
DISTRIBUTED OVERLOAD CONTROL FOR REAL-TIME
REPLICATED DATABASE SYSTEMS

S. Saad-Bouzefrane and C. Kaiser
CEDRIC laboratory, Conservatoire National des Arts et Métiers,

Tel: +33 (1) 40 27 25 83 - Fax: +33 (1) 40 27 22 96
292 rue Saint Martin, 75141 Paris Cédex 03, FRANCE

Email:
�
samia.bouzefrane, kaiser � @cnam.fr

Key words: Firm real-time transactions, distributed database system, commit processing, processor overload, data replica-
tion.

Abstract: In order to meet their temporal constraints, current applications such as Web-based services and electronic
commerce use the technique of data replication. To take the replication benefit, we need to develop con-
currency control mechanisms with high performance even when the distributed system is overloaded. In this
paper, we present a protocol that uses a new notion called importance value which is associated with each real-
time transaction. Under conditions of overload, this value is used to select the most important transactions with
respect to the application transactions in order to pursue their execution ; the other transactions are aborted.
Our protocol RCCOS (Replica Concurrency-Control for Overloaded Systems) augments the protocol MIR-
ROR, a concurrency control protocol designed for firm-deadline applications operating on replicated real-time
databases in order to manage efficiently transactions when the distributed system is overloaded. A platform
has been developped to measure the number of transactions that meet their deadlines when the processor load
of each site is controlled.

1 Introduction

Current applications, such as Web-based services,
electronic commerce, mobile telecommunication sys-
tem, etc., are distributed in nature and manipulate
time-critical databases. In order to enhance the per-
formance and the availability of such applications,
one of the main techniques is to replicate data on mul-
tiple sites of the network. Therefore, the major is-
sue is to develop efficient replica concurrency control
protocols that are able to tolerate the overload of the
distributed system. In fact, if the system is not de-
signed to handle overloads, the effects can be catas-
trophic and some primordial transactions of the ap-
plication can miss their deadlines. While many ef-
forts have been made in the management of trans-
actions for replicated databases in the real-time con-
text (Son, 1987), (Son and Kouloumbis, 1993), (Son
and Zhang, 1995), (Ulusoy, 1994), (M. Xiong and
Stankovic, 2002), no work deals with protocols that
manage distributed real-time databases and simulta-
neously control the overload of the system. Some re-
searches have dealt with the scheduling of tasks under
overload conditions when the real-time system is cen-
tralized such as in (Delacroix, 1996) and (Koren and

Shasha, 1995), or distributed as in (Kaiser and San-
tellani, 1998). In (Delacroix and Ménival, 2000), a
protocol that controls the processor overload has been
integrated in RT-Linux.

In this paper, we focus on the design of one-copy
serializable concurrency control protocols for repli-
cated real-time databases when the distributed system
is overloaded. The overload occurs when the compu-
tation time of transactions set exceeds the time avail-
able on the processor and then the deadlines can be
missed. Our study is concerned by ”firm-deadline”
transactions because many current applications such
as Web-based services use communication protocols
with timeout features. In firm-deadline applications,
each transaction that misses its deadline is useless and
is then aborted immediately.

We present in this paper, a replica concurrency-
control protocol that manages the overload on each
site of the distributed system by choosing only the
”most important” transactions with respect to the ap-
plication transactions, to maintain their execution ;
the other transactions are simply aborted. An im-
portance value is defined for each transaction in or-
der to distinguish the most important transactions for
which it is essential to maintain the execution from

1

the rest of transactions that may be aborted. Our aim
is to alleviate the processor load. The importance cri-
terium is used only to control the processor load since
that ready transactions of each site are scheduled us-
ing a local scheduling algorithm such as EDF algo-
rithm (Liu and Leyland, 1973). Our protocol RC-
COS (Replica Concurrency-Control for Overloaded
Systems) augments MIRROR (Managing Isolation in
Replicated Real-time Object Repositories) (M. Xiong
and Stankovic, 2002) a concurrency control protocol
designed for replicated real-time databases that adds
data conflict-resolution mechanisms to the optimistic
two-phase locking (O2PL) (Carey. and Livny, 1991)
designed for a non real-time context. An experimental
platform is being developped to implement RCCOS
and MIRROR protocols in order to compare their per-
formance under conditions of overload.

