
A Java Platform to Control Real-Time Transactions Overload

Jean-Paul Etienne and Samia Saad-Bouzefrane

Laboratoire CEDRIC, Conservatoire National des Arts et Métiers
292, rue Saint Martin, 75141, Paris, FRANCE

samia.bouzefrane@cnam.fr

Abstract

Current applications are distributed in nature and

manipulate time-critical databases with firm-deadline
transactions. A transaction submitted to a master site is
splitted into subtransactions executed on participant
sites which manage each a local database. In this paper,
we propose a Java platform based on a protocol that
manages real-time distributed transactions with firm-
deadline, in the context of possible overload situations
and imprecise data acceptable utilization.

1. Introduction
Current applications, such as Web-based services,

electronic commerce, mobile guidance by

telecommunication systems, multimedia applications, etc.

are distributed in nature and manipulate time-critical

databases. In order to enhance the performance and the

availability of such applications, the major issue is to

develop protocols that manage efficiently real-time

transactions while tolerating overload in the distributed

system. In fact, if the system is not designed to handle

overloads, the effects can be catastrophic and some

primordial transactions of the application can miss their

deadlines. While many efforts have been made in the

management of transient overloads in centralized Real-

Time Database Systems (RTDBSs) [5, 2, 6] few works

control the overload in a distributed environment.

Moreover, the objective of maintaining logical

consistency in the database is difficult to reach ; some

proposed works attempt to relax the isolation transaction

property, i.e., serializability, usually considered as the

transaction correctness criteria in traditional database

management systems [4]. Indeed, there exists many

kinds of applications where strict serializability is not

necessary; hence, that may tolerate data imprecision. For

example, in applications where approximate results

obtained may be more useful than accurate ones

obtained late. In this paper, we focus on the design of a

Java platform based on a commit processing protocol

that cares of overload situations and that bounds

database logical inconsistencies. The overload occurs

when the computation time of transactions set exceeds

the time available on the site processor and then the

deadlines can be missed. ε-data concept initially

proposed in [11] is employed here as a correctness

criterion to guarantee the consistency of the distributed

database. Our study is concerned by “firm-deadline”

transactions because many current applications such as

Web-based services use communication protocols with

timeout features. In firm-deadline applications, each

transaction that misses its deadline is useless and then

aborted immediately. The remainder of this paper is

organized as follows : Section 2 presents the related

work. Section 3 describes the database model used.

Section 4 introduces a notion close to epsilon

serializability called ε-data that allows more execution

concurrency between transactions. In Section 5 is

described the mechanism used to control transactions

overload. Section 6 examines the principle of the

protocol implemented by our simulation platform.

Section 7 presents the Java platform. Experimental

results show good performances under overload and ε-

data conditions in Section 8. Section 9 concludes the

paper.

2. Related work

Many authors have designed real-time scheduling

algorithms that are resistant to the effects of system

overload [3, 7]. However, designing algorithms to manage

overload in RTDBSs has received comparatively little

attention and the few efforts in this area have assumed a

centralized real-time database system. For example,

Hansson et al. in [5, 6] propose an algorithm denoted OR-

ULD (Overload Resolution-Utility Loss Density) that

resolves transient overloads by rejecting non critical

transactions and by replacing critical ones with

contingency transactions. Bestavros et al., in [2], consider

overload management for soft-deadline transactions where

primary transactions have compensating transactions.

Transactions are guaranteed to complete either by

successful commitment of the primary transaction or by

safe transaction of the compensating transaction. Among

the techniques that use the concept of importance, Saad et

al. have proposed a protocol to control the transactions

load in a replicated RTDBS [13] and another overload-

management protocol in a non replicated RTDBS where

transactions tolerate data imprecision [12]. Transactions

are assigned values used to define the importance degree

of each transaction with respect to the application. In

order to decrease the transactions load, only the

transactions declared "important" by the application

developer have their execution maintained, the other

transactions considered as less important are rejected. In

[12], we have applied this principle to resolve transient

overloads that may occur in distributed real-time database

systems. Furthermore, to increase concurrency execution

between transactions without loss of data consistency we

relax ACID properties (Atomicity, Consistency, Isolation,

Durability) judged too restrictive in real-time context [10].

