m[sr〉rm

′ ⇐⇒ m[φ(sr)〉m
′

(2) ∀sr ∈ T∞
r , m[sr〉r ⇐⇒ m[φ(sr)〉

PROOF. Straightforward from proposition 11 (in the Appendix A, page 32).

At this point, we know that if a maximal or infinite sequence violates a prop-
erty in the reduced net then the property is also violated in the original one.
However, some original sequences that highlight problems may disappear in
the reduced net and we have no result regarding the Petri net liveness prop-
erty (the reduced net may be live while the original is not and vice-versa). So
we need to formalise the dependency of Fi on Hi. As we consider an abstrac-
tion that merges transitions of Hi with transitions of Fi it seems reasonable
to impose that, in all sequences of the original net, a transition of Fi must
always be preceded by a transition of Hi. We introduce this constraint with
the help of a set of counting functions, denoted Γi. Using these functions we
characterise potentially agglomerable Petri nets, for which each occurrence
of Fi is preceeded by an occurrence of Hi. We give then a simple structural
scheme which ensures that a net is potentially agglomerable.

Definition 3.4 (Counting functions) Let s ∈ T ∗ be a finite sequence. We
note Γi(s) = |s|Hi

− |s|Fi
.

Definition 3.5 (Potentially agglomerability) A marked net (N, m0) is

(1) potentially agglomerable (p-agglomerable for short) iff ∀s ∈ L(N, m0),
∀i ∈ I, Γi(s) ≥ 0.

(2) structurally p-agglomerable (sp-agglomerable for short) iff ∀i ∈ I, ∃pi

such that
(a) m0(pi) = 0, •pi = Hi, pi

• = Fi;
(b) ∀h ∈ Hi, ∀f ∈ Fi, W+(pi, h) = W−(pi, f) = 1.

Let us note that for a firing sequence s ∈ L(N, m0) leading to m, one has
Γi(s) = m(pi) ≥ 0. Thus the structural condition ensures the behavioural
one : a net that is sp-agglomerable is necessarily p-agglomerable.

In the following, we study p-agglomerable nets. The remainder of the sec-
tion is devoted to the presentation of two sets of conditions thet ensure the
equivalence between the behaviours of the original and the reduced net. Infor-
mally stated, the pre-agglomeration scheme expresses the fact that firing
the transitions of Hi is only useful for firing the transitions of Fi whereas the

10

post-agglomeration scheme expresses the fact that the firing of transitions
of Fi are mainly conditioned by the firing of the transitions of Hi.

3.3 Behavioural pre-agglomeration

We state in the following definition five conditions which “roughly speaking”
ensure that delaying the firing of a transition h ∈ Hi until some f ∈ Fi fires
does not modify the behaviour of the net w.r.t. the set of properties we want
to preserve.

Definition 3.6 Let (N, m0) be a p-agglomerable net. (N, m0) is

(1) HF -interchangeable iff ∀i ∈ I, one of these two conditions is fulfilled:
(a) ∀m ∈ Reach(N, m0), ∀h, h′ ∈ Hi, ∀f ∈ Fi, m[h.f〉 ⇐⇒ m[h′.f〉
(b) ∀m ∈ Reach(N, m0), ∀h ∈ Hi, ∀f, f ′ ∈ Fi, m[h.f〉 ⇐⇒ m[h.f ′〉

(2) H-independent iff ∀i ∈ I, ∀h ∈ Hi, ∀m ∈ Reach(N, m0), ∀s such that
∀s′ ∈ Pref(s), Γi(s

′) ≥ 0, m[h.s〉=⇒m[s.h〉

(3) divergent-free iff ∀s ∈ L∞(N, m0), |s|T0∪F = ∞

(4) quasi-persistent iff ∀i ∈ I, ∀m ∈ Reach(N, m0), ∀h ∈ Hi,
∀s ∈ (T0 ∪ F)∗, such that m[h〉 and m[s〉
∃s′ ∈ (T0 ∪ F)∗ fulfilling: m[h.s′〉, ΠF (s′) = ΠF (s) and W (s′) ≥ W (s).
Furthermore, if s 6= λ=⇒s′ 6= λ then the net is strongly quasi-persistent.

(5) H-similar iff ∀i, j ∈ I, ∀m ∈ Reach(N, m0), ∀s ∈ T ∗
0 ,

∀hi ∈ Hi, ∀hj ∈ Hj, ∀fj ∈ Fj

m[hi〉 and m[s.hj.fj〉 =⇒ ∃s′ ∈ (T0)
∗, ∃fi ∈ Fi such that m[s′.hi.fi〉 and

such that s = λ=⇒s′ = λ.

We first notice that, in the original net, the transitions h ∈ Hi and f ∈ Fi may
be live whilst the sequence h.f is not live. Thus the HF -interchangeability
condition forbids this behaviour. The H-independence roughly means that
once a transition h ∈ Hi is fireable it can be delayed as long as one does not
need its occurrence to fire a transition of Fi. When a net is divergent-free it
does not generate infinite sequences with some suffix included in H. In the pre-
agglomeration scheme, we transform original sequences by permutation and
deletion of transitions to simulateable sequences. Such an infinite sequence
cannot be transformed by this way into an infinite simulateable sequence.
Therefore this condition is mandatory. The quasi-persistence ensures that in
the original net a “quick” firing of a transition of H does not lead to some
deadlock which could have been avoided by delaying this firing. At last, the
H-similarity forbids situations where the firing of transitions of F is prevented
due to a “bad” choice of a subset Hi.

11

Under previous conditions (or a subset of), fundamental properties of a net
are preserved by the pre-agglomeration reduction. This result is stated in the
following theorem whose demonstration is provided in Appendix B.

Theorem 2 Let (N, m0) be a Petri net.

(1) If (N, m0) is p-agglomerable, H-independent, HF -interchangeable, quasi-
persistent and H-similar then

(N, m0) is live ⇐⇒ (Nr, m0) is live

(2) If (N, m0) is p-agglomerable, H-independent, divergent-free, strongly quasi-
persistent and H-similar then

ΠT0∪F (Lmax(N, m0)) = ΠT0∪F (Φ(Lmax(Nr, m0r)))

(3) If (N, m0) is p-agglomerable, H-independent and divergent-free then

ΠT0∪F (φ(L∞(Nr, m0))) = ΠT0∪F (L∞(N, m0))

3.4 Behavioural post-agglomeration

In this section, we restrict I to a singleton (i.e. I = {1} and we set Γ = Γ1,
H = H1 and F = F1).

The main property that the conditions of the post-agglomeration implies is
the following one : in every firing sequence with an occurrence of a transition
h of H followed later by an occurrence of a transition f of F , one can imme-
diately fire f after h. From a modelling point of view, the set F represents
local actions while the set H corresponds to global actions possibly involving
synchronisation.

Definition 3.7 Let (N, m0) be a p-agglomerable marked net. (N, m0) is

(1) HF -interchangeable iff one of these two conditions is fulfilled:
(a) ∀m ∈ Reach(N, m0), ∀h, h′ ∈ H, ∀f ∈ F , m[h.f〉 ⇐⇒ m[h′.f〉
(b) ∀m ∈ Reach(N, m0), ∀h ∈ H, ∀f, f ′ ∈ F , m[h.f〉 ⇐⇒ m[h.f ′〉

(2) F -independent iff ∀h ∈ H, ∀f ∈ F , ∀s ∈ (T0∪H)∗, ∀m ∈ Reach(N, m0),
m[h.s.f〉 =⇒ m[h.f.s〉
(N, m0) is strongly F -independent iff ∀h ∈ H, ∀f ∈ F , ∀s ∈ T ∗ s.t.
∀s′ ∈ Pref(s), Γ(s′) ≥ 0 ∀m ∈ Reach(N, m0), m[h.s.f〉 =⇒ m[h.f.s〉

(3) F -continuable iff ∀h ∈ H, ∀s ∈ T ∗, s.t. ∀s′ ∈ Pref(s), Γ(s′) ≥ 0
∀m ∈ Reach(N, m0) m[h.s〉 =⇒ ∃f ∈ F such that m[h.s.f〉

12

We express the strong dependence of the set F on the set H with three hy-
potheses. We have already discussed the HF -interchangeability hypothesis.
The F -independence means that any firing of f ∈ F may be anticipated just
after the occurrence of a transition h ∈ H which “makes possible” this firing.
The F -continuation means that an excess of occurrences of h ∈ H can always
be reduced by subsequent firings of transitions of F .

Theorem 3 Let (N, m0) be a Petri net.

(1) If (N, m0) is p-agglomerable, F -continuable, F -independent and HF -
interchangeable then

(N, m0) is live ⇐⇒ (Nr, m0) is live

(2) If (N, m0) is p-agglomerable and F -continuable then

ΠT0∪H(Lmax(N, m0)) = ΠT0∪H(Φ(Lmax(Nr, m0r)))

(3) If (N, m0) is p-agglomerable, F -continuable and F -independent then

ΠT0∪H(φ(L∞(Nr, m0))) = ΠT0∪H(L∞(N, m0))

As for the pre-agglomeration, the proof of this theorem is obtained progres-
sively by different lemmas in Appendix B, section B.2, pages 41-43.

4 Petri nets structural agglomerations

4.1 Methodology

Behavioural hypotheses defined in the previous section cannot be used directly
in practice since they refer to the behaviour of the model. In the worst case,
verifying these hypotheses leads to the building of the reachability graph before
the reductions!

So we propose in this section some structural and algebraical conditions that
are sufficient to ensure the behavioural hypotheses. Unlike the older works
about ordinary Petri net reductions [Ber85,Ber86,PPP00,ES01], we intensively
use algebraical conditions based on linear invariants of the net. This allows us
to considerably enlarge the application spectrum of these reductions. These
invariants can be obtained from two ways: the first one is to apply algorithms
like the Gaussian elimination or the Farkas algorithm [CS91] when positive
constraints on coefficients are required. The second way is to derive already
known information when nets are produced by an automatic generation from
a high level specification.

13

Before specifying these structural and algebraical conditions, we illustrate such
a methodology on the Petri net depicted Fig 2 for which a simple computation

q

f2f1

h

r1

r2

u

vg

p

Fig. 2. A simple Petri net

leads to the following invariants:

• ∀m ∈ Reach(N, m0), m(p) + m(q) + m(u) = 1 meaning that whatever the
marking reached, the sum of tokens contained in place p, q and u is equal to
1. This invariant characterises a process with p, q and u as potential states.

• ∀m ∈ Reach(N, m0), m(r1) + m(r2) = 1 meaning that there is always
exactly one token in either r1 or r2.

Let us suppose that we want to establish the following properties (we will
encounter these two kinds of properties in a more general context during the
elaboration of the structural conditions):

(1) when the process is in the state p (i.e. p is marked) then it is never
suspended (i.e. necessarily either f1 or f2 is fireable);

(2) when the process is in the state p some activity is forbidden (e.g. g is not
fireable).

For the first property we build a linear programming problem (LP problem)
in which we associate to each place p a variable xp that denotes the number of
tokens contained in this place. Thus an assignment of the variables is equiva-
lent to a potential marking and we can use the linear invariants of the net for
characterising a superset of the reachable markings. The constraints of this
LP problem are defined by the invariants of the net, by the hypothesis that
p is marked and by the negation of the conclusion (i.e. neither f1 nor f2 are
fireable).