The remainder of this paper is organized as follows
: Section 2 presents the related work. In Section 3,
is described the model used whereas in Section 4 are
described RCCOS protocol and MIRROR protocol on
which it is based. The protocol implementation is
described in Section 5. Some elements of proof are
given in Section 6. Before concluding the paper in
Section 8, we present, in Section 7, some performance
results measured on an experimental platform that has
been developped for this aim.

2 Related work

The protocols designed to manage distributed
transactions in replicated databases (Anderson et al.,
1998), (Agrawal et al.,), (Bernstein et al., 1987),
(Kemme and Alonso, 1998), (Pedone et al., 1998)
are not suitable to real-time context because they
are prone either to blocking or to message overhead
or to both. This is incompatible with the respect
of real-time constraints. Authors (eg., (Son, 1987),
(Son and Kouloumbis, 1993), (Son and Zhang, 1995),
(Ulusoy, 1994)) have then begun to work on con-
currency control for replicated Distributed Real-Time
Data Base Systems (DRTDBS) and have designed
protocols that take into account the transactions real-
time constraints. For example, a multiversion tech-
nique is proposed in (Son, 1987) to increase the de-
gree of concurrency. In (Son and Kouloumbis, 1993),
(Son and Zhang, 1995), a real-time scheduling is in-
tegrated in replication control. However, there is no
study on how to control concurrency of transactions
when the system is overloaded and to reach the dou-
ble objective of any DRTDBS, which is : to main-
tain the database consistency while allowing to each
transaction to meet its deadline. While no work has
dealt with the management of real-time transactions
in overloaded systems, some authors have designed

real-time scheduling algorithms that are resistant to
the effects of system overload (Cottet et al., pear).
In fact, some algorithms deal with periodic task sets
and allow the system to handle variable computations
times which cannot always be bounded (Atlas and
Bestavros, 1998), (Mok and Chen, 1997), (Buttazo.
et al., 1998). Other algorithms deal with hybrid task
sets where tasks are characterized with an importance
value (Delacroix, 1996), (Koren and Shasha, 1995),
(Kaiser and Santellani, 1998). All these policies deal
with overloads to provide deadline missing tolerance.
In (Baruah and Haritsa, 1997), Baruah et al. propose
ROBUST an on-line uniprocessor scheduling algo-
rithm that performs for a large range of slack factors
during overload. Slack factor is defined as the ratio
between the task deadline and its execution time.

Among the techniques that use the concept of im-
portance, Kaiser et al., in (Kaiser and Santellani,
1998), have proposed a protocol to control the tasks
load in a distributed real-time system. Tasks are as-
signed values used to define the importance degree of
each task with respect to the application-tasks set. In
order to decrease the tasks load, only the tasks de-
clared ”important” by the protocol have their execu-
tion maintained, the other tasks considered as less im-
portant are aborted. Delacroix et al., in (Delacroix and
Ménival, 2000), have implemented an overload con-
troller that has been integrated to RT-Linux. In their
task model proposed, each task is made up of several
execution modes : the normal mode which is a mode
executed when the task begins to execute. It takes care
of the normal execution of the task. And the survival
modes which are executed when the task is cancelled
by the overload resorption or when it misses its dead-
line.

3 The model

In our model, we consider only firm real-time trans-
actions. In other words, only transactions that fully
complete execution before their deadlines are consid-
ered to be successful, whereas transactions that miss
their deadlines are considered worthless and are im-
mediately discarded without being executed to com-
pletion (Haritsa et al., 1991).

