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Abstract 
 
Current applications are distributed in nature and 

manipulate time-critical databases with firm-deadline 
transactions. A transaction submitted to a master site is 
splitted into subtransactions executed on participant 
sites which manage each a local database. In this paper, 
we propose a Java platform based on a protocol that 
manages real-time distributed transactions with firm-
deadline, in the context of possible overload situations 
and imprecise data acceptable utilization.  

1. Introduction  
Current applications, such as Web-based services, 

electronic commerce, mobile guidance by 

telecommunication systems, multimedia applications, etc. 

are distributed in nature and manipulate time-critical 

databases. In order to enhance the performance and the 

availability of such applications, the major issue is to 

develop protocols that manage efficiently real-time 

transactions while tolerating overload in the distributed 

system. In fact, if the system is not designed to handle 

overloads, the effects can be catastrophic and some 

primordial transactions of the application can miss their 

deadlines. While many efforts have been made in the 

management of transient overloads in centralized Real-

Time Database Systems (RTDBSs) [5, 2, 6] few works 

control the overload in a distributed environment.  

Moreover, the objective of maintaining logical 

consistency in the database is difficult to reach ; some 

proposed works attempt to relax the isolation transaction 

property, i.e., serializability, usually considered as the 

transaction correctness criteria in traditional database 

management systems [4]. Indeed, there exists many 

kinds of applications where strict serializability is not 

necessary; hence, that may tolerate data imprecision. For 

example, in applications where approximate results 

obtained may be more useful than accurate ones 

obtained late. In this paper, we focus  on the design of a 

Java platform based on a commit processing protocol 

that cares of overload situations and that bounds 

database logical inconsistencies. The overload occurs 

when the computation time of transactions set exceeds 

the time available on the site processor and then the 

deadlines can be missed. ε-data concept initially 

proposed in [11] is employed here as a correctness 

criterion to guarantee the consistency of the distributed 

database. Our study is concerned by “firm-deadline” 

transactions because many current applications such as 

Web-based services use communication protocols with 

timeout features. In firm-deadline applications, each 

transaction that misses its deadline is useless and then 

aborted immediately. The remainder of this paper is 

organized as follows : Section 2 presents the related 

work. Section 3 describes the database model used. 

Section 4 introduces a notion close to epsilon 

serializability called ε-data that allows more execution 

concurrency between transactions. In Section 5 is 

described the mechanism used to control transactions 

overload. Section 6 examines the principle of the 

protocol implemented by our simulation platform. 

Section 7 presents the Java platform. Experimental 

results show good performances under overload and ε-

data conditions in Section 8. Section 9 concludes the 

paper. 

2. Related work 

Many authors have designed real-time scheduling 

algorithms that are resistant to the effects of system 

overload [3, 7]. However, designing algorithms to manage 

overload in RTDBSs has received comparatively little 

attention and the few efforts in this area have assumed a 

centralized real-time database system. For example, 

Hansson et al. in [5, 6] propose an algorithm denoted OR-

ULD (Overload Resolution-Utility Loss Density) that 

resolves transient overloads by rejecting non critical 

transactions and by replacing critical ones with 

contingency transactions. Bestavros et al., in [2], consider 

overload management for soft-deadline transactions where 

primary transactions have compensating transactions. 

Transactions are guaranteed to complete either by 

successful commitment of the primary transaction or by 

safe transaction of the compensating transaction. Among 

the techniques that use the concept of importance, Saad et 

al. have proposed a protocol to control the transactions 

load in a replicated RTDBS [13] and another overload-

management protocol in a non replicated RTDBS where 

transactions tolerate data imprecision [12]. Transactions 

are assigned values used to define the importance degree 



of each transaction with respect to the application. In 

order to decrease the transactions load, only the 

transactions declared "important" by the application 

developer have their execution maintained, the other 

transactions considered as less important are rejected. In 

[12], we have applied this principle to resolve transient 

overloads that may occur in distributed real-time database 

systems. Furthermore, to increase concurrency execution 

between transactions without loss of data consistency we 

relax ACID properties (Atomicity, Consistency, Isolation, 

Durability) judged too restrictive in real-time context [10]. 

