Termination Analysis of
Active Rules with Priorities

Alain Couchot

Laboratoire Cedric-Isid,
Conservatoire National des Arts et Métiers, France
couchot - a@vanadoo. f r

Abstract. This paper presents an algorithm for termination static analysis of active rules
with priorities. Active rules termination is an uncecidable problem. Several recent works
have suggested proving termination by using the concept of triggering graph. We propose
here a refinement of these works, exploiting the priorities defined between rules. We
introduce the notions of path set and destabilizing set. We show how to determine the
priority of a path set. The triggering graph can then be reduced thanks to considerations
about priorities of the path sets. Much more termination situations can be detected, since
priorities are exploited.

K eywor ds. Active databases. Termination. Rules. Static analysis.

1 Introduction

Databases are now endowed with a reagent behavior. They can react to variations
of the environment, and modify the stored data according to these variations. This
results from two technological tendencies: on the one hand, the devel opment of the
rules languages (production rules, active rules, deductive rules), and, on the other
hand, the development of oljed oriented tedhnologies. Rules languages and ohjed
oriented technology play additional roles : the ohjed oriented technology all ows to
integrate into the same entity the structural aspeds and the behavioral aspeds, and
the rules languages allow to describe the reaction of an entity acoording to its
environment.

However, although the vocation of rules is to facilitate design and programming,
writing arules st is gill adelicate work, reserved for spedalists. Indeed, arules st
is not a structured entity : the global behavior of a rules &t is difficult to foresee
and to control [AWH92]. Two important points were underlined by research works
concerned with rules : the termination problem (the rules exeaution can sometimes
be infinite), and the confluence probem (the same rules do not necessarily provide
the same results, according to the order of rules exeaution).

We are here interested in the active rules termination problem. The active rules are
structured according to paradigm Event-Condition-Action [DBC88]. Event is an

immediate fact, which can arise inside or outside of the system. Condition is a
predicate or a request on the database. Action is generally composed of a sequence
of database updates, or of a procedure containing database updates. Coupling
modes alow to specify the evaluation moment of the Condition part, or the
execution moment of the Action part. The most frequent modes are immediate
mode and deferred mode. A rule can be triggered by a single occurrence of an
event: instance oriented rule, or by a set of occurrences of an event: set oriented
rule.

In the section 2, we present the previous work on the subject; in the section 3, we
expose a motivating example; in the section 4, we introduce the path sets of a rule
and the path sets of a path; in the section 5, we propose a reduction of the
triggering graph based on the consideration of the prioritites defined for the active
rules; the section 6 ends.

2 Previousworks

The active rules termination is an undecidable problem, except when rules
languages with very limited possibilities are used [BDR98]. The previous works on
the active rules analysis generally propose criteria supplying sufficient conditions
allowing to guarantee termination.

Some methods develop trandation tools from active rules to rewriting terms
systems [KU94], to Condition-Action rules [BWOOQ], or to deductive rules [CT97,
FG98]. However, the application of these methods is often complex, cannot be
automated, and is reserved for relational databases.

The majority of works on active rules termination exploit the concept of triggering
graph.

[CWOQ] introduced, for the first time, the notion of triggering graph ; thisnotion is
clarified by [AWH92] : a such graph is built by means of a syntactic analysis of
rules ; the nodes of the graph are rules. Two rules rl1 and r2 are connected by a
oriented edge from r1 to r2 if the action of r1 can provoke a triggering event of r2.
The presence of cyclesin a such graph means a risk of non-termination of the rules
set. The absence of cycles in the triggering graph guarantees the termination of the
rules set. However, the possible deactivation of the rule condition is not taken into
account by this analysis. A finer analysisis led by [BCP95, BCP98] thanks to the
activation graphs: in an activation graph, rules r1 and r2 are connected by a
oriented edge from r1 to r2 if the action of r1 can make TRUE the condition of r2,
and a rule r is connected with itself if the condition of r is still TRUE after
execution of the action of r. Non-termination involves then the presence of cyclesin
the triggering graph and in the activation graph. An algorithm for building
activation graphsis proposed by [BW94] in arelational context.