The distributed system is composed of :
- a master site on which each global transaction is
submitted and
- sites that have replicas of parts of a distributed
database.

Each submitted transaction ��� is decomposed into� subtransactions ��� ��� that are sent to sites called
participant sites. All these subtransactions are
mandatory, that is, ��� commits only if all its subtrans-

2

actions commit locally within their sites. On each par-
ticipant site, subtransactions are managed by a cohort
process. The participant site of a subtransaction ��� � �
is the one that manipulates the least important transac-
tions among the sites that have replicas of data-items
needed by � � ��� . The sites that are not participant sites
but that have replicas of the database are called up-
daters (see Figure 1). All the sites, including the mas-
ter, are partially connected, but the graph representing
the network is a connected graph, that is, from any
site it is possible to access another site directly or in-
directly. A global transaction is characterized by its
arriving time and its deadline while, within a partici-
pant site, a subtransaction is characterized by its arriv-
ing time, its execution duration and its deadline. The
execution time must be lower than the relative dead-
line. Moreover, the subtransaction deadline is identi-
cal to the deadline of the global transaction to which
the subtransaction belongs.

Figure 1: A replicated distributed database system

4 Protocol description

Since our protocol RCCOS augments the MIRROR
protocol in order to handle the distributed-system
overload, we first review the principle of MIRROR
before describing the proposed protocol.

4.1 MIRROR protocol

The MIRROR protocol described in (M. Xiong and
Stankovic, 2002) extends the implementation strat-
egy for centralized optimistic concurrency-control
algorithms proposed in (Huang et al., 1991) to handle
data distribution and replication.
Transactions follow three steps during their execution
: read, validation and write. In the read phase, cohorts
acquire locks to access data items on their local sites.
The updating of replicas is deferred to the end of
transaction, that is, to the commit process.
In the validation phase, a cohort that receives a
PREPARE message from its master begins a local
validation. If it fails, it sends an ABORT mes-
sage to the master. Otherwise it sends PREPARE
messages containing relevant updates to its updater
sites. Each updater site that receives a PREPARE
message requests write locks to update the data in its
local work-area. As soon as the updates have been
performed, a PREPARED message is returned to the
cohort. The cohort sends a PREPARED message to
the master after it receives PREPARED messages
from all its updaters. As soon as the master receives
PREPARED messages from all its cohorts, it vali-
dates globally the transaction by sending COMMIT
messages to all the cohorts.
The write phase begins when a cohort receives a
COMMIT message. After a cohort writes on the
database, it sends COMMIT messages to its updaters
to update the database replicas.
To resolve data conflict, two mechanisms are
proposed by MIRROR based on the following
observation : ”it is very expensive to abort a trans-
action when it is near to completion because all the
resources consumed by the transaction are wasted”
(M. Xiong and Stankovic, 2002).
- Priority Blocking (PB) mechanism : any transac-
tion that cannot acquire a lock is inserted in a lock
request queue until the required lock is released. The
queue is ordered by transaction priority. - Priority
Abort (PA) mechanism : if a transaction � has
higher priority than

�
and � requests a lock already

held by
�

then instead of aborting
�

in order to
execute � as it is done usually in real-time systems
;

�
will resume its execution if

�
is executing in its

later stages. In this case, � will not wait too long
since

�
is ending its execution. On the other hand, if

�
is executing in its first stages then it is aborted in

order to execute � .

The rule introduced by Xiong et al. in (M. Xiong
and Stankovic, 2002) allows to use PA if the lock
holder has not reached yet a demarcation point and
to use PB after the demarcation point is reached. The
demarcation point corresponds :
- to the reception from the master of a PREPARE

3

message for a subtransaction � � ��� , if the receiver is a
participant site and
- to the acquisition of all the local write locks by the
local subtransaction if the site is a replica updater.