Researchers have proposed techniques that take into 

account data semantics to relax these properties. These 

works have led to the development of forced wait and data 

similarity policies [15] and epsilon serializability criterion 

[9]. In the next section, we present the database model 

used and then we recall the principle of ε-data concept 

used to relax data properties in [11]. Besides the overload 

control, the protocol proposed in [12] integrates the ε-data 

concept in order to allow more transactions concurrency 

and therefore to reduce the number of firm transactions 

that miss their deadlines. In this paper, we recall the 

principle of the protocol proposed in [12] to control 

overload in a distributed database where transactions may 

manipulate imprecise data. Then, we describe the Java 

simulation platform, based on this protocol, that we have 

developed. 

3. The database model 

 In our model, we consider only firm real-time 

transactions. A transaction is submitted to the master site 

where is executed the coordinator process. The result of 

the transaction is delivered before transaction deadline.  

Distinct parts of the database are located on different 

sites. The global transaction is decomposed into 

subtransactions that are sent to the participant sites, 

where they are managed by a cohort process. Each 

participant site includes three modules (see Figure 1): 

   - a scheduler module that uses EDF scheduling 

algorithm [8], 

   - an overload-manager module that controls transient 

overloads each time a new subtransaction is inserted in 

the ready-transactions queue and 

- a data-manager module that applies ε-data concept 

when subtransactions of the participant site conflict 

while accessing data. 

The model does not consider database replica. Two 

types of subtransactions are allowed in our environment: 

query subtransactions and update subtransactions.  

4. εεεε-data notion 
ε-data, is a notion close to epsilon serializability [9]. 

It introduces some levels of data-imprecision in order to 

deal with real-time applications that tradeoff consistency 

for timeliness, provided the amount of inconsistency 

introduced can be controlled. In multi-media 

applications, the loss of some packets (composing an 

audio or a video stream) may not lead to serious 

consequences. The ε-data concept deals with data 

absolute-value imprecision which is a percentage of the 

current value of the data. For example, let a data item d = 

20. If d tolerates an imprecision ε then it is called ε-data. 

Let ε = 10%, then we tolerate the use of a value which is 

in the interval [20-2, 20+2]. We denote by ε-data, a data 

item whose exact value is v and where each value in [v-ε 

, v+ε ] is acceptable. In strict context, if a write 

transaction already holds a lock on a data item d, a query 

transaction requesting a lock on d will wait or will be 

aborted. In ε-data applications, the isolation level 

tolerated is not maximal, that is, each read transaction 

may access a data while another transaction is writing it 

provided that the quantity of inconsistency introduced by 

the write transaction is less than a specified bound, ε. 

Therefore, locks management used by transactions is 

somewhat different from the one used in classical 

RTDBSs.  

 

5. Overload Management 
 

The arrival of a new subtransaction may cause an 

overload, and thus a timing fault, if the required 
computation times and deadlines exceed the computing 

capability of each site processor to fulfil all 
subtransactions deadlines. Our overload management 

policy aims to favour the execution of the most 
important transactions of the application. A favoured 

transaction must undergo less timing faults (i.e., 

deadline misses) and less abortions due to overload than 

other transactions. It is then necessary to have a means 
to designate the most important transactions. This means 

is presented in the form of a parameter called 

importance value as described in [13].   

 

5.1. Transaction Importance 

Each global transaction is associated with a positive 

integer that represents the importance value of the 

transaction in the transactions set. The importance value 

is intrinsic to the application, so it can be fixed by the 

application developer. For example, in the field of 

electronic stock exchange, the transaction that has to 

update quotations in real-time is more important than the 

one that simply read quotations. Each transaction is 

characterized by a deadline which defines its urgency 

and by an importance value which defines the criticality 

of its execution, with respect to the other transactions of 

the real-time application. 
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Figure 1. The database model 
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Figure 2. The simulation platform architecture 

 

The importance of a transaction is not related to its 

deadline; thus two different transactions which have the 

same deadline may have different importance values. In 

our model, a global transaction is characterized by its 

arrival time, its deadline and its importance value. In the 

same way, within a site a subtransaction is characterized 

by its arrival time, its execution duration, its deadline 

and its importance value. Note that the deadline and the 

importance value of a subtransaction are inherited from 

the global transaction to which it belongs. 
 