This technique is generalized by [LL97] : the concepts of activator and of
deactivator are proposed. Therulerl is a deactivator of the ruler2 if the action of
r1 makes always FAL SE the truth value of the condition of r2. Therulerlisan
activator of the rule r2 if the action of r1 can change the truth value of the
condition of r2 from FALSE in TRUE. A ruler islabeled finite if every activator
of r islabeled finite, and if every cycle containing r also contains a deactivator of r.

[VGD97] studies the influence of composite events on the termination property: the
triggering graphs are modified, in order to take into account the composite
conjunction events. The modified triggering graphs hold two types of edges : the
total edges (thereisatotal edgefromrltor2 if theaction of r1 can trigger r2), and
the partial edges (there is a partial edge from r1 to r2 if the action of r1 contains
one of the primitive events of r2).

The Refined Triggering Graph method [KU96, TUDK97] brings a complement to
the analysis of the triggering graphs. A edge (r1, r2) can be removed from the
triggering graph in the following circumstances : the post-condition of rl is
combined with the condition of r2 by means of the unification of the variables
appearing in the action of r1 and the variables appearing in the event of r2 ; if the
obtained formula (qualified as triggering formula) can be never satisfied, the edge
(r1, r2) can be removed. But variables appearing in the triggering formula must
not be updated by rules actions. [LL98] widens the principle of the triggering
formulae (generalized triggering formulae) as follows : if the rule r1 can indirectly
trigger the rule r2 along a path P, a triggering formula is built along the path P.
[LL98] proposes to remove a path instead of removing a node. For this, a new
triggering graph is built, equivalent to the initial graph. [LL99] brings a new
extension : the generalized triggering formulae are studied for a path, which
corresponds to a cycle executed (k+1) times: if the triggering formula can never be
satisfied, the cycleiscalled ak-cycle. A method is proposed to unroll ak-cycle : an
equivalent triggering graph is built. [Cou02] generalizes the notion of triggering
formula, allowing to include attributes which can be updated by rules actions.

[CouOla] improves [VGD97] and [LL98, LL99], introducing the notion of
composite path. A composite path is composed of paths, linked by the operators
AND and OR. The notion of composite path allows to take into account for
termination analysis at the same time both the deactivation of a overall condition of
arules path and the conjunction events.

[WH95] explaits the principle of monotonous bounded operations to remove some
edges of the triggering graph : for example, if a rule action always deletes an object
of a class, and if no rule action can create an object of this class, the delete
operation is bounded, and the corresponding rule can only be executed a finite
number of times. This principle is resumed and detailed by [DHOQ], that exposes a
method to calculate the maximal number of iterations of a cycle, by using some
limits of the database.

[BCPI6] takes place in a context of active rules modular design, and introduces a
behavioral stratification of the active rules : one stratum is a set of rules carrying
out some task, whaose progress can be measured by a metrics. [CouO1b] proposes
the notion of public event and private event, in order to guarantee the termination
of arules set in amodular design context.

Priorities are considered by [BCP95]. A sdlf-deactivating rule R can be removed
from the triggering graph, if the priorities of the rules included in the paths from R
to the rule which can reactivate the condition of R (the paths do not include R) is
strictly lower than the priorities of the rulesincluded in the paths from R to the rule
which can trigger R (the pathsinclude R).

Our work is based on the following observation : priorities between rules can be
used to refine termination analysis. This observation has just partialy been taken
into account by [BCP95], within the framework of the self-deactivating rules. We
show in this paper that much more termination cases can be detected using the
priorities between rules.