We conclude that the property is satisfied if the LP is not satisfiable (but
not only if). Let us observe that this translation into a single LP problem is
possible due to the particular form of the preconditions of f1 and f2. Starting

14

from other standard situations, a single LP problem is also produced (see later
the F -continuation). But generally, the translation may lead to multiple LP
problems.

∀i ∈ P, xi ≥ 0 the markings are positive

xq + xp + xu = 1

xr1 + xr2 = 1

the constraints defined by the invariants are satisfied

xp ≥ 1 the place p is marked

xr1 = 0

xr2 = 0

neither the transition f1 nor the transition f2 is fireable

The second property is similarly expressed. Let us observe that here the nega-
tion of the conclusion leads to lower bounds for marking of places.

∀i ∈ P, xi ≥ 0 the markings are positive

xq + xp + xu = 1

xr1 + xr2 = 1

the constraints defined by the invariants are satisfied

xp ≥ 1 the place p is marked

xv ≥ 1

xu ≥ 1

the transition g is fireable

More generally this kind of property corresponds to a scheme often encoun-
tered in our conditions: the marking of a place p disables the fireability of a
subset of transitions. So, we introduce the notion of transition freezing based
on LP problems.

Proposition 1 (Transition freezing) Let (N, m0) be a Petri net, p be a
place and t be a transition. Suppose that the LP problem where:

• the variables are {xq}q∈P

• the constraints are given by the positivity of the variables, the invariants of
the net and by the inequations xp ≥ 1 and ∀q ∈ •t, xq ≥ W−[q, t]

does not admit a solution. Then ∀m ∈ Reach(N, m0), m(p) > 0 =⇒ NOT m[t〉.
We say that p freezes t. By extension, p freezes a set of transitions T ′ if
∀t ∈ T ′, p freezes t.

15

The proof of this proposition is straightforward.

Since we want to prove the non existence of a marking satisfying the linear
problem, we should solve an integer linear problem (ILP). It is well-known
that solving an ILP may be highly time consuming. Thus a less accurate
sufficient condition is to interpret this problem as a rational linear problem.
This satisfiability checking is now processed in polynomial time. Moreover,
practical experiments have shown that, for the kind of problems we solve, it
seldom happens that the ILP is unsatisfiable when the LP is satisfiable.

4.2 Structural Pre-agglomeration

We propose in this section five structural conditions that imply the respect
of the behavioural hypotheses used in the previous section. Some of them
are only based on structural constraints while others use both structural and
algebraical conditions.

The HF -interchangeable hypothesis ensures that any transitions of Hi can be
replaced by any other transition of Hi or similarly that that any transition
of Fi can be replaced by any other transition of Fi. We propose four simple
structural conditions that guarantee such a behaviour. The conditions 2 and 3
are related to the F -interchangeability and the conditions 1 and 4 are related
to the H-interchangeability. The technical aspect of the point 4 is due to the
fact that if Hi and Fi are not reduced to a singleton, then the possibility to
replace a transition h by a transition h′ implies an equivalence in term of
pre-conditions but also an equivalence in term of tokens produced by these
transitions and needed for the firing of a transition of Fi.

Proposition 2 (Structural HF -interchangeability) A sp-agglome-
rable net (N, m0) is HF -interchangeable if ∀i ∈ I, one of these conditions is
fulfilled :

(1) |Hi| = 1
(2) |Fi| = 1
(3) ∀f, f ′ ∈ Fi, ∀p ∈ P , W−(p, f) = W−(p, f ′)
(4) ∀h, h′ ∈ Hi

• ∀p ∈ P, W−(p, h) = W−(p, h′) and
• ∀f ∈ Fi, ∀p ∈ h• ∩ •f , W+(p, h) = W +(p, h′)

The proof of this proposition is straightforward.

16

In the following figure (Fig. 3), the model on the left does not verify the struc-
tural conditions: neither Hi nor Fi are reduced to a singleton, and place q2 pre-
vents from verifying point 3 or 4. In the model of the right, since Pre(q2, f) =
Pre(q2, f ′) the point 3 is fulfilled. Thus the HF -interchangeability is verified.

q1 q2
p

r1 r2

h h’

f’f

q1 q2
p

r1 r2

h h’

f’f

Fig. 3. Example of nets that verify or not the structural HF -interchangeability

In order to obtain a structural characterisation of the H-independence, we
require first that the tokens produced by a transition h ∈ Hi (other than the
one produced in pi) cannot be consumed by a transition which does not belong
to Fi while the place pi is marked. Furthermore, in the case where such a token
can be consumed by a transition of Fi, the transitions Hi are frozen by the
place pi.

Proposition 3 (Structural H-independence) A sp-agglomerable net
(N, m0) is H-independent if:
∀i ∈ I, denoting HPi = (Hi

• \ {pi}),

a) pi freezes HPi
• \ Fi

b) if HPi
• ∩ Fi 6= ∅ then pi freezes Hi

The proof of this proposition is given in Appendix B, section B.3, page 44.

pi

r1

h

f’f

q1

tb
tb is disabled when pi is marked

(a)

r

q2
pi

f’f

r2

h’h

r1

(b)
h and h’ are disabled when pi is marked

Fig. 4. Illustration of the structural conditions of the H-independence

The divergence freeness hypothesis focuses on the possibility to enter in an
infinite loop composed only by transitions of H. In order to structurally forbid
this behaviour we impose that either the places pi are structurally bounded

17

(point 1) or that the firing of transitions of H needs tokens that are not pro-
duced by these transitions (point 2). In both cases, the undesirable behaviour
is disabled.

Proposition 4 (Structural divergence freeness) A sp-agglomerable
net (N, m0) is divergent-free if ∀i ∈ I,

(1) either pi is covered by a positive flow
(2) or ∀h ∈ Hi, ∃q ∈ •h such that •q ⊂ T0 ∪ F .

The proof of this proposition is given in Appendix B, section B.3, page 45.

The main idea on which is based the structural condition of the quasi-persistence
is that any transition that can be in conflict with a transition h of H either
has no impact on the marking (it is a neutral transition) or that such a conflict
is not effective. One more time, this last point is obtained by the expression
of a linear programming problem using positive flows of the net.

Proposition 5 (Structural quasi-persistence) A sp-agglomerable net
is quasi-persistent if one of the following structural conditions are verified:
∀h ∈ H, ∀t ∈ (•h)• \ H, then

(1) either t ∈ T0 is a neutral transition
(2) or the linear programming problem where

• the variables are {xq}q∈P ,
• the constraints are defined by the positivity of the variables, the invari-

ants of the net and by the inequations ∀q ∈ •h, xq ≥ W−[q, h] and
∀q ∈ •t, xq ≥ W−[q, t]

does not admit a solution.

If all transitions of (•h)• \H verify the point 2 then the net is strongly quasi-
persistent.

The proof of this proposition is given in Appendix B, section B.3, page 45.

pi

r1 r2

h h’

f’f

(1)
t0t

t is disabled when h is enabled

Fig. 5. Illustration of the structural conditions of the quasi-persistence

18

The H-similarity hypothesis states that when |I| > 1 a “bad” choice cannot
be made between a transition of Hi and a transition of Hj with i 6= j.

Proposition 6 (Structural H-similarity) A sp-agglomerable net which
is H-independent and quasi-persistent is H-similar if:
∀i, j ∈ I, ∀hj ∈ Hj, fj ∈ Fj, ∀hi ∈ Hi,
∃fi ∈ Fi such that ∀p ∈ •fi \ {pi}, W−(p, hj.fj) ≥ W−(p, hi.fi).

The proof of this proposition is given in Appendix B, section B.3, page 45.

p1 p2

q1 q2

h1 h2

f11 f12 f21 f22

Fig. 6. Illustration of the structural conditions of the H-similarity

Proposition 7 (Generalisation of Berthelot’s reduction) The pre-
vious structural and algebraical conditions generalise the conditions of the pre-
agglomeration proposed by Berthelot in [Ber83,Ber85].

The proof of this proposition is not present here since it would require a de-
tailed presentation of Berthelot’s reductions. The interested reader will found
it in [HPP04].

4.3 Structural Post-agglomeration

In this section, we propose structural conditions for the two post-agglomeration
specific behavioural properties : the F -independence and the F -continuation.
We recall that I = {1}, so we abbreviate p1 by p.

The F -independence hypothesis supposes that any transition f of F can com-
mute with sequences of (T0 ∪ H)∗ (or with sequences s in T ∗ s.t. ∀s′ ∈
Pref(s), Γ(s′) ≥ 0 for the strong version). The first way for obtaining this
behaviour is to suppose that no transition which produces useful tokens for
the firing of F can be fired when p is marked (including H for the strong
version). A second way is to require that the structure of the net around con-
cerned transitions is such that transition f commutes with other transitions.

19

Proposition 8 (F -independence) A sp-agglomerable net (N, m0) is F -
independent if ∀f ∈ F , ∀q ∈ (•f \ {p}), ∀t ∈ (•q \ F)

(1) either p freezes t
(2) or t and f fulfill conditions a) and b)

(a) W−(q, t) ≥ min(W +(q, t), W−(q, f))
(b) W +(q, f) ≥ min(W−(q, f), W +(q, t))

A F -independent net is strongly F -independent if p freezes H.

The proof of this proposition is given in Appendix B, section B.4, page 46.

At last, the F -continuation condition ensures that there exists always a tran-
sition of F that is fireable as soon as p is marked.

Proposition 9 (F -continuation) A sp-agglomerable net (N, m0) is F -
continuable if one of the three conditions is fulfilled:

(1) ∃f ∈ F such that •f = {p}
(2) or ∃ Fs ⊂ F such that :

(a) all transitions f of Fs have only one input place pf different from p,
(b) the linear programming problem where the variables are {xq}q∈P , the

constraints are given by the positivity of the variables, the invariants
of the net and by the inequations ∀pf ∈ •Fs\{p}, xpf

≤ W−[pf , f]−1
and xp ≥ 1 does not admit a solution.

(3) or ∃ Fs ⊂ F such that :
(a) ∀q ∈ •Fs, q is a structural safe place (e.g. is covered by a binary

positive flow)
(b) ∀f ∈ Fs, ∀q ∈ •f , W−(q, f) = 1
(c) the linear programming problem where the variables are {xq}q∈P , the

constraints are given by the positivity of the variables, the invariants
of the net and by the inequations ∀f ∈ Fs

∑
q∈

•f \{p}
xq ≤ |•f | − 2

and xp ≥ 1 does not admit a solution.

The proof of this proposition is straightforward.

In the left model of figure Fig.7 the invariant ∀m, m(q1) + m(q2) = 2 ensures
that there can not exist a marking m such that m(q1) = 0 and m(q2) ≤ 1. So,
as soon as p is marked one of the transition f1 or f2 is fireable. In the right
model, let us suppose that there exists two invariants m(q1) + m(q2) = 1 and
m(r1) + m(r2) = 1 (which may correspond to the fact that places q1 and q2
model the two possible values of a variable q when places r1 and r2 model the
two possible values of a variable r). These invariants ensures that one of the
four transition f11 to f22 is fireable as soon as p is marked. Obviously, the
place p may have other output transitions in both cases.