Researchers have proposed techniques that take into

account data semantics to relax these properties. These

works have led to the development of forced wait and data

similarity policies [15] and epsilon serializability criterion

[9]. In the next section, we present the database model

used and then we recall the principle of ε-data concept

used to relax data properties in [11]. Besides the overload

control, the protocol proposed in [12] integrates the ε-data

concept in order to allow more transactions concurrency

and therefore to reduce the number of firm transactions

that miss their deadlines. In this paper, we recall the

principle of the protocol proposed in [12] to control

overload in a distributed database where transactions may

manipulate imprecise data. Then, we describe the Java

simulation platform, based on this protocol, that we have

developed.

3. The database model

 In our model, we consider only firm real-time

transactions. A transaction is submitted to the master site

where is executed the coordinator process. The result of

the transaction is delivered before transaction deadline.

Distinct parts of the database are located on different

sites. The global transaction is decomposed into

subtransactions that are sent to the participant sites,

where they are managed by a cohort process. Each

participant site includes three modules (see Figure 1):

 - a scheduler module that uses EDF scheduling

algorithm [8],

 - an overload-manager module that controls transient

overloads each time a new subtransaction is inserted in

the ready-transactions queue and

- a data-manager module that applies ε-data concept

when subtransactions of the participant site conflict

while accessing data.

The model does not consider database replica. Two

types of subtransactions are allowed in our environment:

query subtransactions and update subtransactions.

4. εεεε-data notion
ε-data, is a notion close to epsilon serializability [9].

It introduces some levels of data-imprecision in order to

deal with real-time applications that tradeoff consistency

for timeliness, provided the amount of inconsistency

introduced can be controlled. In multi-media

applications, the loss of some packets (composing an

audio or a video stream) may not lead to serious

consequences. The ε-data concept deals with data

absolute-value imprecision which is a percentage of the

current value of the data. For example, let a data item d =

20. If d tolerates an imprecision ε then it is called ε-data.

Let ε = 10%, then we tolerate the use of a value which is

in the interval [20-2, 20+2]. We denote by ε-data, a data

item whose exact value is v and where each value in [v-ε

, v+ε] is acceptable. In strict context, if a write

transaction already holds a lock on a data item d, a query

transaction requesting a lock on d will wait or will be

aborted. In ε-data applications, the isolation level

tolerated is not maximal, that is, each read transaction

may access a data while another transaction is writing it

provided that the quantity of inconsistency introduced by

the write transaction is less than a specified bound, ε.

Therefore, locks management used by transactions is

somewhat different from the one used in classical

RTDBSs.

5. Overload Management

The arrival of a new subtransaction may cause an

overload, and thus a timing fault, if the required
computation times and deadlines exceed the computing

capability of each site processor to fulfil all
subtransactions deadlines. Our overload management

policy aims to favour the execution of the most
important transactions of the application. A favoured

transaction must undergo less timing faults (i.e.,

deadline misses) and less abortions due to overload than

other transactions. It is then necessary to have a means
to designate the most important transactions. This means

is presented in the form of a parameter called

importance value as described in [13].

5.1. Transaction Importance

Each global transaction is associated with a positive

integer that represents the importance value of the

transaction in the transactions set. The importance value

is intrinsic to the application, so it can be fixed by the

application developer. For example, in the field of

electronic stock exchange, the transaction that has to

update quotations in real-time is more important than the

one that simply read quotations. Each transaction is

characterized by a deadline which defines its urgency

and by an importance value which defines the criticality

of its execution, with respect to the other transactions of

the real-time application.