The aim of our work is to reduce the triggering graph, thanks to the priorities of the
rules. We first introduce the notions of path set of a rule and path set of a path.
The path set includes the paths which are executed before a rule (or before a path).
We determine then the priority of a path set. We also propose the notion of
destabilizing set of a path. The destabilizing set of a path includes the rules which
oppose the deactivation of the path. Thanks to the priorities of a path set, we can
sometimes reduce the destabilizing sets of a path. This can lead to reduce the path
set of arule. When the path set of aruleis empty, the rule can be removed from the

triggering graph.
3 Motivating example

We propose in this section an example which illustrates the motivation of our work.
We take place within the framework of a banking application. An object oriented
database is used. Four active rules are defined. We suppose that the coupling modes
of therules areimmediate.

Rule R;: When the loan capacity of an account is updated, if the loan rate of the
account is equal to "low", the alowed overdraft of the account is set to "low". The
priority of thisruleis strong.

Rule R;: When the allowed overdraft of an account is updated, if the loan rate of
the account is equal to "high", the loan capacity of the account is set to "high". The
priority of thisruleis strong.

Rule Ry: When the loan capacity of an account is updated, the loan rate of the
account is set to "low”. The priority of thisruleis weak.

Rule R;: When the allowed overdraft of an account is updated, the loan rate of the
account is set to "high". The priority of thisrule is weak.

Rule Ry

Priority: strong (numeric value: 2)

Event: account_capacity update event(A;)
Condition: Aj.rate="low"

Action: Aj.overdraft = "low"

Raised event: account_overdraft_update event(A;)
Rule R,

Priority: strong (numeric value:2)

Event: account_overdraft_update _event(A,)
Condition: A.rate = "high"

Action: A,.capacity = "high"

Raised event: account_capacity update event(A,)
Rule: Rs

Priority: weak (numeric value: 1)

Event: account_capacity update event(As)
Condition: -

Action: Ag.rate = "low"

Raised event: account_rate update event(Ag)
Rule R,

Priority: weak (numeric value: 1)

Event: account_overdraft_update _event(A,)
Condition: -

Action: A4.rate = "high"

Raised event: account_rate update event(A,)

Let us try to guarantee termination of this rules set using the algorithms proposed
in the literature. The triggering graph is represented by figure 1.

The Refined Triggering Graph method [KU96, TUDK97] is unable to remove any
edge of the cycle (R, - R, - Ry). Indeed, the attribute rate can be updated by rule
actions and cannot be included in a triggering formula.

If we use the improvement of the RTG method proposed by [Cou02] (which allows
to include in a triggering formula attributes which can be updated by rule actions),
we obtain the following triggering formula for the edge R; - Ry:

((Ag.rate = "low") O ((A; = Ay) O (Ag.rate = "high"))) O (A = Ay) O (Axrate =
"high")

This formula can be satisfied, and termination cannot be guaranteed.
The algorithm [BCP95], which considers rules with priorities, just considers self-

deactivating rules. It cannot guarantee termination in this case, sincenoruleis sdlf-
deactivating.

R1 R2

R4 R3

Figure 1. Triggering graph.

However, this rules set cannot exhibit an infinite processing. Let us suppose that an
infinite process occurs. There is an infinite number of instances of R; and an
infinite number of instances of R, (else, R; or R, would be removed from the
triggering graph, and the process would be finite).

But no instance of R; can occur between two instances of Ry, and no instance of R,
can occur between two instances of R;. Indeed, let us take place at the moment
where an instance of R, is evaluated and executed. At this moment, R, is not
triggered (else R, would be evaluated and executed before Ry). If R; isnot triggered,
R; is not triggered. Since the action of R, triggers no rule, the rules process stops.
We can do the same reasoning for Rs;. As we have supposed that an infinite rules
process occurred, we obtain a contradiction. Thus no instance of R; can occur
between two instances of R;, and no instance of R, can occur between two instances
of R;. That isthe attribute rate cannot be updated between two instances of R;.

So, we can build the following triggering formula for the edge (Ry, Ry) by using the
RTG method, since we know now that the attribute rate cannot be updated between
the evalutation of the condition of R; and the evaluation of the condition of R,:

(Aprate="low") O (A; = Ay) O (Ay.rate ="high")

This formula cannot be satisfied. So, an infinite rules process is impossible for this
rules set. An algorithm could draw this conclusion, if this algorithm would consider
the priorities between rules.