4.2 RCCOS Protocol

Our protocol is similar to MIRROR protocol under
normal (non-overload) conditions. But when the sys-
tem is overloaded because on each site, the compu-
tation time of transactions set exceeds the time avail-
able on the processor, we have to favour the execu-
tions of the most important transactions according to
the application-transactions set. The favoured trans-
actions are those which undergo less timing faults and
which are less dropped. It is then necessary to have
a means to designate the most important transactions.
This means is presented in the form of a parameter
called importance value, as described in (Kaiser and
Santellani, 1998) for distributed real-time systems.

4.2.1 Transaction Importance

We associate, to each global transaction, a positive
integer that represents the importance value of the
transaction according to the application-transactions
set. The importance value is intrinsic to the applica-
tion, so it can be fixed by the application developer.
Each transaction submitted to the master is charac-
terized by a deadline which defines its urgency and
by a value which defines the importance of its exe-
cution, with respect to the other transactions of the
real-time application. The importance (or criticality)
of a transaction is not related to its deadline; thus two
different transactions which have the same deadline
may have different importance values. We define the
importance value of a ready-transactions queue as the
importance value of the most important transaction of
the queue. If ����� ���	��
 �
 �� is the ready-transactions
queue of a site � , then the importance value of the
site denoted ����� � is : ����� � = ����� (����� ���	��
 �
 � �)=
Max

� ����� (� �) � ; � � ��������� ������
 �
 ��� .

4.2.2 RCCOS Protocol Principle

RCCOS protocol is applied to the distributed DBMS
(Data Base Management System) model described in
section 3 It is upstream of MIRROR protocol. When
the master receives a transaction ��� to execute, it splits
it into subtransactions. For each subtransaction, it
tries to find a participant site. Since the database is
replicated on many sites, in normal (non-overload)
situation, for each subtransaction ������� any site among
those that have replicas of the data items needed by
� � � � can be chosen to designate the participant site.
But when the system is overloaded, the first step is

to use a placement policy based on the importance
concept. In other words, before executing subtrans-
actions we have to find for each subtransaction � � � �
the participant site that manipulates the least impor-
tant transactions, among ������ "! sites that are candi-
dates to be the cohorts. Particularly, if the importance
values of the � ��� "! sites, collected by the master, are
equal to the importance value of the global transac-
tion � � then � � is aborted by the master because the
importance values must be distinct within a site so as
to distinguish between transactions with high impor-
tance values from transactions with low importance
values. The site that has the least important transac-
tions is chosen to accept the execution of � � ��� , hence
to become the cohort , while the remainding sites that
have replicas of the database will be the updaters. Our
choice is motivated by the fact that, in overload condi-
tions, we have to carry out the most important trans-
actions in the system : it is then better to submit a
subtransaction to a site that handles transactions with
low importance values than the reverse.
In order to find a possible cohort for a subtransaction
� � ��� , the master broadcasts an INITIATE message as
well as the global transaction � � to all the sites that
have replicas of the data items needed by � � ��� . When
a site receives an INITIATE message, it sends its im-
portance value. As soon as the master has collected
the importance values of all the concerned sites, it
declars as a cohort the site that has the lowest impor-
tance value by sending to it a COMPUTE message in
order to execute � � � � .
The site that receives a COMPUTE message is con-
sidered as the cohort. The other sites that fail to be the
cohorts will be the updaters. The cohort, in this case,
has to stabilize the new ready-transactions queue. The
ready queue contains current ready transactions as
well as the subtransaction � ����� added to the queue
during the treatment of the COMPUTE message. The
stabilization process consists in, when the system is
overloaded, privileging the transactions that have high
importance values. The transactions that have low
importance values are released from the queue and
aborted one after the other until the processor laxity
is a positive value. The processor laxity, at time # ,
is the maximum time the processor may remain idle,
after # , without causing a transaction to miss its dead-
line.
In order to stabilize the ready queue, the transaction
that will be aborted is chosen among transactions with
low importance values while applying PA real-time
mechanism introduced by MIRROR protocol. Hence,
the overload is resorbed by a rejection policy based
on removing transactions that have not reached their
demarcation point and that have minimal importance
values. A site considered as the cohort for a sub-
transaction can be, at the same time, the updater for
another subtransaction. Therefore, the demarcation

4

point for a subtransaction may correspond to the re-
ception of PREPARE messages or to the acquisition
of all the required write locks depending on whether
the site is viewed as the cohort or as the updater for
this subtransaction.