[ST3]
[ST2]

[ST1]

[transactions]

Master Site
T = {ST1,ST2,ST3}

Clients

Participant Site (SP2)

Database

EDF Scheduler

Overload Manager

Data Manager

Participant Site (SP3)

Database

EDF Scheduler

Overload Manager

Data Manager

Database

EDF Scheduler

Overload Manager

Data Manager

Participant Site (SP1)

Figure 1. The database model

Master Site
(Web Server)

Participant Site 1
(MYSQL DB)

Participant Site 2
(MYSQL DB)

Participant Site 3
(MYSQL DB)

internet

Clients

Figure 2. The simulation platform architecture

The importance of a transaction is not related to its

deadline; thus two different transactions which have the

same deadline may have different importance values. In

our model, a global transaction is characterized by its

arrival time, its deadline and its importance value. In the

same way, within a site a subtransaction is characterized

by its arrival time, its execution duration, its deadline

and its importance value. Note that the deadline and the

importance value of a subtransaction are inherited from

the global transaction to which it belongs.

5.2. Stabilization process

The stabilization process aims to manage system
overload and consists in privileging the transactions that
have high importance values. Transactions that have the

lowest importance values are released from the ready-

transactions queue and are aborted until the processor

laxity recovers a positive value. The processor laxity, at
time t, is the maximum time the processor may remain

idle, after t, without causing a transaction to miss its

deadline.

6. Protocol description

Our simulation platform is based on a protocol

designed to manage distributed real-time transactions. It

focuses on firm real-time transactions and uses the
model described in Section 3. This protocol, proposed in

[12], manages overload within each participant site

while transactions manipulate ε-data. It is based on the
2PC (two Phase Commit) [14, 1] protocol for the
communications between sites.

6.1. Integrating overload control

The protocol used by our simulation platform

augments 2PC protocol in order to handle overload

conditions. When the coordinator process receives a

transaction Ti to execute, it splits it into subtransactions.

For each subtransaction STij, the coordinator sends a

message INITIATE(STij) to execute STij on the cohort

process that manages data items needed by STij. When

the cohort receives an INITIATE(STij) message, it

applies the stabilization process. That is, if the site is

overloaded because all the local subtransactions cannot

be executed on time, the ready-transactions queue is

stabilized by aborting the subtransactions that have the

lowest importance values. When a subtransaction is

aborted, the cohort sends a “NO” vote to the coordinator.

As soon as it receives a “NO” vote, the coordinator

broadcasts ABORT messages to all the cohorts for

invalidating the local subtransactions. On the other hand,

if the coordinator receives YES messages from all its

cohorts then it broadcasts to them COMMIT messages.

6.2. The stabilization process description

The conditional laxity LCSTi(t) of a transaction STi
of the ready queue is the maximum time during which

STi may be delayed without missing its deadline, with

the assumption that all transactions with earlier deadline
will finish their execution before STi may start running.

The processor laxity LP is defined as a minimal value of

the conditional laxity of each transaction of the ready

queue. An overload situation is detected as soon as the
site laxity LP(t) is less than 0. The late transactions are

those whose conditional laxity is negative. The overload

value is equal to the absolute value of the processor

laxity, |LP(t)|. The stabilization process consists in
privileging, when the site is overloaded, transactions

with high importance values. For this purpose, we

remove from the readyQueues,t the transactions that have
the lowest importance values until the laxity is positive

anew. Moreover, we should not remove a transaction ST

from readyQueues,t when this queue contains

transactions that have lower importance values than ST
and which rejection would have resulted in a positive

laxity.

6.3. Integrating εεεε-data concept in the
locking condition

Each time a subtransaction is submitted to a cohort,

the site-processor laxity is computed. If the laxity is

negative, one or more subtransactions with low

importance values are aborted in order to maintain a

positive laxity. Moreover, to increase concurrency

between the subtransactions within a participant site, we

apply the ε-data concept. The locking condition

concerns a situation where a data item d is write-locked

by a Wε transaction and a query transaction Qi
ε requests

to read-lock d. Instead of blocking or aborting Qi
ε

transactions as in classical protocols, in our protocol all

Qi
ε transactions pursue their execution concurrently with

W
ε
 provided that the difference between the value

written by W
ε
 and the value read by Qi

ε
 transactions

does not exceed ε. Otherwise, if the value written by Wε

is out of range then the transaction manager behaves

classically. To increase concurrency between

transactions, ε-data concept operates at two levels :

- at the execution phase of a write transaction : all read

transactions that request for a data item write-locked by

a transaction that is in its execution phase, may execute

in parallel with the write transaction provided that the

data-item inconsistency is bounded by ε.