4 Path sets

The utility of this section is to introduce the notions of path set of a rule and path
set of a path. The path set serves for replacing the notion of cycle, used in the
previous termination algorithms.

4.1 Considered active rules

The active rules that we consider in this paper are defined according to the
paradigm Event-Condition-Action. The database model is a relational model or a
model object. We suppose that the database is treated in a transactional context.
Triggering events are either data operation events (internal events), or events
reported to the system by the outside (external events), or a digunction of internal
and external events. The rule condition is a request expressed with some requests
language. The rule action is a sequence of database updates, or, more generaly, a
procedure containing database updates.

We suppose that each rule is defined with a numeric priority. The rules process is
the following:

Choose a rule instance with the strongest priority in the set of triggered rules instances.
Remove the chosen rule instance from the set of the triggered rule instances.

Evaluate the condition.

If the condition is false : go to step 1.

If the condition is true, execute the action.

Update the set of triggered rules instances.

Gotostep 1.

NoorwNE

4.2 Path set of arule

We replace the classic notion of cycle (used by the previous termination algorithms)
by the notion of path set of a rule. The path set of a rule captures the rules paths
which are executed before a rule instance.

We first recall the notion of triggering graph. The nodes of the triggering graph are
the active rules. Thereis an oriented edge from arule R to arule R, if therule Ry
can trigger therule R,.

Let G be atriggering graph. We first precise the notion of path. Let N; , Ny... N;...
N, be n nodes (not necessarily all different) of G, such as there is a oriented edge

since N;.; towards N;. The tuple (N; , N,... N,,) constitutes a path. We adopt the
following notation : N, - Ny; - ... - Nj - ... > N;. N; iscalled the last node of
the path. N, is call ed the first node of the path.

The path set of the rule R Path_Set(R ; G) is the set of the paths Path of G which
satisfy the following properties:

1. Thelast rule of the path Path isR.

2. The path Path does not contain twicethe same node.

3. The path Path is not included in a path which satisfies the properties 1 and 2
(except itsdf).

The path set of Ris built performing a "depth search” in the opposite diredion of
the alges. The procedure is the following : (the first path provided to the procedure
isthe path (R))

Path_Set_Building_Procedure ((R))

Path_Set_Building_Procedure (incoming variable : Path;,)
Let N be the first node of Path;,
Let Ny, N, ... N, be the nodes of G such as there is an edge from N; to N
FOR each node N; (1<i<p)
IF N; is not in Path;,
Path_Set_Building_Procedure (N; - Path;,)

ELSE
Add Path;, to Path_Set(R ; G)
ENDIF
ENDFOR
Algarithm 1.
Example.

Seethefigure 1. Path_Set(Ry ; G) = {(R.» R1 - Ry)}

4.3 Path set of a path

We generali ze now the notion of path set, defining the path set of a path. The path
set of a path corresponds to the set of the paths which are exeauted before an
ocaurrence of the path. Let us consider a path :

Path = Nn—> Nn_1—> g Ni - Nz—» Nl'

Let us suppose that:

Path_Set(N, ; G) = { Path, , Path; ,... , Pathy }

The path set of the path Path is:

Path_Set(Path ; G) = {(Path; - Np.1 - ... Nj - ... 5 Ny),
(Path2—> Nn—l—’---—’Ni —’---_’Nl); faay (Pathp—> Nn—l—’---—’Ni —’_’Nl)}

Example. Seefigure 1.
Path_Set((Ri - Ry) ; G) = {R;» Ry -~ Ry}

4.4 Priority of a path / path set

We introduce here the notion of priority of a path. The priority of a path is the
weakest priority of the rules of the path. The priority of the path corresponds to a
narrow gorge: thisisthe priority which will delay the exeaution of the path.