20

h

p

q1

r1

q2

r2

f11

f21

f22

f12

f’

FS = {f11, f12, f21, f22}

h

p

2

2

q1

q2

FS = {f1, f2}

f’

f1 f2

Fig. 7. Illustration of the structural conditions of the F -continuation

Proposition 10 (Generalisation of Berthelot’s reduction) The pre-
vious structural and algebraical conditions generalise the conditions of the post-
agglomeration proposed by Berthelot in [Ber83,Ber85].

The proof of this proposition is not present here since it would require a de-
tailed presentation of Berthelot’s reductions. The interested reader will found
it in [HPP04].

5 Examples

5.1 Sharing multiple locks

Consider the following fragment of Petri net (figure Fig.8) modelling the access
by two threads to data protected by locks (modelled by places Lock1 and
Lock2). These locks could be the ones associated to each Java object when
Java is used in a multithreaded context. Let us note that the two processes
take these locks in a different order.

Suppose now that there exist some binary places invariants ensuring that when
p2 is marked then all transitions that have Lock1 as a pre-condition cannot
be fired and symmetrically that, when q2 is marked then all transitions that
have Lock2 as a pre-condition cannot be fired. The use of mutexes (or an
equivalent synchronisation mechanism) could lead to such invariants as done
in the model depicted in the figure Fig.8. Remark that this construction follows
some well-known guidelines used to prevent deadlock [Hab69].

We now describe the reduction process.

First of all, we post-agglomerate transitions a3 with a4. Then this new transi-
tion a3.a4 can be post-agglomerated with a5 and then with a6. We also apply

21

Lock1 Lock2

q1

q2

q3

q4

q5

q6

a1

a2

a3

a4

a5

p1

p2

p3

p4

p5

p6

b1

b2

b3

b4

b5

p7

a6

q7

b6

Mutex

Fig. 8. Taking two locks under the protection of a mutex

a similar sequence of post-agglomerations on transitions b4 to b7 and we obtain
then the model depicted in figure Fig.9. Note that these reductions can be ap-
plied without using the algebraical part of the conditions we have proposed in
this paper (original Berthelot’s conditions are sufficient for performing these
reductions). However, after these first reductions, the Berthelot’s reductions
are useless.

Mutex

Lock1 Lock2

q1

q2

q3

q7

a1

a2

p1

p2

p3

a1

b2

b3
a3.a4.a5.a6

p7

Fig. 9. A first reduced model

The conditions defined in this paper allow us to perform a structural pre-
agglomeration. Indeed, if we consider H = {a2} and F = {a3.a4.a5.a6} we
immediately remark that the net is sp-agglomerable around place p3. Let us
prove that the five structural hypotheses are fulfilled:

• Structural HF -interchangeability : since |H| = 1 this point is satisfied.

22

• Structural H-independence : since a2• \ {p3} = ∅ this point is fulfilled.
• Structural divergence freeness : as the place Lock1 belongs to •a2 \ a2•, this

point is also fulfilled.
• Structural quasi-persistence : Let S = Lock1• \ {a2}. By construction, this

net satisfies the invariant ∀m ∈ Acc(N, m0), m(Mutex) + m(p2) + m(p3) +
m(q2)+m(q3) = 1. So, when p2 is marked, transition b3 ∈ S is not fireable.
Furthermore, by hypothesis, we have supposed that some other invariants
(obtained, for instance, by the use of other mutexes) ensure that as soon as
p2 is marked, no transition of S is fireable. So this point is fulfilled.

• Structural H-similarity : As there is a single set H this point is obviously
fulfilled.

Lock1 Lock2

q1

q2

q3

q7

a1

p1

p2

a1

b2

b3

Mutex

p7

a2.a3.a4.a5.a6

Fig. 10. The previous model after a pre-agglomeration

We obtain the net depicted in figure Fig.10. Remark that, at this point, the
mutex modelled by the place Mutex is no more necessary to prevent deadlock.

Now, symmetrically, we perform a pre-agglomeration around the place q3.
This leads to the model of the figure Fig.11.

Lock1 Lock2

q1

q2

a1

p1

p2

a1

a2.a3.a4.a5.a6

p7

b2.b3.b4.b5.b6

q7

Mutex

Fig. 11. The previous model after another pre-agglomeration

At last, we apply on this model (figure Fig.11) a “parallel” pre-agglomeration
of a1 with a2.a3.a4.a5.a6 and of b1 with b2.b3.b4.b5.b6 (H1 = {a1} and F1 =
{a2.a3.a4.a5.a6}, H2 = {a2} and F2 = {b2.b3.b4.b5.b6}). This reduction is
interesting since no reduction with I reduced to a singleton is possible.

In the final model, the two threads operate atomically on the locks.

23

q1p1

a1.a2.a3.a4.a5.a6 b1.b2.b3.b4.b5.b6

q7p7

Mutex

Lock1 Lock2

Fig. 12. The final reduced model

5.2 Updating a shared variable

Let us consider the statement VarX := VarX + 1 which may be executed by
several concurrent processes that share the common variable VarX. We suppose
that this operation is not atomic. The next figure (Fig. 13) depicts on the left
the coloured Petri net corresponding to this statement and in the right, the
underlying Petri nets when the variable VarX takes two values (1 or 2).

VarX = 1

t1[1]

p1[1]

t3[1,1] t3[1,2]

VarX = 2

t1[2]

p1[2]

t3[2,2]t3[2,1]

VarX : C
< X >

q

p1

p2

< X >

< X >

<V0>

< X+1 >

r

< Y >

< X >

< X >

t1

t2

t3

q

r

t2[2]t2[1]

p2[1]
p2[2]

Fig. 13. Incrementation of a shared variable

Suppose that there exists a place invariants (in the underlying Petri net)
∀m ∈ Reach(N, m0), m(q)+m(p1[1])+m(p2[1])+m(p1[2])+m(p2[2])+· · · = 1
ensuring that there is a mutual exclusion between the places q, p1[1], p2[1],
p1[1] and p2[2)]. We describe the process reduction of this net.

At first we apply two post-agglomerations “à la Berthelot” around the places
p1[1] and p2[2] (also covered by our definition). We then obtain the net
depicted in the figure Fig.14.

Now a post-agglomeration around the place p2[2] is possible. Indeed, let us
note H = { t1[1]t2[1] } and F = { t3[2,1], t3[2,2] } then

(1) the net is clearly sp-agglomerable;
(2) the HF -interchangeability is verified since |H| = 1;

24

t3[1,1] t3[1,2] t3[2,2]t3[2,1]

r

p2[1]
p2[2]

VarX = 1 VarX = 2

q

t1[2]t2[2]t1[1]t2[1]

Fig. 14. Incrementation of a shared variable after two post-agglomerations

(3) the F -continuation is verified since one of the places VarX=1 or VarX=2 is
always marked and then one of the two transitions t3[2,1] or t3[2,2]
is always fireable as soon as place p[2] is marked.

(4) the strong F -independence is verified since the input places of t3[2,1]
or t3[2,2] different from p[2] are VarX=1 and VarX=2. The input transi-
tions different from F of such places are t3[1,1], t3[1,2], t1[1]t2[1]
and t1[2]t2[2]. Due to the assumed invariant described above, all these
transitions are frozen by p2[2].

We obtain the reduced net depicted in Fig.15. In this net a post-agglomeration

VarX = 1 VarX = 2

q

t1[2]t2[2]

t3[1,1] t3[1,2] t3[2,1]

r

p2[1]

t1[1]t2[1]t3[2,2]

Fig. 15. The previous model after a post-agglomeration

can be performed around the place p2[1] for similar reasons. We obtain the
model depicted in Fig16. In this model, due to the linear invariant m(VarX=1)+
m(VarX=2) = 1, the transitions t1[1]t2[1]t3[2,2] and t1[2]t2[2]t3[1,1]

are dead (i.e. never fireable). It is interesting to note that these transitions cor-

25

VarX = 1 VarX = 2

q

t1[2]t2[2]

r

t1[1]t2[1]t3[2,2]t1[1]t2[1]t3[2,1]t1[2]t2[2]t3[1,1]
t1[2]t2[2]t3[1,2]

Fig. 16. The previous model after a post-agglomeration

respond to pathological races between the processes and then our reductions
have shown that this dangerous behaviour cannot occur. So, we delete them
and we obtain the net of of Fig.17 (with its coloured version on the right of
the figure). In this last model, the incrementation is performed atomically.

VarX : C
< X >

q

<V0>

< X+1 >

t1t2t3

r

t1[1]t2[1]t3[2,1]
t1[2]t2[2]t3[1,2]

q

VarX = 1 VarX = 2

Fig. 17. The final model

Let us generalise the pattern of the figure 13. Suppose now that VarX is shared
with other processes (i.e. other transitions than t1 and t3 are connected to
the places VarX). An additional hypothesis is necessary (needed for the F -
independence hypothesis): a process that modifies the value of this variable
must be blocked as soon as one of the place p1 or p2 is marked (an underway
modification of the variable must be achieved before the access to this variable
is released). We emphasise that this additional condition corresponds to stan-
dard guidelines of concurrent programming (e.g. using synchronised method
in Java or protected object in Ada). This condition will then induce addi-
tional invariants in the Petri net model which will be used in our algebraical
conditions. Once again this shows the accurateness of our reductions.

26

6 Conclusion

We have presented a method which automatically reduces a Petri net model
whereas preserving its behaviour w.r.t. the liveness property and the linear
time formulae. Our method is based on a set of rules which merge transitions
which are causality dependent whenever some conditions are satisfied.

We have significantly enlarged the application field of the reductions previously
defined since we have weakened strong local structural conditions and intro-
duced global behavioural conditions specified by linear programming prob-
lems. For instance, the structural reductions defined in [Ber83,Ber85] may be
viewed as specialisations of our reductions.

With such an approach we cover frequently used synchronisation patterns like
the monitors, the access control to shared variables and the management of
locks.

These algorithms have been implemented in the Quasar tool for analysing con-
current Ada programs [EKPPR03]. With the help of these reductions, large
programs have been successfully certified. These experiments show that reduc-
tions defined for a low level model (being a semantic for an high level model)
cover more patterns in more contexts than reductions directly defined for the
high-level model.

The perspectives of this work are threefold:

• Complex modelling requires coloured Petri nets rather than ordinary ones.
Since the former one is an abbreviation of the latter one, we could apply our
method on coloured nets. However in order to apply our method, we need to
fix the parameters of the model which is unsatisfactory w.r.t. the verification
point of view. Thus we plan to directly define reductions for parametrised
coloured nets which would generalise those defined in [Had91].

• We observe that the specification of the behavioural reductions is not spe-
cific to the Petri nets model but require a weak diamond behavioural prop-
erty i.e. m[t.t′〉m′ ∧ m[t′.t〉m” ⇒ m′ = m”. Therefore we are comparing
our reductions to reductions proposed for other formalisms (like those in
TLA [CL98]).

• In practice the verification of concurrent programs is often related to de-
tection of particular bad behaviours associated to pathologic race condi-
tions between the threads [BR01,FF01,BLR02,SC03] or to atomicity viola-
tion [FF04]. In such cases, our application conditions could be considerably
relaxed. We are currently investigating such a direction.