- at the uncertainty phase of a write transaction: the

uncertainty phase of a transaction begins at the time

when it finishes its execution and remains waiting for a

COMMIT or an ABORT message. Due to message

exchanges, this uncertainty phase may last some

significant time. Hence, if a write-locked data item

provides a bounded inconsistency then all the read

transactions that request this data item will access to its

value and continue their execution in parallel with the

write transaction. During the uncertainty phase, read

locks are released while write locks are kept until the

transaction validation.

7. The Java simulation platform

The simulation platform is based on Java
technology and makes use of MySQL databases. Its

architecture is composed of a master site and three
participant sites over which the database system is

distributed. Transactions are sent via HTTP requests to

the master site which splits them into subtransactions
and distributes them to appropriate participant sites,

where they are processed into SQL statements and

executed. In addition, transactions are composed only of

read and update operations to ensure that the ε-data
concept is applied during database access. Furthermore,

the communication framework is based on socket

primitives, rather than CORBA, for performance reasons
and messages are modelled as objects. An overview of
the architecture is shown Figure 2.

7.1. Master Site

The master site is implemented as a Java Servlet

and sits on a TomCat Server. Transaction requests are
made via HTTP and each request is handled by an

instance of the Servlet. A Transaction request contains

one or more data operations and each operation includes:

the name of the record on which the operation will be

carried out, the operation type (read/write), the value of

the record (in the case of a write operation) and

information about the participant site which handles the

record. As shown in Figure 3, the master site distributes

subtransactions to participant sites via INITIATE

messages. The attributes of these messages are

determined as follows:

- the number of the global transaction is calculated as an

addition of the arrival time of the transaction at the

master site and a random number ranging from 0 to one

million.

- the number of each subtransaction is represented by

either 0 or 1 or 2. Each number represents a participant

site to which the subtransaction will be sent (0 for the

participant site 1, 1 for participant site 2 and 2 for

participant site 3).

- the transaction deadline is calculated from the arrival

time of the transaction at the master site and the

execution time of all its data operations. The execution

time of each data operation is determined by its type

(read or write). An additional time is also included to

cater for communication time between sites.

7.2. Participant site

Each participant site uses the following queues :

- ReadyQueue contains a list of ready transactions sorted

in ascending order, based on their deadline. Thus, the

first element in the queue represents the transaction

which has the nearest deadline.

Receive request
fromclient

Determine
participant sites

to contact

Create
communication channels

and
Initiate Messages

Send message
to Site (1)

Send message
to Site (2)

Send message
to Site (3)

Receive response
 from Site (1)

Insert message in
ReceiveQueue

Receive response
 from Site (2)

Receive response
 from Site (3)

Insert message in
ReceiveQueue

Insert message in
ReceiveQueue

Verfiy if all responses
have arrived before

deadline

[before deadline]

[after deadline] Send a MSGABORT to
sites that sent

a MSGYES

Verify if all messages
 are of type
 MSGYES

[no]

Inform client
 that transaction

has failed

Send a message
of type MSGCOMMIT

 to all sites

[yes]

Inform client
 that transaction
has succeeded

Close communication
channels

Figure 3. The activity diagram of the master site

- ImportanceQueue contains a list of ready transactions

sorted in ascending order, based on their importance

value. The first element in the queue represents the least

important transaction.

- UncertainQueue contains transaction elements which

have completed their execution and which are waiting

for the commit/abort decision of the master site.

- ReceiveQueue contains newly arrived transactions at

the participant site.