5.2. Stabilization process 
 

The stabilization process aims to manage system 
overload and consists in privileging the transactions that 
have high importance values. Transactions that have the 

lowest importance values are released from the ready-

transactions queue and are aborted until the processor 

laxity recovers a positive value. The processor laxity, at 
time t, is the maximum time the processor may remain 

idle, after t, without causing a transaction to miss its 

deadline.  
 

6. Protocol description 
 

Our simulation platform is based on a protocol 

designed to manage distributed real-time transactions. It 

focuses on firm real-time transactions and uses the 
model described in Section 3. This protocol, proposed in 

[12], manages overload within each participant site 

while transactions manipulate ε-data. It is based on the 
2PC (two Phase Commit) [14, 1] protocol  for the 
communications between sites.  

 

6.1. Integrating overload control 
 

The protocol used by our simulation platform 

augments 2PC protocol in order to handle overload 

conditions. When the coordinator process receives a 

transaction Ti to execute, it splits it into subtransactions. 

For each subtransaction STij, the coordinator sends a 

message INITIATE(STij) to execute STij on the cohort 

process that manages data items needed by STij. When 

the cohort receives an INITIATE(STij) message, it 

applies the stabilization process. That is, if the site is 

overloaded because all the local subtransactions cannot 

be executed on time, the ready-transactions queue is 

stabilized by aborting the subtransactions that have the 

lowest importance values. When a subtransaction is 

aborted, the cohort sends a “NO” vote to the coordinator. 

As soon as it receives a “NO” vote, the coordinator 

broadcasts ABORT messages to all the cohorts for 

invalidating the local subtransactions. On the other hand, 

if the coordinator receives YES messages from all its 

cohorts then it broadcasts to them COMMIT messages.  

 

6.2. The stabilization process description  
 

The conditional laxity LCSTi(t) of a transaction STi 
of the ready queue is the maximum time during which 

STi may be delayed without missing its deadline, with 

the assumption that all transactions with earlier deadline 
will finish their execution before STi may start running. 

The processor laxity LP is defined as a minimal value of 

the conditional laxity of each transaction of the ready 

queue. An overload situation is detected as soon as the 
site laxity LP(t) is less than 0. The late transactions are 

those whose conditional laxity is negative. The overload 

value is equal to the absolute value of the processor 



laxity, |LP(t)|.  The stabilization process consists in 
privileging, when the site is overloaded, transactions 

with high importance values. For this purpose, we 

remove from the readyQueues,t the transactions that have 
the lowest importance values until the laxity is positive 

anew. Moreover, we should not remove a transaction ST 

from readyQueues,t when this queue contains 

transactions that have lower importance values than ST 
and which rejection would have resulted in a positive 

laxity.  

 

6.3. Integrating εεεε-data concept in the 
locking condition 

 

Each time a subtransaction is submitted to a cohort, 

the site-processor laxity is computed. If the laxity is 

negative, one or more subtransactions with low 

importance values are aborted in order to maintain a 

positive laxity. Moreover, to increase concurrency 

between the subtransactions within a participant site, we 

apply the ε-data concept. The locking condition 

concerns a situation where a data item d is write-locked 

by a Wε transaction and a query transaction Qi
ε requests 

to read-lock d. Instead of blocking or aborting Qi
ε
 

transactions as in classical protocols, in our protocol all 

Qi
ε transactions pursue their execution concurrently with 

W
ε
 provided that the difference between the value 

written by W
ε
 and the value read by Qi

ε
 transactions 

does not exceed ε. Otherwise, if the value written by Wε 

is out of range then the transaction manager behaves 

classically. To increase concurrency between 

transactions, ε-data concept operates at two levels : 

- at the execution phase of a write transaction : all read 

transactions that request for a data item write-locked by 

a transaction that is in its execution phase, may execute 

in parallel with the write transaction provided that the 

data-item inconsistency is bounded by ε. 