27

References

[Ber83] G. Berthelot. Transformation et analyse de réseaux de Petri,
applications aux protocoles. Thèse d’état, Université Pierre et Marie
Curie, Paris, 1983.

[Ber85] G. Berthelot. Checking properties of nets using transformations. In
G. Rozenberg, editor, Advances in Petri nets, volume No. 222 of LNCS.
Springer-Verlag, 1985.

[Ber86] G. Berthelot. Transformations and decompositions of nets. In Advances
in Petri Nets, number 254 in LNCS, pages 359–376. Springer-Verlag,
1986.

[BLR02] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership
types for safe programming: preventing data races and deadlocks. In
Proceedings of the 17th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 211–230.
ACM Press, 2002.

[BR01] Chandrasekhar Boyapati and Martin Rinard. A parameterized type
system for race-free java programs. SIGPLAN Not., 36(11):56–69, 2001.

[BRV80] G. Berthelot, G. Roucairol, and R. Valk. Reduction of nets and parallel
programs. In Brauer, W., editor, Lecture Notes in Computer Science:
Net Theory and Applications, Proc. of the Advanced Course on General
Net Theory of Processes and Systems, Hamburg, 1979, volume 84, pages
277–290, Berlin, Heidelberg, New York, 1980. Springer-Verlag.

[CL98] Ernie Cohen and Leslie Lamport. Reduction in TLA. In International
Conference on Concurrency Theory, pages 317–331, 1998.

[Cor98] James C. Corbett. Constructing compact models of concurrent java
programs. In Proceedings of ACM SIGSOFT international symposium
on Software testing and analysis, pages 1–10. ACM Press, 1998.

[CS91] J. M. Colom and M. Silva. Convex geometry and semiflows in P/T
nets. A comparative study of algorithms for computation of minimal
P-semiflows. Lecture Notes in Computer Science; Advances in Petri
Nets 1990, 483:79–112, 1991. NewsletterInfo: 33,39.

[Doe77] Thomas W. Doeppner, Jr. Parallel program correctness through
refinement. In Proceedings of the 4th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages 155–169.
ACM Press, 1977.

[DV90] Rocco De Nicola and Frits Vaandrager. Action versus state based
logics for transition systems. In Proceedings of the LITP spring school
on theoretical computer science on Semantics of systems of concurrent
processes, pages 407–419. Springer-Verlag New York, Inc., 1990.

28

[EKPPR03] S. Evangelista, C. Kaiser, J. F. Pradat-Peyre, and P. Rousseau. Quasar:
a new tool for analysing concurrent programs. In Reliable Software
Technologies - Ada-Europe 2003, volume 2655 of LNCS. Springer-
Verlag, 2003.

[ES01] J. Esparza and C. Schröter. Net Reductions for LTL Model-Checking.
In T. Margaria and T. Melham, editors, Correct Hardware Design and
Verification Methods (CHARME’01), volume 2144 of Lecture Notes in
Computer Science, pages 310–324. Springer-Verlag, 2001.

[FF01] Cormac Flanagan and Stephen N. Freund. Detecting race conditions in
large programs. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering, pages
90–96. ACM Press, 2001.

[FF04] Cormac Flanagan and Stephen N Freund. Atomizer: a dynamic
atomicity checker for multithreaded programs. In Proceedings
of the 31st ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 256–267. ACM Press, 2004.

[FQ03a] Cormac Flanagan and Shaz Qadeer. Transactions for software model
checking. In Byron Cook, Scott Stoller, and Willem Visser, editors,
Electronic Notes in Theoretical Computer Science, volume 89. Elsevier,
2003.

[FQ03b] Cormac Flanagan and Shaz Qadeer. A type and effect system for
atomicity. In Proceedings of the ACM SIGPLAN 2003 conference
on Programming language design and implementation, pages 338–349.
ACM Press, 2003.

[FQ03c] Stephen N. Freund and Shaz Qadeer. Checking concise specifications
for multithreaded software. In FTfJP 03: Formal Techniques for Java-
like Programs, 2003.

[Gri96] E. Pascal Gribomon. Atomicity refinement and trace reduction
theorems. In Rajeev Alur and Thomas A. Henzinger, editors,
Proceedings of the Eighth International Conference on Computer Aided
Verification CAV, volume 1102, pages 311–322, New Brunswick, NJ,
USA, / 1996. Springer Verlag.

[Hab69] A. N. Habermann. Prevention of system deadlocks. Commun. ACM,
12(7):373–ff., 1969.

[Had87] S. Haddad. Une catégorie régulière de réseau de Petri de haut niveau :
définition, propriétés et réductions. Application à la validation de
systèmes distribués. PhD thesis, Université Pierre et Marie Curie, Paris,
1987.

[Had91] S. Haddad. A reduction theory for colored nets. In Jensen and
Rozenberg, editors, High-level Petri Nets, Theory and Application,
LNCS, pages 399–425. Springer-Verlag, 1991.

29

[Hol03] G.J. Holzmann. The Spin Model Checker, Primer and Reference
Manual. Addison-Wesley, Reading, Massachusetts, 2003.

[HPP04] S. Haddad and J.F. Pradat-Peyre. Efficient reductions for LTL
formulae verification. Technical report, CEDRIC, CNAM, Paris,
http://cedric/AfficheArticle.php?id=634, 2004.

[HRD04] John Hatcliff, Robby, and Matthew B. Dwyer. Verifying atomicity
specifications for concurrent object-oriented software using model-
checking. In Proceedings of the International Conference on
Verification, Model Checking and Abstract Interpretation, 2004.

[Jen91] K. Jensen. Coloured Petri nets : A high level language for system design
and analysis. In Jensen and Rozenberg, editors, High-level Petri Nets,
Theory and Application, pages 44–119. Springer-Verlag, 1991.

[Lip75] Richard J. Lipton. Reduction: a method of proving properties of parallel
programs. Commun. ACM, 18(12):717–721, 1975.

[Lom77] D. B. Lomet. Process structuring, synchronization, and recovery using
atomic actions. In Proceedings of an ACM conference on Language
design for reliable software, pages 128–137, 1977.

[LS89] Leslie Lamport and Fred B. Schneider. Pretending atomicity. Technical
Report TR89-1005, 1989.

[Mis03] Jayadev Misra. A reduction theorem for concurrent object-oriented
programs. pages 69–92, 2003.

[Mur89] T. Murata. Petri nets : properties, analysis and applications. In
proceedings of the IEEE Vol 77, number 4, pages 39–50, January 1989.

[Pnu81] A. Pnueli. The temporal semantics of concurrent programs. In
Theoretical Computer Science, number 13, pages 45–60, 1981.

[PPP00] D. Poitrenaud and J.F. Pradat-Peyre. Pre and post-agglomerations
for LTL model checking. In M. Nielsen and D Simpson, editors, High-
level Petri Nets, Theory and Application, number 1825 in LNCS, pages
387–408. Springer-Verlag, 2000.

[QRR04] Shaz Qadeer, Sriram K. Rajamani, and Jakob Rehof. Summarizing
procedures in concurrent programs. In Proceedings of the 31st
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 245–255. ACM Press, 2004.

[Rei83] W. Reisig. EATCS-An Introduction to Petri Nets. Springer-Verlag,
1983.

[SC03] Scott D. Stoller and Ernie Cohen. Optimistic synchronization-based
state-space reduction. In H. Garavel and J. Hatcliff, editors, Proceedings
of the 9th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 2619 of
Lecture Notes in Computer Science, pages 489–504. Springer-Verlag,
April 2003.

30

A Formal definition of Petri nets

Definition A.1 A marked net (N, m0) is defined by a tuple (P, T, W−, W+, m0)
where:

• P is the finite set of places,
• T is the finite set of transitions disjoint from P ,
• W− (resp. W +) an integer matrix indexed by P × T is the backward (resp.

forward) incidence matrix,
• m0 a integer vector indexed by P is the initial marking.

Definition A.2 Let (N, m0) be a marked net then:

• t ∈ T is firable from m a marking (denoted by m[t〉) iff ∀p ∈ P m(p) ≥
W−(p, t),

• the firing of t ∈ T firable from m leads to the marking m′(denoted by m[t〉m′)
defined by ∀p ∈ P m′(p) = m(p) + W (p, t) where W the incidence matrix is
defined by W = W + − W−,

Definition A.3 Let (N, m0) be a marked net then:

• s ∈ T ∗ is firable from m a marking and leads to m′ (also denoted by m[s〉
and m[s〉m′) iff

(1) either s = λ and m′ = m
(2) or s = s1.t with t ∈ T and ∃m1 m[s1〉m1 and m1[t〉m

′

• s ∈ T∞ is firable from m a marking (also denoted m[s〉) iff for every finite
prefix s1 of s, m[s1〉.

Definition A.4 Let (N, m0) be a marked net then:

• Reach(N, m0) = {m|∃s ∈ T ∗ m0[s〉m} is the set of reachable markings,
• m is a dead marking if ∀t ∈ T NOT (m[t〉,
• (N, m0) is live iff ∀m ∈ Reach(N, m0) ∀t ∈ T ∃s ∈ T ∗ m[s.t〉,
• L(N, m0) = {s ∈ T ∗|m0[s〉} is the language of finite sequences,
• LMax(N, m0) = {s ∈ T ∗|∃m dead marking m0[s〉m} is the language of finite

maximal sequences,
• L∞(N, m0) = {s ∈ T∞|m0[s〉} is the language of infinite sequences,

Definition A.5 The incidence matrices W , W− and W + are extended to
matrices indexed by P × T ∗ by the following recursive definition:

• W (p, λ) = W−(p, λ) = W +(p, λ) = 0,
• Let s = s1.t

· W (p, s) = W (p, s1) + W (p, t)
· W−(p, s) = Max(W−(p, s1), W

−(p, t) − W (p, s1))

31

· W+(p, s) = W (p, s) + W−(p, s)

Proposition 11 Let (N, m0) be a marked net then:
∀s ∈ T ∗, m[s〉m′ ⇐⇒ ∀p ∈ P , m(p) ≥ W−(p, s) and m′(p) = m(p)+W (p, s)

32

B Proofs of the different theorems and propositions

B.1 Proofs related to the behavioural Pre-agglomeration

In order to deal with infinite sequences we need to decompose them according
to their ultimate behavior w.r.t. the Γi functions. We introduce a notation to
characterize this behavior.

Definition B.1 (ith degree of a sequence) The degree w.r.t. i ∈ I of a
sequence s = t1 . . . tn . . . ∈ T∞ of a p-agglomerable net (denoted by d◦

i (s)) is
defined by:

d◦
i (s) = lim inf

k→∞
(Γi(t1 . . . tk))

def
= lim

k→∞
Inf(Γi(t1 . . . tk′) | k′ ≥ k)

Since Γi is lower bounded by 0, this degree is well defined but may be finite
or infinite and one has the following decompositions:

• Let d◦
i (s) = d, then there exists a decomposition s = s1.h1 . . . sd.hd.sd+1.sd+2 . . . sd+k . . .

with ∀n ≤ d, hn ∈ Hi, ∀n, Γi(sn) = 0 and ∀s′ prefix of sn, Γi(s
′) ≥ 0.