We use the nation of priority of a path to define now the minimal priority of a path
set: thisis the weakest priority of the paths of the path set. We adopt the foll owing
notation: m_p(Path_Set(Entity ; G)). (Entity is a path or arule).

We also define the maximal priority of a path set: thisisthe stronger priority of the
paths of the paths %t. We adopt the foll owing notation: M_p(Path_Set(Entity ; G)).

5 Reduction of the triggering graph

This sdion introduces our termination algorithm. The previous termination
algorithms exploit the foll owing principle: when every cycle mntaining the rule R
contains a deactivated path, the rule R can be removed from the triggering graph.
Our termination algorithm suggests improving this principle: the rule R will be
removed by our algorithm when the path set of R will be empty. Considerations
about priorities of the rules will all ow to reducethe path set of arule.

5. 1 Destabilizing set of a path

In order to refine the deactivation of a path, we introduce the notion of
destabilizing set. The utility of this notion isto list the rules which can oppose the
deactivation of the path. A destabilizing set of a path is a set of rules. Informally,
the @njunction of the @nditions of the rules of the path is TRUE only a finite
number of times, if there is only a finite number of occurrences of the rules of the
destabili zing set.

Definition. Let Path be a path of the triggering gaph G. Let R; , R;, ..., Rybes
rulesof G.

10

We say that the set {Ry, R, ... ,Rs} isadestabilizing set of Path iff the following
property holds for each rules processP:

(A finite number of instances of therules Ry , Ry, ..., ..., Ry ocaur during P) O
(Thereisonly afinite number of occurrences of Path during P).

For a destabili zing set, we will use the foll owing notation: Desta_ Set(Path ; G)
The destabili zing sets can be used in conjunction with al the deactivation cases of
path listed by the previous algorithms [BCP95, BCP98, BW94, DH00, KU96,
LL97, TUDK97, WH95].

For example, if it is possble to establish a generalized triggering formula dong a
path which cannot be satisfied [KU96, LL98, TUDK97], but if this formula
contains attributes which can be updated by the database, a destabili zing set of the
path contains all the rules R; such as the action of the rule R can modify attributes
contained in the generali zed triggering formula.

Note that a path can have zero o several destahili zing sets.

Example. Seethe motivation example and figure 1. {Rs, Ry} is a destabili zing set
of (R,—»Ry). Indead, we @n establish atriggering formula dong the edge (R, - Ry)
using the "Refined Triggering Graph" Method [KU96, TUDK97] :

(Aprate="low") O (A; = Ay) O (Ay.rate ="high")

This triggering formula can not be satisfied. But the attribute rate can be updated
by the rules R; and R,. If there is just a finite number of instances of R; and R,
during a rules process there is just a finite number of occurrences of the path
(R; - Ry) during the rules process

5.2 Reduction of the triggering graph
We @n reducethetriggering graph thanks to the four foll owing considerations:

(1) The rule R can be removed from the triggering graph if R has no incoming
edge. Indeed, Rwill bejust triggered afinite number of times.

(2) Let R bearule. Let Path; be a path of Path_Set(R ; G). We @n remove Path,
from Path_Set(R ; G) if O is a destabili zing set of Path;. Indeed, in this casg, it is
impossble for the rules processto go through the path Path; an infinite number of
times.

11

(3) The rule R can be removed from the triggering graph if Path_St(R ; G) = .
Indedd, in this case, it is impossble for the rules processto reach the rule R an
infinite number of times, since all the paths which lead to R are deactivated after a
finitetime.

(4) Let us consider now a destabili zing set {R;, Ry, ... , Ry} of the path Path.

If we observe one of the following properties:

(i) the maximal priority of Path_Set(Path ; G) is grictly smaller than the minimal
priority of Path_Set(R ; G) or:

(i) the maximal priority of Path_St(R;; G) is gdrictly smaller than the minimal
priority of Path_Set(Path ; G),

then the rule R can be removed from the destabilizing set {Ry, Ry, ... , R¢}.