- at the uncertainty phase of a write transaction: the 

uncertainty phase of a transaction begins at the time 

when it finishes its execution and remains waiting for a 

COMMIT or an ABORT message. Due to message 

exchanges, this uncertainty phase may last some 

significant time.  Hence, if a write-locked data item 

provides a bounded inconsistency then all the read 

transactions that request this data item will access to its 

value and continue their execution in parallel with the 

write transaction. During the uncertainty phase, read 

locks are released while write locks are kept until the 

transaction validation.  
 

7. The Java simulation platform 
 

The simulation platform is based on Java 
technology and makes use of MySQL databases. Its 

architecture is composed of a master site and three 
participant sites over which the database system is 

distributed. Transactions are sent via HTTP requests to 

the master site which splits them into subtransactions 
and distributes them to appropriate participant sites, 

where they are processed into SQL statements and 

executed. In addition, transactions are composed only of 

read and update operations to ensure that the ε-data 
concept is applied during database access. Furthermore, 

the communication framework is based on socket 

primitives, rather than CORBA, for performance reasons 
and messages are modelled as objects.  An overview of 
the architecture is shown Figure 2. 

 

7.1. Master Site 
 

The master site is implemented as a Java Servlet 

and sits on a TomCat Server. Transaction requests are 
made via HTTP and each request is handled by an 

instance of the Servlet. A Transaction request contains 

one or more data operations and each operation includes: 

the name of the record on which the operation will be 

carried out, the operation type (read/write), the value of 

the record (in the case of a write operation) and 

information about the participant site which handles the 

record. As shown in Figure 3, the master site distributes 

subtransactions to participant sites via INITIATE 

messages. The attributes of these messages are 

determined as follows: 

- the number of the global transaction is calculated as an 

addition of the arrival time of the transaction at the 

master site and a random number ranging from 0 to one 

million. 

- the number of each subtransaction is represented by 

either 0 or 1 or 2. Each number represents a participant 

site to which the subtransaction will be sent (0 for the 

participant site 1, 1 for participant site 2 and 2 for 

participant site 3). 

- the transaction deadline is calculated from the arrival 

time of the transaction at the master site and the 

execution time of all its data operations. The execution 

time of each data operation is determined by its type 

(read or write). An additional time is also included to 

cater for communication time between sites.  

 

7.2. Participant site 
 

Each participant site uses the following queues : 

- ReadyQueue contains a list of ready transactions sorted 

in ascending order, based on their deadline. Thus, the 

first element in the queue represents the transaction 

which has the nearest deadline. 
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Figure 3. The activity diagram of the master site 

 

- ImportanceQueue contains a list of ready transactions 

sorted in ascending order, based on their importance 

value. The first element in the queue represents the least 

important transaction. 

- UncertainQueue contains transaction elements which 

have completed their execution and which are waiting 

for the commit/abort decision of the master site.  

- ReceiveQueue contains newly arrived transactions at 

the participant site. 

- WaitQueue contains transactions that have been 

suspended due to conflicting data access. 
The participant site is composed of various 

modules, implementing the Overload Manager, the EDF 

Scheduler and the Data Manager. All these modules are 

defined like threads and work concurrently on the  
different queues (see Figure 4). They also share a 

connection to the local database. Besides, accesses to 

these entities are mutually exclusive to ensure data 

consistency.  The OverloadManager module applies the 
stabilization process at the arrival of new 

subtransactions stored in the ReceivedQueue, to detect 
and resolve overload situations. Every request received 

by the participant site via an INITIATE message is 
handled by an instance of ServiceThread module which 

transforms it into a transaction object and inserts it into 
the ReceivedQueue. The Scheduler and the Worker 

modules implement the EDF Scheduler. Moreover, the 

Worker acts as the data manager, during the execution of 

a subtransaction, by applying the ε-data concept to 
determine the execution pattern to adopt in the face of 

locked data items. The ResponseManager and the 

ResponseThread modules work together to inform the 
master site that subtransactions have finished their 

execution and wait for its decision to determine whether 

to commit or to abort them.  
 