• Let d◦
i (s) = ∞, then there exists a decomposition s = s1.h1 . . . sn.hn. . . .

with ∀n hn ∈ Hi, Γi(sn) = 0 and ∀s′ prefix of sn, Γi(s
′) ≥ 0.

W first prove that if a p-agglomerable net satisfies the H-independent hy-
pothesis, then each fireable sequence can be reordered into a simulable fireable
sequence having the same projection on T0∪F as the original one. This result
is stated with the help of two propositions : one for the case of finite sequences
(proposition 12) and one for the case of infinite sequences (proposition 13).

Proposition 12 (H-finite independence) Let (N, m0) be a p-agglomerable
net which is H-independent. Let J ⊆ I, HJ = ∪j∈JHj and FJ = ∪j∈JFj. Then
for every sequence s ∈ T ∗ such that m0[s0〉m[s〉m′ with ∀j ∈ J ∀s′ prefix of s,
Γj(s

′) ≥ 0 there exists a permutation of s, ŝ/J = s1.s� such that :

(1) m[ŝ/J〉m
′

(2) ΠT\HJ
(s1) = ΠT\HJ

(s) and s� ∈ H∗
J .

(3) s1 is J-simulateable

We will denote by ŝ/J = s1.s� any sequence fulfilling the above requirements
w.r.t. s and J , and when J = I we simply denote ŝ = s1.s�.

Proof of proposition 12, page 33 We prove by induction on the length
of |s|HJ∪FJ

that there exists at least one sequence ŝ/J . If s ∈ (T \ (HJ ∪ FJ))∗

33

then the sequence ŝ/J = s1 = s fulfills the conditions of the proposition.

Otherwise, the sequence s can be written s = s′.t.s′′ with s′′ ∈ (T \(HJ ∪FJ))∗

and t ∈ HJ ∪ FJ . There are two cases:

• ∃j ∈ J, t ∈ Hj

As |s′′|Fj
= 0, the H-independence hypothesis implies that m[s′.s′′.t〉m′.

Using the inductive hypothesis, there exists a sequence ŝ′.s′′/J and by con-

struction ŝ′.s′′/J .t fulfils the conditions of the proposition w.r.t. s and J .
• ∃j ∈ J, t ∈ Fj

By hypothesis, Γj(s
′.t) ≥ 0. So Γj(s

′) > 0. Let us pick the longest prefix
s1 of s′ such that Γj(s1) = 0. By definition of s1, s′ = s1.h.s2 with h ∈ Hj

and such that ∀s∗ prefix of s2, Γj(s
∗) ≥ 0. Since the net is H-independent,

m[s1.s2.h.t.s′′〉m′.
Again due to the definition of s1, the inductive hypothesis applies to s1.s2.

Thus ŝ1.s2/J = s1.s� with s� ∈ H∗
J and m[s1.s�.h.t.s′′〉m′.

Since |s′′|FJ
= 0, the prefixes of the sequence h.t.s′′ fulfills the Γj con-

dition of H-independence for all j ∈ J . Thus we apply |s�| times the H-
independence hypothesis on the sequence h.t.s′′ leading to m[s1.h.t.s′′.s�〉m

′.
By construction, s1.h.t.s′′.s� fulfils the conditions of the proposition w.r.t.

s and J .

Proposition 13 (H-infinite independence) Let (N, m0) be a p-agglomerable
net which is H-independent. Then for every s ∈ L∞(N, m0) there exists a per-
mutation of s, ŝ such that

(1) ∀s′ ∈ Pref(ŝ), m0[s
′〉;

(2) ΠT\H(ŝ) = ΠT\H(s)
(3) ŝ = s0

1
.s0

�
.s1

1
.s1

�
. . . sk

1
.sk

�
. . . where ∀k ≥ 0, sk

1
is a simulateable sequence

and sk
�
∈ H∗

Proof of the proposition 13, page 34 We will prove the existence of this
sequence by induction on J ⊂ I. We suppose that for there is a permutation
ŝJ of s such that: ∀s′ ∈ Pref(ŝJ), m0[s

′〉, ΠT\HJ
(ŝJ) = ΠT\HJ

(s) and ŝJ =
s0

1
.s0

�
.s1

1
.s1

�
. . . sk

1
.sk

�
. . . where ∀k ≥ 0, sk

1
is a J-simulateable sequence and

sk
�
∈ H∗

J . The basis case J = ∅ is straightforward. Let us suppose that J is
strictly included in I and pick some i ∈ I \ J . We distinguish two cases:

(1) d◦
i (s) = d and then d◦

i (ŝ/J) = d. Thus there is a decomposition of
ŝ/J = s1.h1.s2.h2.s3.hd.sd+1.sd+2.sd+3 . . . with ∀k ≥ 0, Γi(sk) = 0 and
∀s′ prefix de sk, Γi(s

′) ≥ 0 and {h1, . . . , hd} ⊂ Hi. We refine this decom-
position by taking into account the first decomposition of ŝ/J giving:

∀k ≥ 0, sk = sk,1
1

.sk,1
�sk,nk

1
.sk,nk

�

We apply the previous proposition with J = {i} on every sk. This leads

34

to a new infinite sequence:
s = s1,1

1
.s1,1

�s1,n1

1
.s1,n1

� .h1.s
2,1
1

.s2,1
�s2,n2

1
.s2,n2

� .h2.hd.s
d+1,1
1

.sd+1,1
�

with sk,1
1

.sk,nk
1

a permutation of sk,1
1

.sk,nk
1

which is {i}-simulateable)
So the decomposition of s fulfills the induction hypothesis for J ∪ {i}

(2) d◦
i (s) = ∞ and then d◦

i (ŝ/J) = ∞. Thus there is a decomposition of
ŝ/J = s1.h1.s2.h2.s3.hk.sk+1. . . . with ∀k ≥ 0, Γi(sk) = 0 and ∀s′

prefix de sk, Γi(s
′) ≥ 0 and {h1, . . . , hk, . . .} ⊂ Hi. So the proof of this

case is similar to the proof of the first case.

We decompose the proof of the theorem 2 into different parts using progres-
sively the five behavioral hypotheses.

Lemma 1 Let (N, m0) be a p-agglomerable net which is H-independent and
inter-HF-equivalent. Then

(N, m0) live =⇒(Nr, m0) live

Proof of lemma 1 We prove that given a reachable marking m of the reduced
net (m0[s0r

〉rm), for any transition tr ∈ Tr there exists a fireable sequence from
m that includes or enables the transition tr. Using the theorem 1, we know
that m0[s0〉m with s0 = φ(s0r

).

• If tr ∈ T0, as N is live, there exists a sequence s such that m[s.tr〉. Since
tr 6∈ H, the definition of ŝ.t = s1.s� implies that tr ∈ s1. As s1 is a
simulateable sequence, we have m[φ−1(s1)〉r and the proposition follows.

• If tr = hf , h ∈ Hi, f ∈ Fi we distinguish two cases depending on which
inter-HF-equivalence hypothesis is fulfilled:

(1) The net fulfills point 1) of the inter-HF-equivalence hypothesis.
In this case, we choose t = f (remember that tr = hf). As N is live,

there exists at least one firing sequence from the marking m that enables
transition t. Let s be the shortest of these sequences (m[s.t〉) and ŝ.t =
s1.s�. As t 6∈ H, the minimality of s.t implies that ŝ.t = s1 and that f is
the last transition of s1

Since s1 is simulateable, s1 = s11.h′.f with s11 a simulateable sequence
and h′ ∈ Hi. The inter-HF -equivalence hypothesis implies that m[s11.h.f〉
and then m[φ−1(ŝ11).tr〉r.

(2) The net fulfills point 2) of the inter-HF-equivalence hypothesis.
In this case, we choose t = h (tr = hf). Using a same argument there

exists a minimal sequence s such that m[s.t〉. Again, the minimality of s
implies that in the decomposition ŝ = s1.s�, s� is empty. Otherwise, s� =
h′.s′ and the H-independence hypothesis would imply that m[s1.s′.h.h′〉
which would contradict the minimality of s.

As N is live, there exists a minimal sequence s′ such that m[s1.h.s′.f ′〉,
with f ′ ∈ Fi. Since s′ is minimal, s′ ∈ (T \ Fi)

∗. The H-Independence hy-

35

pothesis implies that m[s1.s′.h.f ′〉 and the Inter-HF Equivalence hypoth-
esis implies that m[s1.s′.h.f〉. We write ŝ′ = s′

1
.s′

�
. As m[s1.s′

1
.s′

�
.h.f〉,

because ∀j ∈ I, Γj(h.f) = 0, and because s′
�
∈ T ∗

H , the H-Independence
hypothesis implies that m[s1.s′

1
.h.f〉 (we delay one by one the transitions

of s′
�
). So, we obtain that m[φ−1(s11).φ−1(s′

1
).tr〉r.

Lemma 2 Let (N, m0) be a p-agglomerable net which is H-independent and
divergent-free. Then:

(1) ΠT0∪TF
(φ(L∞(Nr, m0))) = ΠT0∪TF

(L∞(N, m0))
(2) ΠT0∪TF

(φ(Lmax(Nr, m0))) ⊂ ΠT0∪TF
(Lmax(N, m0))

Proof of lemma 2 We successively prove each part of the lemma.

• First claim of the lemma
From Theorem 1 φ(L∞(Nr, m0r) ⊆ L∞(N, m0). So it is sufficient to prove
that ΠT0∪TF

(L∞(N, m0)) ⊆ ΠT0∪TF
(φ(L∞(Nr, m0)))

Let s be an infinite sequence. Using proposition 13, we obtain a new infi-
nite sequence ŝ = s0

1
.s0

�
.s1

1
.s1

�
. . . sk

1
.sk

�
. . . such that ΠT0∪TF

(ŝ) = ΠT0∪TF
(s).

Using the H-independence starting from the fireable sequence s0
1
.s0

�
.s1

1
.s1

�
. . . sk

1
.sk

�
,

one obtains another firing sequence s0
1
.s1

1
. . . . sk

1
.s0

�
.s1

�
. . . sk

�
.

Thus s the simulateable sequence defined by s = s0
1
.s1

1
. . . . sk

1
. is a

sequence of (N, m0). Since the net is divergent-free, |s|T0∪F = ∞ and the
sequence s is infinite.

• Second claim of the lemma
Let sr such that m0r[sr〉rmr with mr a dead marking of the reduced net.
We know that m0[φ(sr)〉mr. Let s′ a non empty maximal or infinite fireable
sequence from mr (i.e. mr[s

′〉). Let us suppose that |s′|T0∪F 6= 0 and denote
s′′ the smallest prefix of s′ such that |s′′|T0∪F 6= 0. From proposition 12, we
have a new sequence ŝ′′ = s′′

1
.s′′

�
with s′′

1
a non empty simulateable sequence.

Then mr[φ
−1(s′′

1
)〉r which is impossible since mr is a dead marking. Thus

|s′|T0∪F = 0. Due to the divergence-freeness of the net, φ(sr).s
′ is a finite

maximal sequence of (N, m0) with ΠT0∪F (φ(sr)) = ΠT0∪F (sr.s
′).