- WaitQueue contains transactions that have been

suspended due to conflicting data access.
The participant site is composed of various

modules, implementing the Overload Manager, the EDF

Scheduler and the Data Manager. All these modules are

defined like threads and work concurrently on the
different queues (see Figure 4). They also share a

connection to the local database. Besides, accesses to

these entities are mutually exclusive to ensure data

consistency. The OverloadManager module applies the
stabilization process at the arrival of new

subtransactions stored in the ReceivedQueue, to detect
and resolve overload situations. Every request received

by the participant site via an INITIATE message is
handled by an instance of ServiceThread module which

transforms it into a transaction object and inserts it into
the ReceivedQueue. The Scheduler and the Worker

modules implement the EDF Scheduler. Moreover, the

Worker acts as the data manager, during the execution of

a subtransaction, by applying the ε-data concept to
determine the execution pattern to adopt in the face of

locked data items. The ResponseManager and the

ResponseThread modules work together to inform the
master site that subtransactions have finished their

execution and wait for its decision to determine whether

to commit or to abort them.

7.3. Locks handling

To handle locked data items, we have made use of

two tables, finaldata and tmpdata. Permanent records

are stored in finaldata, while temporary records are
stored in tmpdata. Since accesses to the database are
mutually exclusive, locked data items are determined

during the application of the ε-data concept by querying
the table tmpdata. This table contains records
representing write-locked data items held by

subtransactions during their execution.

ImportanceQueue

OverloadManager

ServiceThread

ResponseManager

ResonseThread

Scheduler

Worker

WaitQueue

UncertainQueue

ReceiveQueue

ReadyQueue

database

Figure 4. The architecture of a participant site

Besides, these records remain in the table as long as

the subtransactions that hold them are not committed or

aborted yet. When a subtransaction is committed,

records that represent its write-locked data in the

tmpdata table are used to update the finaldata table

before being deleted. Furthermore, when a data record is

not write-locked, a read operation on this record is

performed on finaldata table, otherwise it is executed on

tmpdata table provided that the after-value of the data

item lies in an acceptable ε-data range.

8. Experimental results

The application developed to evaluate the

performance of our simulation platform under various

working conditions is composed of three modules:

- Execution Module,

- Configuration Module and

- Statistics Module.

8.1. The Execution module

Once started, the Execution module gets the

transactions to be executed from a file and sends them

simultaneously, in the form of HTTP requests, to the

master site. It then waits for the execution results sent

through the replies of the master site and stores them in

a database for later analysis. Each result contains the

following information:

- the transaction number,

- the execution time of the transaction,

- the importance value of the transaction and

- the execution result (commit/abort).

A name is associated to each series of execution

during their recording in the database in order to

distinguish them during analysis. Consequently, during

analysis, this name enables the statistics module to

group the series of execution according to the type of

configuration under which they have been executed.

8.2. The Configuration module

This module enables the user to change the

execution parameters of the distributed system. These

parameters are presented as follows:

- ReadTime : defines the execution time of a read

operation,

- WriteTime : defines the execution time of a write

operation,

- AddTime : defines the additional time that is added to

the transaction execution time to determine its deadline,

- ImpRead : defines the importance value of a

transaction which is composed of read operations only,

- ImpWrite : defines the importance value of a

transaction, which is composed of write operations only,

- ImpReadWrite : defines the importance value of a

transaction which is composed of both read and write

operations,

- Epsilon : defines the degree of imprecision that a data

record can tolerate and

- ConsiderImp : determines whether the system should

cater for the importance value of the transactions during

the stabilization process.

All these parameters allow the user to determine the

conditions under which the transactions would be

executed. Hence, the user can determine whether the ε-

data concept should be applied during database access or

whether the importance value of transactions should be

considered during the stabilization process. The user can

also increase or reduce overload situations by

manipulating the ReadTime, WriteTime and AddTime

parameters. The importance value of the different type

of transactions can also be altered through the ImpRead,

ImpWrite and ImpReadWrite parameters.

8.3. The Statistics module

The purpose of this module is to analyze the series

of execution grouped according to the type of

configuration under which they have been executed and

to display graphically the results of the analysis. So far,

three types of analysis can be performed:

- Percentage of transactions meeting their deadline,

grouped by series of execution.