7.3. Locks handling 
 

To handle locked data items, we have made use of 

two tables, finaldata and tmpdata. Permanent records 

are stored in finaldata, while temporary records are 
stored in tmpdata. Since accesses to the database are 
mutually exclusive, locked data items are determined 

during the application of the ε-data concept by querying 
the table tmpdata. This table contains records 
representing write-locked data items held by 

subtransactions during their execution. 
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Figure 4. The architecture of a participant site 

 
Besides, these records remain in the table as long as 

the subtransactions that hold them  are not committed or 

aborted yet. When a subtransaction is committed, 

records that represent its write-locked data in the 

tmpdata table are used to update the finaldata table 

before being deleted. Furthermore, when a data record is 

not write-locked, a read operation on this record is 

performed on finaldata table, otherwise it is executed on 

tmpdata table provided that the after-value of the data 

item lies in an acceptable ε-data range.  

 

8. Experimental results 
 

The application developed to evaluate the 

performance of our simulation platform under various 

working conditions is composed of three modules: 

- Execution Module, 

- Configuration Module and 

- Statistics Module. 
 

8.1. The Execution module 

 

Once started, the Execution module gets the 

transactions to be executed from a file and sends them 

simultaneously, in the form of HTTP requests, to the 

master site. It then waits for the execution results sent 

through the replies of the master site and stores them in 

a database for later analysis. Each result contains the 

following information: 

- the transaction number, 

- the execution time of the transaction, 

- the importance value of the transaction and 

-  the execution result (commit/abort). 

A name is associated to each series of execution 

during their recording in the database in order to 

distinguish them during analysis. Consequently, during 

analysis, this name enables the statistics module to 

group the series of execution according to the type of 

configuration under which they have been executed. 

 
8.2. The Configuration module 

This module enables the user to change the 

execution parameters of the distributed system. These 

parameters are presented as follows: 

- ReadTime : defines the execution time of a read 

operation, 

- WriteTime : defines the execution time of a write 

operation, 

- AddTime : defines the additional time that is added to 

the transaction execution time to determine its deadline, 

- ImpRead : defines the importance value of a 

transaction which is composed of read operations only, 

- ImpWrite : defines the importance value of a 

transaction, which is composed of write operations only, 

- ImpReadWrite : defines the importance value of a 

transaction which is composed of both read and write 

operations, 

- Epsilon : defines the degree of imprecision that a data 

record can tolerate and 

- ConsiderImp : determines whether the system should 

cater for the importance value of the transactions during 

the stabilization process. 



All these parameters allow the user to determine the 

conditions under which the transactions would be 

executed. Hence, the user can determine whether the ε-

data concept should be applied during database access or 

whether the importance value of transactions should be 

considered during the stabilization process. The user can 

also increase or reduce overload situations by 

manipulating the ReadTime, WriteTime and AddTime 

parameters. The importance value of the different type 

of transactions can also be altered through the ImpRead, 

ImpWrite and ImpReadWrite parameters. 
 

8.3. The Statistics module 
 

The purpose of this module is to analyze the series 

of execution grouped according to the type of 

configuration under which they have been executed and 

to display graphically the results of the analysis. So far, 

three types of analysis can be performed: 

- Percentage of transactions meeting their deadline, 

grouped by series of execution. 

- Percentage of transactions meeting their deadline, 

grouped by their importance value. 

- Efficiency of transactions, which is represented by (∑ 
CTi)/d where CTi represents the execution time of each 
transaction Ti and d represents the duration of the 

experiment. 
 