Lemma 3 Let (N, m0) be a p-agglomerable net which is H-independent, quasi-
persistent and H-similar. Then:

(Nr, m0r) live =⇒(N, m0) live

Proof of lemma 3 Let us pick a reachable marking m1 in the original net (i.e.
m0[s0〉m1)and a transition t ∈ T . We will prove that t is necessarily fireable
in the original net from m1. Let k =

∑
i∈I Γi(s0), we proceed by induction on

k.

36

• k = 0; i.e. s0 is balanced and then ŝ0 is simulateable; so, m0[φ
−1(ŝ0)〉rm1.

Let tr be the transition defined by :
· tr = t if t ∈ T0;
· tr = tf if t ∈ Hi and f some transition of Fi,
· tr = ht if t ∈ Fi and h some transition of Hi,
Since (Nr, m0) is live, there exists a sequence s ∈ T ∗

r such that m1[s.tr〉r.
So, m1[φ(s.tr)〉 and by construction of tr, |φ(s.tr)|t 6= 0.

• k > 0; i.e. ŝ0 = s01.hi1 .hi2 . . . hik with hij ∈ Hij .
Let m the marking defined by m0[s01〉m. As s01 is simulateable and as

(Nr, m0) is live, let us define s as a shortest sequence such that m[s.hf〉r,
for some i ∈ I, h ∈ Hi and f ∈ Fi. Obviously s ∈ T ∗

0 . We also know that in
the original net, m[s.h.f〉.

The H-similarity hypothesis implies that ∃s′ ∈ T ∗
0 , fi1 ∈ Fi1 such that

m[s′.hi1 .fi1〉. So, we have, m[s′.hi1 .fi1〉 and also m[hi1〉.
Since s′ ∈ T ∗

0 , the quasi-persistence hypothesis implies that ∃s′′ ∈ T ∗
0 such

that m[hi1 .s
′′〉 with W (s′′) ≥ W (s′). So, m[hi1 .s

′′.fi1〉.
Let m′ the marking defined by m[hi1〉m

′. At m′ we can fire hi2 and s′′.fi1 .
Since s′′.fi1 ∈ (T0∪TF)∗, using again the quasi-persistence hypothesis, ∃s′′′ ∈
(T0 ∪ TF)∗ such that m′[s′′′.hi2〉 and ΠF (s′′′) = fi1 .

By iteration of this argument, ∃sk ∈ (T0∪TF)∗ such that m[hi1 .hi2 . . . hik〉m1[sk〉m2

with ΠF (sk) = fi1 . Thus m2 is reachable from m1 and by construction∑
i∈I Γi(s0.sk) = k−1. Using the induction hypothesis, the theorem follows.

Lemma 4 Let (N, m0) be a p-agglomerable net which is H-independent, strongly
quasi-persistent and H-similar. Then:

ΠT0∪TF
(Lmax(N, m0)) ⊆ ΠT0∪TF

(Φ(Lmax(Nr, m0r)))

Proof of lemma 4 Let s be a finite maximal sequence (m0[s〉md with md a
dead marking). Let then ŝ = s1.s� and m be the marking defined by m0[s1〉m.
Let us suppose that there exists a non empty sequence sr ∈ T ∗

r with m[sr〉rm
′;

so we have m[φ(sr)〉m
′ in the original net. We distinguish two cases :

(1) φ(sr) = t.s′, t ∈ T0; We have M [s�〉 and m[t〉. Applying |s�| times the
strong quasi-persistence hypothesis there exists a non empty sequence s′′

such that W (s′′) ≥ W (t), and such that m[s�〉md[s
′′〉. which is impossible.

(2) φ(sr) = hi.fi.s
′, for some i ∈ I, hi ∈ Hi and fi ∈ Fi. We have m[s�〉 and

m[hi.fi〉. If s� is empty then md[hi.fi〉 which is impossible. Thus we note
s� = hi1 . . . hik . The H-similarity hypothesis implies that ∃s′ ∈ T ∗

0 , fi1 ∈
Fi1 such that m[s′.hi1 .fi1〉. So, we have, m[s′.hi1 .fi1〉 and also m[hi1〉.

Since s′ ∈ T ∗
0 , the quasi-persistence hypothesis implies that ∃s′′ ∈ T ∗

0

such that m[hi1 .s
′′〉 with W (s′′) ≥ W (s′). So, m[hi1 .s

′′.fi1〉.
Let m′ the marking defined by m[hi1〉m

′. At m′ we can fire hi2 and
s′′.fi1 . Since s′′.fi1 ∈ (T0 ∪ TF)∗, using again the quasi-persistence hy-

37

pothesis, ∃s′′′ ∈ (T0 ∪ TF)∗ such that m′[s′′′.hi2〉 and ΠF (s′′′) = fi1 .
By iteration of this argument, ∃sk ∈ (T0∪TF)∗ such that m[hi1 .hi2 . . . hik〉md[sk〉m2

with ΠF (sk) = fi1 which is impossible.

Thus m is a deadlock in (Nr, m0r) and ΠT0∪F (s1) = ΠT0∪F (s).

Proof of theorem 2, page 12 A direct consequence of previous lemmas.

The following table relates the hypotheses to the preservation of the properties.

Original Reduced H
-in

de
pe

nd
en

ce

in
te
r-
H
F
-e
qu

iv
al
en

ce

di
ve
rg
en

ce
-fr

ee
ne

ss

qu
as
i-p

er
sis

te
nc

e

H
-s
im

ila
rit

y

live =⇒ live • •

live ⇐= live • • •

Linf ⊇ Linf

Linf ⊆ Linf • •

Lmax ⊇ Lmax • •

Lmax ⊆ Lmax • strong •

38

B.2 Proofs related to the behavioural Post-agglomeration

As for the pre-agglomeration we first prove that finite and infinite sequences
can be re-ordered into simulateable sequences while preserving the projection
of these sequences on T0 ∪ H.

Proposition 14 (F -finite independence) Let (N, m0) be a p-agglomerable
net which is F -independent. Then for all sequence s ∈ T ∗ such that m0[s0〉m[s〉m′

with ∀s′ prefix of s Γ(s′) ≥ 0, there exists a permutation of s, ŝ = s1.s�, such
that :

(1) m[ŝ〉m′

(2) ΠT0∪H(ŝ) = ΠT0∪H(s) and ΠF (s�) = λ.
(3) s1 is simulateable

Furthermore if Γ(s) = 0 then s� = λ We will denote by ŝ = s1.s� any
sequence fulfilling the above requirements with respect to s.

Proof of proposition 14, page 39 We prove by induction on the length
of |s|F that there exists at least one sequence ŝ.

• |s|F = 0: The decomposition of s, ŝ = λ.s, fulfils the conditions of the
proposition w.r.t. s.

• |s|F > 0: The hypothesis on the prefixes of s implies that the sequence s
can be written s = s′.h.s1.f.s2 with s′ ∈ (T0)

∗, h ∈ H, s1 ∈ (T0 ∪ H)∗ and
f ∈ F . Since the net is F -independent, m[s′.h.f.s1.s2〉m

′.
By construction s′.h.f is a balanced sequence. Furthermore a straight-

forward checking shows that the prefixes of the sequence s1.s2 fulfils the
hypothesis of the proposition.

Thus by induction ŝ1.s2 exists and (s′.h.f.(s1.s2)1).(s1.s2)� fulfils the con-
ditions of the proposition w.r.t. s.

When Γ(s) = 0, Γ(s�) = 0 and since |s�|F = 0, one has also |s�|H = 0 which
means that s� ∈ (T0)

∗ and can be concatenated to s1.

Proposition 15 (F -infinite independence) Let (N, m0) be a p-agglomerable
which is F -independent. Then for any infinite sequence s ∈ L∞(N, m0) there
exists a permutation of s, ŝ such that

(1) ∀s′ ∈ Pref(ŝ), m0[s
′〉;

(2) ΠT0∪H(ŝ) = ΠT0∪H(s)
(3) ∃(si

1
)i≥0

an infinite sequence of simulateable sequences such that:
ŝ = s1

1
.s1

�
.s2

1
.s2

�
. . . sk

1
.sk

�
. . . with sn

�
∈ H∗

39

Proof of proposition 15, page 39 We distinguish two cases:

(1) d◦(s) = d. Thus there is the following decomposition of s.
s = s1.h1.s2.h2.s3.hd.sd+1.sd+2.sd+3 . . . with ∀k ≥ 0, Γ(sk) = 0 and
∀s′ prefix de sk, Γ(s′) ≥ 0 and {h1, . . . , hd} ⊂ H. We apply the previous
proposition on every sk obtaining a permutation ŝk = sk

1
(recall that

Γ(sk) = 0). This leads to the following infinite firing sequence:
s = s1

1
.h1.s

2
1
.h2.s

3
1
.hd.s

d+1
1

.sd+2
1

.sd+3
1

. . . This is the kind of sequence
we search for.

(2) d◦(s) = ∞. Thus there is the following decomposition of s.
s = s1.h1.s2.h2.s3.hk.sk+1. . . . with ∀k ≥ 0, Γ(sk) = 0 and ∀s′ prefix
de sk, Γ(s′) ≥ 0 and {h1, . . . , hk, . . .} ⊂ H. So the proof of this case is
similar to the proof of the first case.

As for the pre-agglomeration we establish progressively the results claimed in
theorem 3.

Lemma 5 Let (N, m0) be a p-agglomerable net which is F -independent and
inter-HF -equivalent. Then

(N, m0) live =⇒(Nr, m0) live

Proof of lemma 5

Let m0[sr〉m et tr ∈ T .

We have m0[φ(sr)〉m. We distinguish three cases.

• Let tr ∈ T0 since (N, m0) is live, there exists s1 such that m[s1.tr〉m
′. Since

Γ(φ(sr)) = 0 and the net is p-agglomerable one has for all prefixes s′ of s1,
Γ(s′) ≥ 0. Let us pick some s1 minimising Γ(s1) and suppose that Γ(s1) > 0.
Then ŝ1 = s1

1
.h.s′ with h ∈ H and s′ ∈ (T0∪H)∗. Since the net is live, there

is a (shortest) sequence ended by a transition of F , m′[s′′.f〉 with f ∈ F
and s′′ ∈ (T0 ∪ H)∗. Thus s′.s′′ ∈ (T0 ∪ H)∗. We apply the F -independence
transformation leading to the firing sequence m[s1

1
.h.f.s′.s′′.tr〉 and Γ(s1) >

Γ(s1
1
.h.f.s′.s′′). So necessarily Γ(s1) = 0.

We now substitute s1 by its permutation s1
1

leading finally in the reduced
net to the firing sequence m[φ−1(s1

1
).tr〉.

• Let tr = hf with h ∈ H and f ∈ F and suppose that the inter-HF -
equivalence is fulfilled due to the assertion 1 of this hypothesis. Since (N, m0)
is live there exists a sequence s such that m[s.f〉. Since Γ(φ(sr)) = 0 and
the net is agglomerable one has for all prefixes s′ of s, Γ(s′) ≥ 0. Thus there
is a permutation of s, ŝ = s1.s� with f occurring in s1, i.e. s1 = s1.h

′.f.s2,

40

h′ ∈ H, s1 and s2 being simulateable. Due to the assertion 1 of the inter-
HF -equivalence one substitutes h to h′ leading to m[s1.h.f〉. Thus in the
reduced net, m[φ−1(s1).tr〉.