5 RCCOS Algorithm

The algorithm uses some variables and data struc-
tures. We describe them in the following subsections.

5.1 Notations

- � � : denotes a global transaction submitted to the
master site. It is composed of � subtransactions de-
noted by

�
� ����� , � � ��� , ..., � � ��� � that will be executed

on � participant sites.
- ����� � : a positive integer value that denotes the im-
portance value of � � . The importance values of the
subtransactions are equal to the importance value of
the global transaction to which they belong. Hence,
����� ���� "! = ����� �� ����� �

1, � � .
- ����� � : is the importance value of a site � . It cor-
responds to the highest importance value of the ready
transactions within � .
- � ��� � �� : denotes the absolute deadline of � � .
� ��� � �� is also the deadline of the subtransactions of
� � .
- 	 ��� ! : denotes a set of sites that have replicated
data items needed by ��� ��� . This set includes the co-
hort and the updaters.
-
�� � ����� ��� "! : is the lowest importance value of
	 ��� "! and �� ��� is the site that has
�� � ����� ��� "! as
the importance value.
- ����� ���	��
 �
 � : is a list that contains ready trans-
actions. Each element of the queue has the struc-
ture of ����� ��� � ��� � � as described below. The trans-
actions are sorted by increasing their absolute dead-
lines. That is, the highest-priority transaction has the
nearest deadline.
- ����� ��� � ��� � � : is the structure of each element
of the ����� ���	��
 �
 � (�
�� # ��� � � : the subtransaction
concerned, ����� � ��� � ��� � � : the global transaction to
which belongs �
�� # ��� � � , � � ��� ��� � : the deadline of
�
�� # ��� � � , ������	�� ��� ��� � � : initialized to the total
execution time of �
�� # ��� � � and is decreased during
the execution to store the pending execution time of
�
�� # ��� � � , � ��� # : the next element in the queue).
- � ��������# � � � � ��
 �
 � : contains ready transactions
that are sorted by increasing their importance values,
that is, the first transaction of the queue is the least im-
portant one. Each element of the queue has the struc-
ture of � ��� � ��� � � as described below.
- � ��� � ��� � � : is the structure of each element of the
� ��������# � � � � ��
 �
 � (�
�� # ��� � � : the subtransaction

concerned, ����� � ��� � ��� � � : the global transaction to
which belongs �
�� # ��� � � , ����� : the importance value
of �
�� # ��� � � , � ��� # : the next element in the queue).
- �
 ����� � # � ��� ��� : is the current ready transaction
dealt with when reading ����� ���	��
 �
 � elements.
- � �����
 # ��� � � : is an integer value that cumulates
the pending execution time of treated transactions.
-
� ��� � # � ��� � � : is an integer value that represents the

pending execution time of the transactions that will be
aborted in order to alleviate the processor load.
- � � � ��� � : an integer value that counts the number of
messages not received yet.

5.2 Exchanged messages

- INITIATE(��� � � , � �) : is a message sent by the mas-
ter to find the site that manipulates the least important
transactions, in order to be the cohort.
- IMP(� � ��� , � � , ����� �) : is a message sent by a site
� to inform the master about its current importance
value.
- COMPUTE(� ��� � , � � , ����� � , ����� � �) : this mes-
sage is sent by the master to the cohort in order to
trigger the execution of � ����� on the cohort.
- ABORT(� � � � , � �) : if the stabilization mechanism
chooses � ��� � as a victim, an ABORT message is sent
to the master that has to abort ��� after being sent
ABORT messages to the other cohorts. The cohorts,
of course, propagate this message to the updaters if
the updates have been prepared. We note that no mes-
sage ABORT is sent by the cohort if � � � � misses its
deadline because the deadline expiration is detected
locally on the master, on the cohorts and on the up-
daters.