8.4. Simulation analysis 

 

During the simulation phase, several series of 

execution have been used to measure the performance of 

the system under different working conditions. The 

series vary in terms of the number of transactions (50, 

100, 150, 200, 250, 300)  in order to allow one to 

evaluate the behavior of each simulation configuration 

vis-à-vis a linear increase of the number of requests. The 

series have also been designed in a way to ensure several 

conflicting data access between read and write 

operations and few conflicts between write operations. 

Besides, the modifications brought by write operations 

have an ε-imprecision threshold of 10% for a better 

appraisal of the performance of the ε-data concept 

during analysis. All the tests have been carried out on a 

platform consisting of participant sites, each having a 

local database of 30 records. Also, each distributed 

transaction contains three sub-transactions, one for each 

participant site, and each sub-transaction has at most 3 

data operations. In addition, the database records are set 

back to their initial value at the end of each series of 

execution in order to ensure that each test does not take 

advantage of the modifications brought by previous 

simulations. Since transactions are sent concurrently to 

the master-site, their order of arrival and execution may 

differ from one series of execution to another. As, this 

may affect the results obtained, the series are executed 

several times for each configuration and the final result 

is computed as the mean of the results of these 

executions.  

Simulation tests were carried out, at first, to 

evaluate separately the performance of the ε-data 

concept and that of the importance value. Thereafter, 

several tests have been performed to appraise the system 

performance under various conditions.  
 

8.4.1. εεεε-data concept test. This test has been realized 

using the ε-values 0%, 5%, 10%. The Addtime 
parameter has been set to a relatively high value 

(90000) in order to prevent occurrences of overload 

situations. Hence, this ensured that transactions could be 
aborted only during data access conflicts, which allowed 

us to have a better appraisal of the performance of the 

system for each ε-value used. The results presented in 

Figure 5 show that an increase of the ε-value entails a 
net increase of the percentage of transactions meeting 

their deadline. This shows clearly that the use of ε-data 
concept augments considerably concurrent executions 

of transactions. 
 

8.4.2. Tests combining εεεε-data values and 
importance values. The tests presented in Figure 6 have 

been carried out to evaluate the system under various 

configurations, comprising the ε-data concept and that of 
the importance value. The tests have been performed 

under four configurations: 

- when the importance value of transactions is 

considered and the ε-data concept is applied, 

- when the importance value of transactions is 

considered and the ε-data concept is not applied, 

- when the importance value of transactions is not 

considered and the ε-data concept is applied and finally 

- when the importance value of transactions is not 

considered and the ε-data concept is not applied. 

Furthermore, these tests have been carried out in a 

working environment where occurrences of overload 

situations are frequent (Addtime=3500) and where the ε-

value = 10% when the ε-data concept is applied.  

The results of Figure 6 show that the system 

achieves the best performance when the ε-data concept 

is applied and when the importance value of transactions 

is considered during the stabilization process.  

9. Conclusion 

In this paper, we have focused on the design of a 

simulation platform based on a commit processing 

protocol that bounds database logical inconsistencies 

and that manages transient-overload situations of the 

distributed system. When an overload is detected within 

a participant site, the transactions that are important for 



the application are favoured. The less important ones are 

discarded from the system. ε-data concept is employed 

here as a correctness criterion to guarantee the 

consistency of the distributed database. The simulation 

platform is based on Java technology and makes use of 

MySQL databases. Transactions are sent via HTTP 

requests to the master which is implemented as a Java 

Servlet on TomCat server. Each participant site 

implements an overload manager, an EDF scheduler and 

a data manager. This platform integrates a graphical 

interface to submit transactions, a configuration module 

to fix a certain number of parameters and a statistical 

module that displays the simulation tests in a graphical 

way. The experimental results show good performances 

under overload and ε-data conditions.  As a perspective 

to our work, we intend to use a model with dynamic 

importance-values and to integrate to our protocol an 

optimistic concurrency control.  
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Figure 5. The percentage of transactions meeting their 
deadline when considering ε-data concept 
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Figure 6. Percentage of transactions meeting their 

deadline in four situations 

 