• Let tr = hf with h ∈ H and f ∈ F and suppose that the inter-HF -
equivalence is fulfilled due to the assertion 2 of this hypothesis. Since (N, m0)
is live, there exists s1 such that m[s1.h〉m

′. Since Γ(φ(sr)) = 0 and the net
is agglomerable one has for all prefixes s′ of s1, Γ(s′) ≥ 0. Let us pick some
s1 minimizing Γ(s1). Similarly to the first point of this proof, Γ(s1) = 0. We
now substitute s1 by its permutation s1

1
i.e. leading finally in the reduced

net to the firing sequence m[s1
1
.h〉m′. Using again the liveness, there is

a (shortest) sequence ended by a transition of F , m′[s′′.f ′〉 with f ′ ∈ F
and s′′ ∈ (T0 ∪ H)∗. We apply the F -independence transformation leading
to the firing sequence m[s1

1
.h.f ′〉. Due to the assertion 2 of the inter-HF -

equivalence one substitutes f to f ′ leading to m[s1
1
.h.f〉. Thus in the reduced

net, m[φ−1(s1
1
).hf〉.

Lemma 6 Let (N, m0) be a p-agglomerable net which is F -independent and
and F -continuable. Then

(N, m0) live ⇐=(Nr, m0) live

Proof of lemma 6 Let m0[s〉m and let t ∈ T . We prove that t is necessarily
fireable from m by induction on Γ(s).

• Γ(s) = 0: Let us define tr ∈ Tr by tr = t if t ∈ T0, tr = hf if t = h with
some f ∈ F and tr = hf if t = f with some h ∈ H. Since Γ(s) = 0, there is
a permutation of s, s1. Then

m0[φ
−1(s1)〉rm. Since (Nr, m0) is live, there exists sr such that m[sr.tr〉r.

Thus m[φ(sr).φ(tr)〉 and by construction t occurs in φ(tr).
• Γ(s) > 0: then the permutation of s can written as ŝ = s1.s1.h.s2 with

h ∈ H, and |s2|F = 0. Since the original net is F -continuable, there exists
f ∈ F such that m0[s1.s1.h.s2〉m[f〉m′. Since Γ(s1.s1.h.s2.f) = Γ(s)− 1, t
is necessarily fireable from m′ (and thus from m).

Lemma 7 Let (N, m0) be a p-agglomerable net which is F -continuable. Then

ΠT0∪H(Lmax(N, m0)) = ΠT0∪H(φ(Lmax(Nr, m0)))

Proof of lemma 7

(1) ΠT0∪H(Lmax(N, m0)) ⊆ ΠT0∪H(φ(Lmax(Nr, m0)))
Let s be a sequence such that m0[s〉md with md a dead marking.

The continuation hypothesis implies that s is a balanced sequence. So

41

m0[φ
−1(ŝ)〉rmd. Since any sequence md[sr〉r leads to a sequence md[φ(sr)〉,

md is dead in the reduced net.
(2) ΠT0∪H(Lmax(N, m0)) ⊇ ΠT0∪H(φ(Lmax(Nr, m0)))

Let sr such that m0r[sr〉rmd and md a dead marking (of the reduced
net). We know that m0[φ(sr)〉md. It remains to prove that md is a dead
marking of the original net. Let us suppose that t is a fireable transition
from md (md[t〉). As φ(sr) is a balanced sequence, t 6∈ F . Furthermore,
t 6∈ T0; otherwise md[t〉r which contradicts the fact that md is a dead
marking in the reduced net. So t = h ∈ H. The continuation hypothesis
implies that ∃f ∈ F such that md[h.f〉. Hence md[φ

−1(h.f)〉r with the
same contradiction.

Lemma 8 Let (N, m0) be a p-agglomerable net which is strongly F -independent
and F -continuable. Then

ΠT0∪H(L∞(N, m0)) = ΠT0∪H(φ(L∞(Nr, m0)))

Proof of lemma 8

(1) ΠT0∪H(L∞(N, m0)) ⊆ ΠT0∪H(φ(L∞(Nr, m0)))
Let s ∈ L∞(N, m0). Then from proposition 15, there exists a sequence

ŝ such that
(a) ∀s′ ∈ Pref(ŝ), m0[s

′〉;
(b) ΠT0∪H(ŝ) = ΠT0∪H(s)
(c) ∃(si

1
)i≥0 an infinite sequence of simulateable sequences such that:

ŝ = s1
1
.s1

�
.s2

1
.s2

�
. . . sk

1
.sk

�
. . . with sn

�
∈ H∗

By (possible) insertions of empty sequences, the sequence ŝ may be rewrit-
ten as :
• when d(s) = n ∈ IN, ŝ = s1

1
.h1.s

2
1
.h2 . . . sn

1
.hn.sn+1

1
with ∀i, hi ∈ H

• when d(s) = ∞, ŝ = s1
1
.h1.s

2
1
.h2 . . . sn

1
.hn . . . with ∀i, hi ∈ H

At first let us suppose that d(s) = n is finite. Then we build by induc-
tion a simulateable infinite sequence s′ with ΠT0∪H(s′) = ΠT0∪H(s). The
induction hypothesis is the following one: there exists a infinite fireable
sequence sk for k ≤ n obtained from ŝ by inserting immediately after
each of the hi, i = 1..k a transition of F . The basis case is handled by
taking s0 = ŝ.

Now let us look at hk+1. Then sk=s′k.hk+1.s”k with s′k a balanced se-
quence and s”k a infinite suffix of ŝ s.t. ∀sp finite prefixe of s”k, Γ(sp) ≥ 0.
Thus there exists a transition fsp

such that s′k.hk+1.sp.fsp
is a firing se-

quence (due to the F -continuation hypothesis). Let us pick a transition f
which occurs infinitely often in {fsp

}. Then (due to the F -independence
hypothesis) s′k.hk+1.f.s”k is an infinite firing sequence and the induction
step is verified. So sn is the balanced sequence we look for.

Now let us suppose that d(s) is infinite. We proceed in the same way

42

as for the finite case. Thus we produce an infinite set of sequences sn =
s′n.hn+1.s”n s.t. s′n is a strict prefix of s′n+1. The infinite sequence defined
by its infinite set of prefixes s′n is the balanced sequence we look for.

(2) ΠT0∪H(L∞(N, m0)) ⊇ ΠT0∪H(φ(L∞(Nr, m0)))
Follows straightforwardly from theorem 1.

Proof of theorem 3, page 13 A direct consequence of previous lemmas.

B.2.1 Synthesis

Original Reduced F
-In

de
pe

nd
en

ce

In
te
r-
H
F

Eq
ui
va

le
nc

e

F
-C

on
tin

ua
tio

n

live =⇒ live • •

live ⇐= live • •

Linf ⊇ Linf

Linf ⊆ Linf strong •

Lmax ⊇ Lmax • •

Lmax ⊆ Lmax • •

43

B.3 Proofs related to the structural Pre-agglomeration

Proof of the proposition 3, page 17 (H-independence) Let us sup-
pose that there is a reachable marking m and a sequence s such that ∀s′ ∈
Pref(s) Γi(s

′) ≥ 0 and m[h.s〉 with h ∈ Hi.

We claim that no transition of (Hi
• \ {pi})

• occurs in s.

At first, pick up t ∈ (Hi
• \ {pi})

• \Fi, s′ a prefix of s and note m[h.s′〉m′. Due
to the condition on s, Γi(s

′) ≥ 0, thus m′(pi) = m(pi)+W +(pi, h)+Γi(s
′) > 0.

As pi is marked, t is not fireable from m′ due to the hypothesis a).

Then suppose that f ∈ (Hi
• \ {pi})

•∩Fi occurs in s. In this case, the condition
of the hypothesis b) holds. Let us pick s′.f the appropriate prefix of s. Due
to the condition on s, Γi(s

′) = Γi(s
′.f) + 1 ≥ 1. So there is some h′ ∈ Hi

occuring in s′ i.e. there is a prefix s”.h′ of s s.t. m[h.s”〉m′[h′〉 As m′(pi) =
m(pi) + W +(pi, h) + Γi(s”) > 0, pi is marked and freezes h′ which leads to a
contradiction.

We prove now that m[s〉 by induction on the length of the prefixes of s. Let
us pick a prefix s0.t of s and suppose that we have proven that m[s0〉m

′. We
know that m[h.s0〉m”[t〉. ∀p ∈ P m′(p) = m”(p) − W (p, h). Let p ∈ •t.Due to
the fact that no t ∈ (Hi

• \ {pi})
• occurs in s, we have to examine two cases:

• If p /∈ h•, we have m′(p) ≥ m”(p) ≥ W−(p, t).
• If p = pi then t ∈ Fi. Moreover Γi(s0) = Γi(s0.t) + 1 ≥ 1 Thus m′(pi) =

m(pi)+Γi(s0) ≥ 1 = W−(p, t). The last equality is due to the sp-agglomerability.

Consequently m[s0〉m
′[t〉.

Let s = s1.s2 be a decomposition of s, we prove by induction on the length of s1

that m[s1.h.s2〉. Suppose that s = s1.h.t.s2 and that m[s1〉m1[h〉mh[t〉mht[s2〉.
From the previous paragraph, we also know that m[s1〉m1[t〉mt and that t /∈
(Hi

• \ {pi})
•.

• Let p /∈ •t, mt(p) = m1(p) + W (p, t) ≥ m1(p) ≥ W−(p, h).
• Let p = pi, then p /∈ •h mt(p) ≥ 0 = W−(p, h).
• Let p ∈ •t, p 6= pi, then p /∈ h• due to our claim.

mt(p) = mh(p) − W (p, h) + W (p, t) ≥ W−(p, t) − W (p, h) + W (p, t) =
W+(p, t) − W (p, h) ≥ −W (p, h) = W−(p, h)

So we have mt[h〉mht[s2〉

44

Proof of the proposition 4, page 18 (divergence freeness) Let s be
an infinite sequence such that |s|Hi

= ∞ and let h ∈ Hi such that |s|h = ∞
(it exists since Hi is finite).

Let us suppose that the first condition is fulfilled. Since pi occurs in a positive
flow, pi is structurally bounded. We denote such a bound by B. Let m0[sn〉m
be a firing sequence where sn is the prefix of length n of s. One has: m0(pi) +
|sn|Hi

− |sn|Fi
= m(pi) ≤ B. Thus |sn|Hi

− B + m0(pi) ≤ |sn|Fi
. Taking the

limit as n goes to ∞, one obtains |s|Fi
= ∞.

Let us suppose that the second condition is fulfilled. Let q be the place associ-
ated with h. With the same notations, one has: m0(q)+Σt∈

•q|sn|t ·W
+(q, t)−

|sn|h · W−(q, h) ≥ m(q) ≥ 0. Thus Σt∈
•q|sn|t · W

+(q, t) ≥ |sn|h · W−(q, h) −

m0(q). Taking the limit as n goes to ∞, one obtains |s|•q = ∞ with •q ⊂ T0∪F .