Proof of (4). Let us consider the @se (i). We show that there is no occurrence of
Path between two instances of R.. Let us suppose that there is an occurrence of Path
between two instances of R. This means that thereis a rule R which belongs to the
path set of Path and which is evaluated and exeaited before a rule R*, which is
triggered and which belongs to the path set of R.. But the priority of R’ is grictly
smaller than the priority of R" (since ech rule of the path set of R has a priority
stronger than each rule of the path set of Path). This leads to a contradiction. So,
since there is no ocaurrence of Path between two instances of R;, there is no
instance of R between two ocaurrences of Path. Thus, R, can be removed from the
destabili zing set. We @n do the same type of reasoning for the @ase (ii).

5.3 Termination algorithm

We @n now sketch the termination algorithm. The termination algorithm captures
the four properties which we have shown abowe :

(1) We @n remove arule from the arrent graph if the rule has no incoming edge.
(2) We @n remove a path Path from a path set if [is a destabili zing set of Path.
(3) We @n remove arule from the arrent graph if the path set of the rule is empty.
(4) We @n remove arule from a destabili zing set depending on the prioriti es.

REPEAT
REPEAT
Remove the nodes without incoming edge
Remove the edges without origin node
UNTIL (no node is removed)

FOR EACH rule R of G
Determine Path_Set(R ; G)
FOR EACH path Path of Path_Set(R ; G)
Determine Path_Set(Path ; G)
Determine the sets Desta_Set(Path ; G)
FOR EACH set Desta_Set(Path ; G)

FOR EACH rule R;j of Desta_Set(Path ; G)

12

IF (M_p(Path_Set(Path ; G)) < m_p(Path_Set(R; ; G)))
OR (M_p(Path_Set(R; ; G)) < m_p(Path_Set(Path ; G)))
Remove R; from Desta_Set(Path ; G)
ENDIF
ENFOR
ENDFOR
IF there is a set Desta_Set(Path ; G) such as Desta_Set(Path ; G) =
Remove Path from Path_Set(R ; G)
ENDIF
ENDFOR
IF Path_Set(R, G) =0
Remove R from G
ENDIF
ENDFOR
UNTIL (no entity is removed)

Algorithm 2.

If the final triggering graph is empty, termination is guaranteed. Else, the
remaining rules can possibly be triggered an infinite number of times. Note that our
termination algorithm can discover the termination situations detected due to the
self-deactivating rules [BCP95, BCP98, BW94], due to the monotonous bounded
operations [DHOO0, WH95], due the RTG method [KU96, TUDK97], due to the
deactivation of a condition because of the action of a rule [LL97], and the
termination situations detected by the "Path Removing Technique " [LL98].

Much more termination situations can in fact be discovered by our algorithm, since
our termination algorithm exploits the priorities of the active rules.

Example.
Let us study the termination of the set of rules of our motivating example.
{Rs, R4}) isadestabilizing set of the path (R; - Ry) (see section 5.1).

We have:

Path_Set((R, ~ Ry); G) = { (R, - Ry)}
Path Set(Rs; G) = {(Ri~ R~ Ra)}
Path_Set(R, ; G) = {(R, - Ry - Ry)}

We determine the priorities of the path sets:
m_p(Path_Set(R, - Ry) ; G)) = 2
M_p(Path_Set(Rs ; G)) = 1
M_p(Path_Set(R,; G)) =1

We observe that:

M_p(Path_Set((Rs) ; G)) < m_p(Path_Set((R,~R) ; G))
and that:

M_p(Path_Set((Rs) ; G)) < m_p(Path_Set((R. ~Ry) ; G))

13

So, we @n remove R; and R, from the destabili zing set of the path (R, - Ry).

Thus, O is a destabili zing set of (R, »R;). The path set of R; is{(R;—~Ry)}. Since
0 is a destahili zing set of (R, - Ry), we @an remove the path (R, - R;) from the path
set of Ry. The path set of R; isthen 0. This leads to remove the rule R; from the
triggering graph. Oncetherule R; is removed, we @an remove the other rules of the

triggering graph.

