
1 

 

Termination Analysis of  
Active Rules with Priorities 

 

Alain Couchot 

Laboratoire Cedric-Isid, 
Conservatoire National des Arts et Métiers, France 

couchot-a@wanadoo.fr 
 
 
Abstract. This paper presents an algorithm for termination static analysis of active rules 
with prioriti es. Active rules termination is an undecidable problem. Several recent works 
have suggested proving termination by using the concept of triggering graph. We propose 
here a refinement of these works, exploiting the prioriti es defined between rules. We 
introduce the notions of path set and destabili zing set. We show how to determine the 
priority of a path set. The triggering graph can then be reduced thanks to considerations 
about prioriti es of the path sets. Much more termination situations can be detected, since 
prioriti es are exploited.  

 
Keywords. Active databases. Termination. Rules. Static analysis. 
 

1 Introduction 
 
Databases are now endowed with a reagent behavior. They can react to variations 
of the environment, and modify the stored data according to these variations. This 
results from two technological tendencies: on the one hand, the development of the 
rules languages (production rules, active rules, deductive rules), and, on the other 
hand, the development of object oriented technologies. Rules languages and object 
oriented technology play additional roles : the object oriented technology allows to 
integrate into the same entity the structural aspects and the behavioral aspects, and 
the rules languages allow to describe the reaction of an entity according to its 
environment. 
 
However, although the vocation of rules is to facilit ate design and programming, 
writing a rules set is still a deli cate work, reserved for speciali sts. Indeed, a rules set 
is not a structured entity : the global behavior of a rules set is diff icult to foresee 
and to control [AWH92]. Two important points were underlined by research works 
concerned with rules : the termination problem (the rules execution can sometimes 
be infinite), and the confluence problem (the same rules do not necessaril y provide 
the same results, according to the order of rules execution).
 
We are here interested in the active rules termination problem. The active rules are 
structured according to paradigm Event-Condition-Action [DBC88]. Event is an 



2 

 

immediate fact, which can arise inside or outside of the system. Condition is a 
predicate or a request on the database. Action is generally composed of a sequence 
of database updates, or of a procedure containing database updates. Coupling 
modes allow to specify the evaluation moment of the Condition part, or the 
execution moment of the Action part. The most frequent modes are immediate 
mode and deferred mode. A rule can be triggered by a single occurrence of an 
event: instance oriented rule, or by a set of occurrences of an event: set oriented 
rule.
 
In the section 2, we present the previous work on the subject; in the section 3, we 
expose a motivating example; in the section 4, we introduce the path sets of a rule 
and the path sets of a path; in the section 5, we propose a reduction of the 
triggering graph based on the consideration of the prioritites defined for the active 
rules; the section 6 ends.

2 Previous works
 
The active rules termination is an undecidable problem, except when rules 
languages with very limited possibilities are used [BDR98]. The previous works on 
the active rules analysis generally propose criteria supplying sufficient conditions 
allowing to guarantee termination. 
 
Some methods develop translation tools from active rules to rewriting terms 
systems [KU94], to Condition-Action rules [BW00], or to deductive rules [CT97, 
FG98]. However, the application of these methods is often complex, cannot be 
automated, and is reserved for relational databases. 
 
The majority of works on active rules termination exploit the concept of triggering 
graph. 
 
[CW90] introduced, for the first time, the notion of triggering graph ; this notion is 
clarified by [AWH92] : a such graph is built by means of a syntactic analysis of 
rules ; the nodes of the graph are rules. Two rules r1 and r2 are connected by a 
oriented edge from r1 to r2 if the action of r1 can provoke a triggering event of r2. 
The presence of cycles in a such graph means a risk of non-termination of the rules 
set. The absence of cycles in the triggering graph guarantees the termination of the 
rules set. However, the possible deactivation of the rule condition is not taken into 
account by this analysis. A finer analysis is led by [BCP95, BCP98] thanks to the 
activation graphs: in an activation graph, rules r1 and r2 are connected by a 
oriented edge from r1 to r2 if the action of r1 can make TRUE the condition of r2, 
and a rule r is connected with itself if the condition of r is still TRUE after 
execution of the action of r. Non-termination involves then the presence of cycles in 
the triggering graph and in the activation graph. An algorithm for building 
activation graphs is proposed by [BW94] in a relational context.
 



3 

 

This technique is generalized by [LL97] : the concepts of activator and of 
deactivator are proposed. The rule r1 is a deactivator of the rule r2 if the action of 
r1 makes always FALSE the truth value of the condition of r2. The rule r1 is an 
activator of the rule r2 if the action of r1 can change the truth value of the 
condition of r2 from FALSE in TRUE. A rule r is labeled finite if every activator 
of r is labeled finite, and if every cycle containing r also contains a deactivator of r. 
 