- Percentage of transactions meeting their deadline,

grouped by their importance value.

- Efficiency of transactions, which is represented by (∑
CTi)/d where CTi represents the execution time of each
transaction Ti and d represents the duration of the

experiment.

8.4. Simulation analysis

During the simulation phase, several series of

execution have been used to measure the performance of

the system under different working conditions. The

series vary in terms of the number of transactions (50,

100, 150, 200, 250, 300) in order to allow one to

evaluate the behavior of each simulation configuration

vis-à-vis a linear increase of the number of requests. The

series have also been designed in a way to ensure several

conflicting data access between read and write

operations and few conflicts between write operations.

Besides, the modifications brought by write operations

have an ε-imprecision threshold of 10% for a better

appraisal of the performance of the ε-data concept

during analysis. All the tests have been carried out on a

platform consisting of participant sites, each having a

local database of 30 records. Also, each distributed

transaction contains three sub-transactions, one for each

participant site, and each sub-transaction has at most 3

data operations. In addition, the database records are set

back to their initial value at the end of each series of

execution in order to ensure that each test does not take

advantage of the modifications brought by previous

simulations. Since transactions are sent concurrently to

the master-site, their order of arrival and execution may

differ from one series of execution to another. As, this

may affect the results obtained, the series are executed

several times for each configuration and the final result

is computed as the mean of the results of these

executions.

Simulation tests were carried out, at first, to

evaluate separately the performance of the ε-data

concept and that of the importance value. Thereafter,

several tests have been performed to appraise the system

performance under various conditions.

8.4.1. εεεε-data concept test. This test has been realized

using the ε-values 0%, 5%, 10%. The Addtime
parameter has been set to a relatively high value

(90000) in order to prevent occurrences of overload

situations. Hence, this ensured that transactions could be
aborted only during data access conflicts, which allowed

us to have a better appraisal of the performance of the

system for each ε-value used. The results presented in

Figure 5 show that an increase of the ε-value entails a
net increase of the percentage of transactions meeting

their deadline. This shows clearly that the use of ε-data
concept augments considerably concurrent executions

of transactions.

8.4.2. Tests combining εεεε-data values and
importance values. The tests presented in Figure 6 have

been carried out to evaluate the system under various

configurations, comprising the ε-data concept and that of
the importance value. The tests have been performed

under four configurations:

- when the importance value of transactions is

considered and the ε-data concept is applied,

- when the importance value of transactions is

considered and the ε-data concept is not applied,

- when the importance value of transactions is not

considered and the ε-data concept is applied and finally

- when the importance value of transactions is not

considered and the ε-data concept is not applied.

Furthermore, these tests have been carried out in a

working environment where occurrences of overload

situations are frequent (Addtime=3500) and where the ε-

value = 10% when the ε-data concept is applied.

The results of Figure 6 show that the system

achieves the best performance when the ε-data concept

is applied and when the importance value of transactions

is considered during the stabilization process.

9. Conclusion

In this paper, we have focused on the design of a

simulation platform based on a commit processing

protocol that bounds database logical inconsistencies

and that manages transient-overload situations of the

distributed system. When an overload is detected within

a participant site, the transactions that are important for

the application are favoured. The less important ones are

discarded from the system. ε-data concept is employed

here as a correctness criterion to guarantee the

consistency of the distributed database. The simulation

platform is based on Java technology and makes use of

MySQL databases. Transactions are sent via HTTP

requests to the master which is implemented as a Java

Servlet on TomCat server. Each participant site

implements an overload manager, an EDF scheduler and

a data manager. This platform integrates a graphical

interface to submit transactions, a configuration module

to fix a certain number of parameters and a statistical

module that displays the simulation tests in a graphical

way. The experimental results show good performances

under overload and ε-data conditions. As a perspective

to our work, we intend to use a model with dynamic

importance-values and to integrate to our protocol an

optimistic concurrency control.

10. References

[1] P. Bernstein, V. Hadzilacos and N. Goodman,

"Concurrency Control and Recovery in Database Systems”,

Addison Wesley, 1987.