5.3 Text of the Algorithm

In order to designate a cohort for a subtransaction
� � ��� , i.e., a site that has the lowest importance value
in order to execute � ��� � of a global transaction ��� ,
the master broadcasts INITIATE messages to all the
sites that have replicas of data items needed by ��� � � .
Figure 2 summarizes the steps of the algorithm by
a diagram and the details of the algorithm are given
below. We first describe the behaviour of the master
then that of the cohort.

Within the master :

WHEN a transaction � � composed of � subtransac-
tions is submitted to the master :
DO
����� �

1, � � :
BEGIN� � � ��� � ��� ! = Cardinal (��� "!);

�� � ����� ��� "! =+ ! ;

5

� � � 	 ���� "! :
send INITIATE(� ��� � , � �); /* broadcasts

INITIATE messages to all the replicas sites */
END

END DO

WHEN the master receives IMP(� ��� � , � � , ����� �)
from a site � :
DO� � � ��� � ��� "! = � � � ��� � ��� ! - 1;

1 IF (����� � �� ����� �) AND (����� � ¡
�� � ����� ��� !)
THEN

�� � ����� ��� "! = ����� � ;
� ��� = � ;

2 ENDIF
IF (� � � ��� � ���� "! = 0)

THEN
/* all the IMP messages have been received */

send COMPUTE(��� ��� , � � , � ��� � �� , ����� ��)
to � � � ;

/* �� ��� is the cohort of � � ��� */
ENDIF

END DO

Within any site :

WHEN a site � receives INITIATE(� ��� � , � �) from
the master :
DO

/* returns its importance value */
����� � = Max

� ����� (� � �) � � � � � ������� ���	��
 �
 ��� ;
send IMP(� � ��� , � � , ����� �) to the master;

END DO

Within the cohort :

WHEN the cohort receives COMPUTE(����� � , � � ,
� ��� � � , ����� �) from the master :
DO

/* stabilizes the local ready queue */
=current-time();
insert (� � ��� , � � , � ��� � �) in ����� ���	��
 �
 � ;
insert (� � ��� , � � , ����� ��) in � ��������# � � � � ��
 �
 � ;
��� = OVERLOAD-PROCEDURE(#);
/* ��� stores the overload value returned */
IF (��� �� 0)
THEN� ��� ��# � ��� � � = 0;

3 # ��� � � =first transaction of � ��������# � � � � ��
 �
 � ;
WHILE (# ��� � � �� null)
DO

4 IF (# ��� � � has not reached its demarcation
point) THEN

release # ��� � � from � ��������# � � � � ��
 �
 � ;
release # ��� � � from ����� ���	��
 �
 � ;
abort # ��� � � ;
send ABORT(# ��� � ��� �
�� # ��� � � , # ��� � ��� ����� � ��� � ��� � �)

to the master ;� ��� ��# � ��� � � = � ��� ��# � ��� � � + # ��� � ��� ����� 	�� ��� � � � � ;
IF (

� ��� ��# � � � � �	� ���) THEN exit;
ENDIF

ENDIF
��� � � = # ��� � ��� � ��� # ;

5 END WHILE
ENDIF

END DO

OVERLOAD-PROCEDURE (integer t)
BEGIN
int ����� ��
 ���
 � =0;
int � �����
 # � � � � =0;
�
 ����� � # � ��� ��� = first transaction of ����� ���	��
 �
 � ;
WHILE (�
 ����� � # � ��� ��� �� null)

DO
/* if the laxity condition of �
 ����� � # � ��� ��� is a

negative value */
IF (� �����
 # ��� � � +

�
 ����� � # � ��� ��� � ����� 	�� ��� ��� � � �
�
 ����� � # � ��� ��� � � � � ����� � - #)