The termination of this rules st can be guaranteed by our algorithm. Note that no
previous algorithm is able to deted this termination situation.

5.4 Implementation

By means of a syntactic analysis of the set of rules, an initial triggering graph G is
built (cf. figure 2). The graph G is analyzed by the main module. The main module
uses the Deactivation Module to deted the destahilizing sets of a path. The
Deactivation Module uses sveral Evaluation Modules. The Evaluation Modules
allow to determine destabili zing sets of a path using the techniques devel oped by
the previous termination analysis techniques. At the moment, we foresaw two
Evaluation Modules: the RTG module (which corresponds to the method "Refined
Triggering Graph" [KU96, TUDK97]), the Module "Monotonous Bounded
Operations' (which corresponds to the "Monotonous Bounded Operations' method
[DHOO, WH95]). We plan to add other Evaluation Modules in the future.

Note that the main module is independent from the rules language. Only the graph
buil ding module and the evaluation modul es depend on the used rules language.

Main €« | Graph Module
Module
P
Evaluation
Modules
RT.G.
Deactivation |«
Module
. » | MLO.

14

Fig. 2. Implementation of the termination algorithm.

For the optimization of the algorithm, we observe the following property: if a path
Path' is included in a path Path, and if Path' is deactivated, then Path is
deactivated. Thanks to this observation, some cal culations can be avoided.

An other observation can avoid calculations: if G' is a subgraph of G, we can obtain
Path_St(Entity ; G') from Path_Set(Entity ; G), removing from Path_Set(Entity ;
G) the paths containing a rule which is no more in G'. This observation is aso
available for Desta_Set(Entity ; G') and Desta_ Set(Entity ; G).

6 Conclusion

We have presented a significant improvement of the termination analysis of the
active rules defined with priorities. We have developed the notions of path set of
rule and path set of a path. The notion of destabilizing set has allowed us to
represent the deactivation cases of a condition listed by the previous algorithms
[BCPI5, BCP98, DHOO, KU96, LL97, TUDK97, WH95]. We can then reduce the
destabilizing set of a path thanks to the priorities of the path sets. When the
destabilizing set of a path is empty, the path can be removed from the path set of a
rule. When the path set of a rule is empty, the rule can be removed from the
triggering graph. So, the triggering graph can be reduced thanks to considerations
about the priorities of therules.

In the future, we plan to conceive an algorithm which proposes priorities between
rules, when the termination can not be guaranteed.

References

AWH92 A. Aiken, J. Widom, JM. Hédlerstein. Behavior of Database
Production Rules : Termination, Confluence and Observable
Determinism. In Proc. Int'l Conf. on Management of Data
(S GMOD), San Diego, California, 1992.

BDR98 J. Baley, G. Dong, K. Ramamohanarao. Decidability and
Undecidability Results for the Termination Problem of Active
Database Rules. In Proc. ACM Sympasium on Principles of
Database Systems (PODS), Seattle, Washington, 1998.

BCP95 E. Bardlis, S. Ceri, S. Paraboschi. Improved Rule Analysis by
Means of Triggering and Activation Graphs. In Proc. Int’l

BCP96

BCP98

BW94

BWO0O

CW90

CT197

CouO1la

CouO1b

Cou02

DBC88

DHOO0

FG98

KU94

15

Workshop Rules in Database Systems (RIDS), Athens, Greece
1995,

E. Bardlis, S. Ceri, S. Paraboschi. Modularization Tedhniques for
Active Rules Design. In ACM Transactions on Database Systems,
(TODS), 21(1), 1996

E. Bardis, S. Ceri, S. Paraboschi. Compile-Time and Run-Time
Analysis of Active Behaviors. In IEEE Transactions on
Knowedge andData Engineaing, 10 (3), 1998

E. Baradlis, J. Widom. An Algebraic Approach to Rule Analysisin
Expert Database Systems. In Proc. Int’'l Conf. on Very Large
Databases (VLDB), Santiago, Chile, 1994