 [2] A. Bestavros and S. Nagy,"Value-cognizant Admission

Control for RTDB systems", Proc. of the 17th Real-Time

Systems Symp., pp. 230-239, IEEE Computer Society, dec.

1996.

[3] G. C. Buttazo, G. Lipari and L. Abeni, "Elastic Task Model

for Adaptive Rate Control", in Proc. of IEEE Real-Time

Systems Symposium, Madrid, dec. 1998.

 [4] K. P. Eswaran, J. N. Gray, R. A. Lorie and I. L. Traiger,

“The notion of consistency and predicate locks in a database

system”, CACM, 9(11), pp. 624-633, 1976.

[5] J. Hansson, S. H. Son, J.A. Stankovic and S. F.

Andler,"Dynamic Transaction Scheduling and Reallocation in

Overloaded Real-Time Database Systems", Proc. of the 5th

Conference on Real-Time Computing Systems and

Applications (RTCSA'98), pp. 293-302, IEEE Computer Press,

1998.

 [6] J. Hansson and S. H. Son,"Real-Time Database Systems:

Architecture and Techniques", K. Lam and T. Kuo (eds.),

Kluwer Academic Publishers, pp. 125-140, 2001.

[7] G. Koren and D. Shasha, "Dover: An Optimal On-Line

Scheduling Algorithm for Overloaded Uniprocessor Real-Time

Systems", SISAM J. Comput., 24(2), pp.318-339, 1995.

[8] C. L. Liu and J. W. Layland, “Scheduling Algorithms for

Multiprogramming in a Hard Real-Time Environment”,

Journal of the ACM, Vol. 20, n°1, pp. 46-61, 1973.

[9] C. Pu, “Generalized Transaction Processing with Epsilon

Serializability”, in Proc. of the 4
th

 Int. Workshop on High

Performance Transaction Processing, sept. 1991.

[10] Ramamritham K., “Real-Time Databases”, J. of

Distributed and Parallel Databases, Vol. 1, n° 2, pp. 199, 226,

1993.

[11] S. Saad-Bouzefrane and B. Sadeg, “Relaxing the

Correctness Criteria in Real-Time DBMS”, Int. Journal of

Computers and their Applications, 7(4), pp. 209-217, 2000.

[12] S. Saad-Bouzefrane, “How to Manage Real-Time

Transactions Overload in ε-data Applications ?”, EuroMicro

RTS Conference, WIP session, June 2003, Portugal.

[13] S. Saad-Bouzefrane and C. Kaiser, “Distributed Overload

Control for Real-Time Replicated Database Systems”, 5
th

 Int.

Conf. on Enterprise Information Systems, April 2003, Angers,

France.

[14] G. Samaras et al., “Two-Phase Commit Optimization in a

Commercial Distributed Environment”, Journal of Distributed

and Parallel Databases, 3(4), 1995.

[15] M. Xiong, J. A. Stankovic, K. Ramamritham, D. Towsley

and R. M. Sivasankara, “Maintaining Temporal Consistency :

issues and algorithms”, 1st Int. Workshop on RTDBS: Issues

and Applications, pp. 1-6, California, 1996.

0

20

40

60

80

100

50 15
0

25
0

No. of Transactions

%
 o

f
tr

an
sa

ct
io

n
s

m
ee

ti
n

g
 t

h
ei

r
d

ea
d

lin
e

no epsilon

epsilon=0,05

epsilon=0,1

Figure 5. The percentage of transactions meeting their
deadline when considering ε-data concept

0

10

20

30

40

50

60

70

80

90

50 100 150 200 250 300

No. of Transactions

%
 o

f
tr

an
sa

ct
io

n
s

m
ee

ti
n

g
 t

h
ei

r
d

ea
d

lin
e

No Epsilon - No
Importance

No Epsilon -
Importance

Epsilon 0.1 - No
Importance
Epsilon 0.1 -
Importance

Figure 6. Percentage of transactions meeting their

deadline in four situations