THEN /* memorize the overload value */
����� ��
 ���
 � = ����� ��
 ���
 � +
�
 ����� � # � ��� ��� � ����� 	�� ��� ��� � � ;

ELSE � �����
 # ��� � � = � �����
 # � � � � +
�
 ����� � # � ��� ��� � ������	 � ��� ��� � � ;
ENDIF
�
 ����� � # � ��� ��� = �
 ����� � # � ��� ��� . � ��� # ;

END WHILE
return(� ��� ��
 ���
 �);
END

6 Experimental platform

As it is shown in Figure 3, transactions are submit-
ted via Web pages to the master which trigger sub-
transactions on different replica sites while handling
the sites overload. On each site, there are three mod-
ules :
- the scheduler module that uses EDF algorithm to
schedule local subtransactions,
- the replicas data manager that resolves data conflict
and that handles replicated data and
- the overload controller module that implements RC-
COS protocol.
This platform has been developped in Java and
JDBC/ORACLE. The first experiments (see Figure 4)
that have been done show that among transactions that
meet their deadlines, the majority concerns transac-
tions with high importance values. This behaviour
can be explained as follows : the great percentage
of deadline meeting is due to transactions with high
importance values because RCCOS favours this kind

6

Figure 2: The steps followed to place a subtransaction on a
cohort

of transactions. The little percentage of transactions
with low importance values that meet their deadlines
is due to the transactions that have reached their de-
marcation point, hence they are not aborted when ap-
plying stabilization process.

7 Conclusion and future work

In this paper, we have addressed the problem of
managing firm-deadlines transactions that access
replicated data in a distributed system that may be
overloaded. For this environment in which many
current time-critical applications operate, specially
Web-based services, we proposed a novel protocol
called RCCOS that can be easily integrated in current
systems to handle overload processors without
altering the database consistency which is the main
objective of DRTDBSs. The main idea of the protocol
is to associate an importance value to each submitted
transaction in order to favour, when the system is
overloaded, the executions of the most important
transactions according to the application-transactions
set. In overload conditions, each subtransaction
of the global transaction is executed on a site that
has the lowest importance value among those that
have replicas of the data items needed by the sub-
transaction. Moreover, the participant site has to
stabilize its ready queue, that is, it has to manage the
processor overload by maintaining the execution of
the most important transactions and by aborting the

Figure 3: The different modules of the experimental plat-
form

others. Priority Abort real-time mechanism of MIR-
ROR protocol has been added to RCCOS protocol
when proceeding to stabilization so as to favour the
deadline meeting for the transactions that have high
importance values and/or that are near to completion.
The first experiments that have been done on our
platform show that the majority of transactions that
meet their deadlines have high importance values.
We are currently working on integrating MIRROR
protocol into our simulation platform to investigate
the performance improvements that may arise from
RCCOS protocol when comparing the performance
of MIRROR and RCCOS protocols according to the
same processor worload. We will also investigate
mechanisms to minimize communications and re-
sponse times between the cohort and the updaters
when managing real-time database replicas.

Aknowledgement
Special thanks to SAAD Abdelkrim who helps us in
the development of the experimental platform.

REFERENCES

Agrawal, D., Abbadi, A. E., and Steinke, R. C. Epidemic
algorithms in replicated databases (extended abstract).
In Proc. of the Sixteenth ACM SIGACT-SIGMOD-

7

SIGART Symposium on Princicples of Databases Sys-
tems.

Anderson, T., Breitbart, Y., Korth, H. F., and Wool, A.
(1998). Replication, consistency and practically: Are
these mutually exclusive? In Proc. of the ACM SIG-
MOD International Conference on Management of
Data, pages 484–495, Seattle, WA, USA.

Atlas, A. and Bestavros, A. (1998). Statistical rate mono-
tonic scheduling. In IEEE Real-Time Systems Sympo-
sium.