E. Bardlis, J Widom. Better Static Rule Analysis for Active
Database Systems. In ACM Transactions on Database Systems
(TODS), 200Q

S. Cei, J. Widom. Deriving Production Rules for Constraint
Maintenance In Proc. Int'l Conf. on Very Large Databases
(VLDB), Brishane, Queendand, Australia, 1990

S. Comai, L. Tanca. Using the Properties of Datalog to prove
Termination and Confluence in Active Databases. In Proc. Int’|
Workshop on Rules in Database Systems (RIDS), Skoevde,
Sweden, 1997

A. Couchot. Improving Termination Analysis of Active Rules
with Composite Events. In Proc. Int' | Conf. on Database and
Expert Systems Appli cations (DEXA), Munich, Germany, 2001

A. Couchot. Termination Analysis of Active Rules Modular Sets.
In Proc. Int' | Conf. on Information andKnomMedge Management
(CIKM), Atlanta, Georgia, USA, 2001

A. Couchot. Improving the Refined Triggering Graph Method for
Active Rules Termination Analysis. In Proc. British Nationd
Conf. on Databases (BNCOD), Sheffield, United Kingdom, 2002
U. Dayal, A.P. Buchmann, D.R. Mc Carthy. Rules are Objeds
too. a Knowledge Model for an Active Objed Oriented Database
System. In Proc. Int’'l Workshop on Objed-Oriented Database
Systems, Bad Miinster am Stein-Ebernburg, Germany, 1988

S. Debray, T. Hickey. Constraint-Based Termination Analysis for
Cyclic Active Database Rules. In Proc. Int' | Conf. on Deductive
Objed Oriented Databases (DOOD). London, United Kingdom,
2000

S. Hesca, S. Grem. Dedarative Semantics for Active Rules. In
Proc. Int'l Conf. on Database and Expert Systems Applications
(DEXA), Vienna, Austria, 1998

A.P. Karadimce, S.D. Urban. Conditional Term Rewriting as a
Formal Basis for Analysis of Active Database Rules. In Proc. Int’l
Workshop onResearch Isales in Data Engineeing (RIDE-ADS),
Houston, Texas, 1994

16

KU96 A.P. Karadimce, S.D. Urban. Refined Triggering Graphs: a
Logic-Based Approach to Termination Analysis in an Active
Object-Oriented Database. In Proc. Int'l Conf. on Data
Engneeaing (ICDE), New-Orleans, Louisiana, 1996.

LL97 SY. Lee, T.W. Ling. Refined Termination Decision in Active
Databases. In Proc. Int’l Conf. on Database and Expert Systems
Applications (DEXA), Toulouse, France, 1997

LL98 SY. Lee, T.W. Ling. A Path Removing Technique for Detecting
Trigger Termination. In Proc. Int’l Conf. on Extended Database
Techndogy (EDBT), Valencia, Spain, 1998.

LL99 SY. Lee T.W. Ling. Unrolling Cycle to Decide Trigger
Termination. In Proc. Int'l Conf. on Very Large Databases
(VLDB), Edinburgh, Scotland, 1999.

TUDK97 M.K. Tschudi, S.D. Urban, SW. Dietrich, A.P. Karadimce. An
Implementation and Evaluation of the Refined Triggering Graph
Method for Active Rule Termination Analysis. In Proc. Int’l
Workshop onRulesin Database Systems, Skoevde, Sweden, 1997.

VGD97 A. Vaduva, S. Gatziu, K.R. Dittrich. Investigating Termination in
Active Database Systems with Expressive Rule Languages. In
Proc. Int’l Workshop onRules in Database Systems, Skoevde,
Sweden, 1997.

WH95 T. Welk, A. Heuer. An Algorithm for the Analysis of Termination
of Large Trigger Setsin an OODBMS. In Proc. Int' | Workshop on
Active and Real-Time Databases. Skoevde, Sweden, 1995.