Proof of the proposition 5, page 18 (quasi-persistence) Let m be a
reachable marking such that m[h〉 and m[s〉 with s ∈ (T0 ∪ F)∗. At first we
delete the neutral transitions which share input places with h leading to a
sequence s′. Obviously, ∀p ∈ P W (p, s′) = W (p, s) and ΠF (s′) = ΠF (s)

We claim that no transition which shares an input place with h occurs in
s′. Let us suppose that such a transition occurs and let us focus on the first
occurrence, i.e. s′ = s1.t.s2 with t being the first occurrence. Since s1 does not
consume any token in an input place oh h, due to the second hypothesis there
are two mutually exclusive input places of h and t. Since the first place is still
marked, the second one is unmarked which prevents the firing of t. Since h
and s′ are structurally not conflicting, one has m[h.s′〉. Of course, if we have
not deleted any neutral transition, the strong quasi-persistence is fulfilled.

Proof of the proposition 6, page 19 (H-similarity) Let us suppose
that for some reachable marking m, one has: m[hi〉 and m[s〉m1[hj.fj〉 with
s ∈ (T0)

∗. Since the net is quasi-persistent m[hi.s
′〉 with s′ ∈ (T0)

∗ and ∀p ∈ P
W (p, s′) ≥ W (p, s). Since the net is independent m[s′〉m2[hi〉 and as W (s′) ≥
W (s), m2 ≥ m1. Then there exists fi ∈ Fi such that

(1) ∀p ∈ •fi \ {pi}, m2(p) ≥ m1(p) ≥ W−(p, hj.fj) ≥ W−(p, hi.fi)
(2) m2(pi) ≥ 0 = W−(pi, hi.fi)
(3) ∀p ∈ •hi \

•fi, m2(p) ≥ W−(p, hi) = W−(p, hi.fi).

Thus m2[hi.fi〉

45

B.4 Proofs related to the structural Post-agglomeration

Proof of the proposition 8, page 19 (F -independence) Let us suppose
that for m ∈ Reach(N, m0), one has m[h.s.f〉 with s ∈ (T0 ∪ H)∗.

We prove by induction on the length of s that m[h.f.s〉 The base case is trivial.
Now let us suppose that s = s′.t and that m[h.s′〉m′[t〉mt[f〉. We claim that
m[h.s′〉m′[f.t〉.

Suppose that the first point is fulfilled. Since m′ is a reachable marking such
that m′(p) > 0 and p freezes the set •(•F \ {p}) \F , t does not belong to this
subset. Thus ∀q ∈ •f \{p} W−[q, f] ≤ mt(q) = m′(q)+W [q, t] ≤ m′(q). Hence
m′[f〉mf .

Now let q ∈ •t, then since t ∈ T0 ∪ H, q 6= p.
If q /∈ •f then mf (q) ≥ m′(q) ≥ W−[q, t].
If q ∈ •f then as t /∈ •(•F \ {p}) one has q /∈ t•. So W+[q, t] = 0.
mf (q) = mt(q) + W [q, f] − W [q, t] ≥ W−[q, f] + W [q, f] − W [q, t]. So
mf (q) = W +[q, f] + W−[q, t] − W +[q, t] = W +[q, f] + W−[q, t] ≥ W−[q, t].
Thus mf [t〉.

Let us suppose that for m ∈ Reach(N, m0), one has m[h.s.f〉 with ∀s′ ∈
Pref(s), Γ(s′) ≥ 0. Any intermediate marking (say m′) reached by h.s except
the initial one fulfills m′(p) > 0. Thus no transition of H occurs in s since p
freezes H. Now due to the conditions on the prefixes, no transition of F occurs
in s. Thus s ∈ T ∗

0 and the previous proof is still valid.

Suppose now that the second point is fulfilled. Condition 2.a) ensures that
m′[f〉m′′. Indeed, let q ∈ •f ; if W−(q, t) ≥ W−(q, f) then m′[t〉 =⇒ m′[f〉.
Otherwise, by hypothesis, W−(q, t) ≥ W +(q, t). So, mt(q) ≤ m′(q) and as
mt[f〉 then m′[f〉.

Now, 2.b) ensures that m′′[t〉 (m′[f〉m′′). Let q ∈ •t; if W+(q, f) ≥ W−(q, f)
then m′′(q) ≥ m′(q). So, m′[t〉 =⇒ m′′[t〉. Otherwise, by hypothesis,
W+(q, f) ≥ W +(q, t). So, as m′[t.f〉, we have that m′(q) ≥ W−(q, f)−W (q, t).
As m′′(q) = m′(q) − W−(q, f) + W +(q, f) it comes that m′′(q) ≥ W +(q, f) −
W (q, t) ≥ W +(q, t) − W (q, t) = W−(q, t). So m′′[t〉.

46

B.5 Generalisation of Berthelot’s reduction

Definition B.2 (Original Berthelot’s pre-agglomeration conditions)
A transition h is pre-agglomerable with a set of transitions F (h 6∈ F) if there
exists a place p such that :

(1) m0(p) = 0, •(p) = {h}, p• = F ;
(2) •h 6= ∅ and ∀q ∈ •h, q• = {h};
(3) h• = {p};
(4) W +(p, h) = 1 and ∃m ∈ IN+ | ∀f ∈ F, W−(p, f) = m.

Definition B.3 (Original Berthelot’s pre-agglomeration transformation)
The reduced net 〈 Pr, Tr, W

+
r , W−

r , m0r 〉 is defined by

• Pr = P \ {p} and ∀q ∈ Pr, m0r(q) = m0(q);
• Tr = T \ {h};
• ∀t ∈ Tr \ F , ∀q ∈ Pr, W+

r (q, t) = W +(q, t) and W−
r (q, t) = W−(q, t).

• ∀f ∈ F , ∀q ∈ Pr, W+
r (q, f) = W +(q, f) and W−

r (q, f) = m.W−(q, f).

Berthelot demonstrated [Ber83] that, if a net fulfils previous conditions, this
transformation preserves the liveness, the boundedness and some other general
properties less interesting. Note that if m = 1 our reduction covers immedi-
ately Berthelot’s one.

If m > 1, we transform the net N into the net N ′ with the following trans-
formation (see Fig.B.1) : we create m places, p0, p1, . . . pm−1, m transitions
h0, h1, . . . hm−1, we suppress the transition h and we link new places and new
transitions to the net as follows :

• ∀i, (pi)
•

= {hi} and ∀i > 0, •(pi) = {hi−1} and •(p0) = {hm−1}
• ∀i, •(hi) = •h ∪ {pi}, ∀q ∈ •h, W ′−(q, hi) = W−(q, hi) and W ′−(pi, hi) = 1;
• ∀i > 0, (hi)

•
= {pi+1} and W ′+(hi, pi+1) = 1;

• (hm−1)
•

= {p0} ∪ {p}, W ′+(hm−1, p0) = 1 and W ′+(hm−1, p) = 1;
• m′

0(p
0) = 1 and ∀i > 0, m′

0(p
i) = 0;

• the rest of the net is unchanged.

At first remark that any fireable sequence s of N can be transformed in a
fireable sequence of N ′. For doing this we count the number of h occurrences
in s; if it’s the kth occurrence, then we rename it into hk mod m. In the other
way, we replace any occurrence of hi in a firing sequence of N ′ into an oc-
currence of h and we obtain a firing sequence of N . Thus, it’s obvious to
demonstrate that this transformation preserves all properties preserved by
our pre-agglomeration (which include those ones of Berthelot).

47

hm−1

N N’

p

n

r
p

h

q1 q2

k1 k2

n

r

v

z z

m m

k1

k1

k1

k2

k2

k2

q1
q2 h1

h0

p0

p1

pm−1

Fig. B.1. Net valuation transformation

Now, as each hi are not in conflict (almost one is fireable at a given marking),
and as ∀i < m−1, (hi)

•
= {pi} we can perform m pre-agglomeration with our

rules (we begin by hm−2 with hm−1). We obtain the net depicted in the left of
Fig B.2.

p
0

N’

p

h

q1 q2

n

r

z

k1*m k2*m

N’

q1 q2

n

r

z

k1*m k2*m

Fig. B.2. Net valuation transformation (follows)

In this net, we can suppress the place p0 and perform one pre-agglomeration.
We obtain the net depicted in the right of Fig. B.2 which is exactly the one
obtained when applying Berthelot’s transformation.

48

Definition B.4 (Original Berthelot’s post-agglomeration conditions)
A set of transitions H are post-agglomerable with a set of transitions F (H ∩
F = ∅) if there exists a place p such that :

(1) m0(p) = 0, •(p) = H, p• = F , F • 6= ∅;
(2) •F = {p} and ∃m ∈ IN+ | ∀f ∈ F, W−(p, f) = m;
(3) ∀h ∈ H,∃kh ∈ IN+ | W+(p, h) = m ∗ kh.

For the following definition we denote by Rep(k, E), where k is a positive
integer and E a finite set, the set of mappings g from E to IN such that,∑

e∈E g(e) = k (each mapping characterises a repartition of k items between
E). This notation is useful since, when h produces k tokens which can be used
in different way by the transitions of F .

Definition B.5 (Original Berthelot’s post-agglomeration transformation)
The reduced net 〈 Pr, Tr, W

+
r , W−

r , m0r 〉 is defined by

• Pr = P \ {p} and ∀q ∈ Pr, m0r(q) = m0(q);
• Tr = (T \ (H ∪ F)) ∪h∈H,g∈Rep(kh,F){th,g};
• ∀t ∈ Tr, t 6= th,g, ∀q ∈ Pr, W+

r (q, t) = W +(q, t) and W−
r (q, t) = W−(q, t).

• ∀th,g ∈ Tr,
· ∀q ∈ Pr, W−

r (q, th,g) = W−(q, h);
· ∀q ∈ Pr \ F •, W+

r (q, th,g) = W +(q, h);
· ∀f ∈ F , ∀q ∈ Pr ∩ f •, W+

r (q, th,g) = g(f).W +(q, h);

Berthelot demonstrated [Ber83] that, if a net fulfils previous conditions, this
transformation preserves the liveness, the boundedness and some other general
properties less interesting.

We suppose that m = 1 (this does not change the general nature of our
proof). Given a net N fulfilling Berthelot’s post-agglomerations conditions,
we transform it into a net N ′ defined as follows :

• we note K = maxh∈Hkh, F = {f1, f2, . . . , fn};
• we suppress transitions of F and place p;
• we create K new places p1, . . . , pK and we rename each h ∈ H into h′;
• for each transition fi ∈ F we create K new transitions f 1

i , . . . , fK
i ;

• ∀i ∈ 1..N , ∀k ∈ 1..K, •(f k
i) = {pk} and W−(pk, fk

i) = 1; (f k
i)

•
= fi

• and
∀q ∈ fi

•, W+(q, f k
i) = W +(q, fi);

• ∀h ∈ H, h′• = ({pkh} ∪ h•) \ {p} and W +(h, pkh) = 1;
• the rest of the net is unchanged.

Again, we can easily prove that N and N ′ have the same properties (among
those considered for the post-agglomeration). Now, N ′ can be reduced by our
post-agglomeration and we obtain the same net than the one produced by
Berthelot’s transformation.

49