Baruah, S. K. and Haritsa, J. R. (1997). Scheduling for over-
load in real-time systems. In IEEE Trans. on Comput-
ers, volume 46(9), pages 1034–1039.

Bernstein, P., Hadzilacos, V., and Goodman, N. (1987).
Concurrency control and recovery in database sys-
tems. In Addison Wesley, Massachussets.

Buttazo., G. C., Lipari, G., and Abeni, L. (1998). Elastic
task model for adaptive rate control. In IEEE Real-
Time Systems Symposium, Madrid.

Carey., M. and Livny, M. (1991). Conflict detection trade-
offs for replicated data. In ACM Transactions on
Database Systems, volume 16, pages 703–746.

Cottet, F., Delacroix, J., Kaiser, C., and Mammeri, Z. (to
appear). Scheduling in Real-Time Systems. Edition J.
Wiley and Son.

Delacroix, J. (1996). Towards a stable earliest deadline
scheduling algorithm. In Real-Time Systems Journal,
volume 10(3), pages 236–291.

Delacroix, J. and M énival, C. (2000). Int égration d’un
contrôle de charge par importance au sein du système
rt-linux. In RTS’2000 Conference, pages 47–63, Paris.

Haritsa, J., Carey, M. J., and Livny, M. (1991). Earliest
deadline scheduling for real-time database systems. In
1991 IEEE Real-Time Systems Symp.

Huang, H., Stankovic, J. A., Ramamritham, K., Towsley,
D., and Purimetla, B. (1991). Experimental evaluation
of real-time optimistic concurrency control schemes.
In the 17th International Conference on Very Large
Data Bases, Barcelona.

Kaiser, C. and Santellani, C. (1998). P étrarque. une plate-
forme d’exp érimentation pour l’ordonnancement
temps r éel strict d’applications r éparties. In Technique
et Science Informatique Journal, volume 17(1), pages
39–62.

Kemme, B. and Alonso, G. (1998). A suite of database
replication protocols based on group communication
primitives. In the International Conference on Dis-
tributed Computing Systems, pages 156–163, Amster-
dam.

Koren, G. and Shasha, D. (1995). Dover : An optimal on-
line scheduling algorithm for overloaded uniproces-
sor real-time systems. In SISAM J. Comput., volume
24(2), pages 318–339.

Liu, C. and Leyland, J. (1973). Scheduling algorithms for
multiprogrammig in hard real-time environment. In
Journal of the ACM, volume 20(1).

M. Xiong, K. Ramamritham, J. H. and Stankovic, J. A.
(2002). Mirror: A state-conscious concurrency con-
trol protocol for replicated real-time databases. In In-
formation systems, volume 27(4), pages 277–297. El-
sevier Science Publishers.

Mok, A. M. and Chen, D. (1997). A multiframe model
for real-time tasks. In IEEE transactions on Software
Engineering, volume 23(10), pages 635–645.

Pedone, F., Guerraoui, R., and Schiper, A. (1998). Ex-
ploiting atomic broadcast in replicated databases. In
the 4th International Euro-PAr’98 Conference, pages
514–520, Southampton. Lecture Notes in Computer
Science 1470.

Son, S. (1987). Using replication for high performance
database support in distributed real-time systems. In
the 8th IEEE Real-Time Systems Symposium, pages
79–86.

Son, S. and Kouloumbis, S. (1993). A real-time syn-
chronization scheme for replicated data in distributed
database system. In Information Systems, volume
18(6).

Son, S. and Zhang, F. (1995). Real-time replication control
for distributed database systems: Algorithms and their
performances. In the 4th International Conference on
Database Systems for Advanced Applications, Singa-
pore.

Ulusoy, O. (1994). Processing real-time transactions in a
replicated database system. In Distributed and Paral-
lel Databases, volume 2, pages 405–436.

Figure 4: The percentage of transactions (with high impor-
tance values) that meet their deadlines when overloading the
system

8