[VGD97] studies the influence of composite events on the termination property: the 
triggering graphs are modified, in order to take into account the composite 
conjunction events. The modified triggering graphs hold two types of edges : the 
total edges (there is a total edge from r1 to r2 if the action of r1 can trigger r2), and 
the partial edges (there is a partial edge from r1 to r2 if the action of r1 contains 
one of the primitive events of r2). 
 
The Refined Triggering Graph method [KU96, TUDK97] brings a complement to 
the analysis of the triggering graphs. A edge (r1, r2) can be removed from the 
triggering graph in the following circumstances : the post-condition of r1 is 
combined with the condition of r2 by means of the unification of the variables 
appearing in the action of r1 and the variables appearing in the event of r2 ; if the 
obtained formula (qualified as triggering formula) can be never satisfied, the edge 
(r1 , r2) can be removed. But variables appearing in the triggering formula must 
not be updated by rules actions. [LL98] widens the principle of the triggering 
formulae (generalized triggering formulae) as follows : if the rule r1 can indirectly 
trigger the rule r2 along a path P, a triggering formula is built along the path P. 
[LL98] proposes to remove a path instead of removing a node. For this, a new 
triggering graph is built, equivalent to the initial graph. [LL99] brings a new 
extension : the generalized triggering formulae are studied for a path, which 
corresponds to a cycle executed (k+1) times : if the triggering formula can never be 
satisfied, the  cycle is called a k-cycle. A method is proposed to unroll a k-cycle : an 
equivalent triggering graph is built. [Cou02] generalizes the notion of triggering 
formula, allowing to include attributes which can be updated by rules actions. 
 
[Cou01a] improves [VGD97] and [LL98, LL99], introducing the notion of 
composite path. A composite path is composed of paths, linked by the operators 
AND and OR. The notion of composite path allows to take into account for 
termination analysis at the same time both the deactivation of a overall condition of 
a rules path and the conjunction events. 
 
[WH95] exploits the principle of monotonous bounded operations to remove some 
edges of the triggering graph : for example, if a rule action always deletes an object 
of a class, and if no rule action can create an object of this class, the delete 
operation is bounded, and the corresponding rule can only be executed a finite 
number of times. This principle is resumed and detailed by [DH00], that exposes a 
method to calculate the maximal number of iterations of a cycle, by using some 
limits of the database.



4 

 

 
[BCP96] takes place in a context of active rules modular design, and introduces a 
behavioral stratification of the active rules : one stratum is a set of rules carrying 
out some task, whose progress can be measured by a metrics. [Cou01b] proposes 
the notion of public event and private event, in order to guarantee the termination 
of a rules set in a modular design context. 
 
Priorities are considered by [BCP95]. A self-deactivating rule R can be removed 
from the triggering graph, if the priorities of the rules included in the paths from R 
to the rule which can reactivate the condition of R (the paths do not include R) is 
strictly lower than the priorities of the rules included in the paths from R to the rule 
which can trigger R (the paths include R). 
 
Our work is based on the following observation : priorities between rules can be 
used to refine termination analysis. This observation has just partially been taken 
into account by [BCP95], within the framework of the self-deactivating rules. We 
show in this paper that much more termination cases can be detected using the 
priorities between rules.  
 
The aim of our work is to reduce the triggering graph, thanks to the priorities of the 
rules. We first introduce the notions of path set of a rule and path set of a path. 
The path set includes the paths which are executed before a rule (or before a path). 
We determine then the priority of a path set. We also propose the notion of 
destabilizing set of a path. The destabilizing set of a path includes the rules which 
oppose the deactivation of the path. Thanks to the priorities of a path set, we can 
sometimes reduce the destabilizing sets of a path. This can lead to reduce the path 
set of a rule. When the path set of a rule is empty, the rule can be removed from the 
triggering graph.  

3 Motivating example 
 
We propose in this section an example which illustrates the motivation of our work. 
We take place within the framework of a banking application. An object oriented 
database is used. Four active rules are defined. We suppose that the coupling modes 
of the rules are immediate. 
 
Rule R1: When the loan capacity of an account is updated, if the loan rate of the 
account is equal to "low", the allowed overdraft of the account is set to "low". The 
priority of this rule is strong.  
 
Rule R2: When the allowed overdraft of an account is updated, if the loan rate of 
the account is equal to "high", the loan capacity of the account is set to "high". The 
priority of this rule is strong.  
 



5 

 

Rule R3: When the loan capacity of an account is updated, the loan rate of the 
account is set to "low". The priority of this rule is weak.  
 
Rule R4: When the allowed overdraft of an account is updated, the loan rate of the 
account is set to "high". The priority of this rule is weak.  
 
Rule:   R1 
Priority:   strong (numeric value: 2) 
Event:   account_capacity_update_event(A1) 
Condition:  A1.rate = "low" 
Action:   A1.overdraft = "low" 
Raised event:  account_overdraft_update_event(A1) 
 
Rule:   R2 
Priority:   strong (numeric value:2) 
Event:   account_overdraft_update_event(A2) 
Condition:  A2.rate = "high" 
Action:   A2.capacity = "high" 
Raised event:  account_capacity_update_event(A2) 
 
Rule:   R3 
Priority:   weak (numeric value: 1) 
Event:   account_capacity_update_event(A3) 
Condition:  - 
Action:   A3.rate = "low" 
Raised event:  account_rate_update_event(A3) 
 
Rule:   R4 
Priority:   weak (numeric value: 1) 
Event:    account_overdraft_update_event(A4) 
Condition:  - 
Action:   A4.rate = "high" 
Raised event:  account_rate_update_event(A4) 
   
Let us try to guarantee termination of this rules set using the algorithms proposed 
in the literature. The triggering graph is represented by figure 1. 
 
The Refined Triggering Graph method [KU96, TUDK97] is unable to remove any 
edge of the cycle (R1→R2→R1). Indeed, the attribute rate can be updated by rule 
actions and cannot be included in a triggering formula.  
 
If we use the improvement of the RTG method proposed by [Cou02] (which allows 
to include in a triggering formula attributes which can be updated by rule actions), 
we obtain the following triggering formula for the edge R1→R2: 
 



6 

 

((A1.rate = "low") ∨ ((A1 = A4) ∧ (A4.rate = "high"))) ∧ (A1 = A2) ∧ (A2.rate = 
"high") 
 
This formula can be satisfied, and termination cannot be guaranteed. 
 
The algorithm [BCP95], which considers rules with priorities, just considers self-
deactivating rules. It cannot guarantee termination in this case, since no rule is self-
deactivating. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 1. Triggering graph. 
 

However, this rules set cannot exhibit an infinite processing. Let us suppose that an 
infinite process occurs. There is an infinite number of instances of R1 and an 
infinite number of instances of R2 (else, R1 or R2 would be removed from the 
triggering graph, and the process would be finite).  
 
But no instance of R3 can occur between two instances of R1, and no instance of R4 
can occur between two instances of R1. Indeed, let us take place at the moment 
where an instance of R4 is evaluated and executed. At this moment, R2 is not 
triggered (else R2 would be evaluated and executed before R4). If R2 is not triggered, 
R1 is not triggered. Since the action of R4 triggers no rule, the rules process stops. 
We can do the same reasoning for R3. As we have supposed that an infinite rules 
process occurred, we obtain a contradiction. Thus no instance of R3 can occur 
between two instances of R1, and no instance of R4 can occur between two instances 
of R1. That is the attribute rate cannot be updated between two instances of R1.  
 
So, we can build the following triggering formula for the edge (R1, R2) by using the 
RTG method, since we know now that the attribute rate cannot be updated between 
the evalutation of the condition of R1 and the evaluation of the condition of R2:  
 
(A1.rate = "low") ∧ (A1 = A2) ∧ (A2.rate = "high") 
 

 
R1 

 
R2 

 
R3 

 
R4 



7 

 

This formula cannot be satisfied. So, an infinite rules process is impossible for this 
rules set. An algorithm could draw this conclusion, if this algorithm would consider 
the priorities between rules.  
 

4 Path sets 
 
The utility of this section is to introduce the notions of path set of a rule and path 
set of a path. The path set serves for replacing the notion of cycle, used in the 
previous termination algorithms.  
 

4.1 Considered active rules

 
The active rules that we consider in this paper are defined according to the 
paradigm Event-Condition-Action. The database model is a relational model or a 
model object. We suppose that the database is treated in a transactional context. 
Triggering events are either data operation events (internal events), or events 
reported to the system by the outside (external events), or a disjunction of internal 
and external events. The rule condition is a request expressed with some requests 
language. The rule action is a sequence of database updates, or, more generally, a 
procedure containing database updates.  
 
We suppose that each rule is defined with a numeric priority. The rules process is 
the following: 
  
 1.  Choose a rule instance with the strongest priority in the set of triggered rules instances. 
 2.  Remove the chosen rule instance from the set of the triggered rule instances. 
 3.  Evaluate the condition. 
 4.  If the condition is false : go to step 1. 
 5.  If the condition is true, execute the action. 
 6. Update the set of triggered rules instances. 
 7. Go to step 1. 
 

4.2 Path set of a rule

 
We replace the classic notion of cycle (used by the previous termination algorithms) 
by the notion of path set of a rule. The path set of a rule captures the rules paths 
which are executed before a rule instance. 
 
We first recall the notion of triggering graph. The nodes of the triggering graph are 
the active rules. There is an oriented edge from a rule R1 to a rule R2 if the rule R1 
can trigger the rule R2. 
 
Let G be a triggering graph. We first precise the notion of path. Let N1 , N2... Ni... 
Nn be n nodes (not necessarily all different) of G, such as there is a oriented edge 



8 

 

since Ni+1 towards Ni. The tuple (N1 , N2... Nn)  constitutes a path. We adopt the 
following notation : Nn → Nn-1 → ... → Ni → ... → N1. N1 is called the last node of 
the path. Nn is called the first node of the path.  
 
The path set of the rule R Path_Set(R ; G) is the set of the paths Path of G which 
satisfy the following properties:  
1. The last rule of the path Path is R. 
2. The path Path does not contain twice the same node. 
3. The path Path is not included in a path which satisfies the properties 1 and 2 
(except itself).  
 
The path set of R is built performing a "depth search" in the opposite direction of 
the edges. The procedure is the following : (the first path provided to the procedure 
is the path (R) ) 
 
Path_Set_Building_Procedure ((R )) 
 
Path_Set_Building_Procedure (incoming variable : Pathin ) 
 Let N be the first node of Pathin 
 Let N1, N2, ... Np be the nodes of G such as there is an edge from Ni to N 
 FOR each node Ni  (1 ≤ i ≤ p) 
  IF Ni is not in Pathin 
   Path_Set_Building_Procedure (Ni →Pathin) 
  ELSE 
   Add Pathin to Path_Set(R ; G) 
  ENDIF 
 ENDFOR 
  

Algorithm 1. 
 
Example.  
See the figure 1. Path_Set(R4 ; G) = { (R2→R1→R4)}  
 
 
 

4.3 Path set of a path 
 
We generali ze now the notion of path set, defining the path set of a path. The path 
set of a path corresponds to the set of the paths which are executed before an 
occurrence of the path. Let us consider a path : 
 
Path = Nn→Nn-1→...→Ni→...N2→N1.  
 
Let us suppose that: 
 
Path_Set(Nn ; G) = { Path1 , Path2 ,… , Pathp }  
 



9 

 

The path set of the path Path is: 
 
Path_Set(Path ; G) = { (Path1→Nn-1→...→Ni→...→N1),  
(Path2→Nn-1→...→Ni→...→N1), …, (Pathp→Nn-1→...→Ni→...→N1)}  
 
Example. See figure 1. 
Path_Set((R1→R4) ; G) = { R2→R1→R4}  
 

4.4 Priority of a path / path set 
 
We introduce here the notion of priority of a path. The priority of a path is the 
weakest priority of the rules of the path. The priority of the path corresponds to a 
narrow gorge: this is the priority which will delay the execution of the path. 
 
We use the notion of priority of a path to define now the minimal priority of a path 
set: this is the weakest priority of the paths of the path set. We adopt the following 
notation: m_p(Path_Set(Entity ; G)). (Entity is a path or a rule). 
 
We also define the maximal priority of a path set: this is the stronger priority of the 
paths of the paths set. We adopt the following notation: M_p(Path_Set(Entity ; G)). 
 

5 Reduction of the triggering graph
 
This section introduces our termination algorithm. The previous termination 
algorithms exploit  the following principle: when every cycle containing the rule R 
contains a deactivated path, the rule R can be removed from the triggering graph. 
Our termination algorithm suggests improving this principle: the rule R will be 
removed by our algorithm when the path set of R will be empty. Considerations 
about priorities of the rules will allow to reduce the path set of a rule. 
 
 

5. 1 Destabilizing set of a path 
 
In order to refine the deactivation of a path, we introduce the notion of 
destabilizing set. The utilit y of this notion is to li st the rules which can oppose the 
deactivation of the path. A destabilizing set of a path is a set of rules. Informally, 
the conjunction of the conditions of the rules of the path is TRUE only a finite 
number of times, if there is only a finite number of occurrences of the rules of the 
destabili zing set. 
  
Definition. Let Path be a path of the triggering graph G. Let R1 , R2, …, Rs be s 
rules of G.    
 



10 

 

We say that the set  { R1, R2, ... , Rs } is a destabilizing set of Path iff the following 
property holds for each rules process P: 
(A finite number of instances of the rules R1 , R2, …, …, Rs occur during P) ⇒ 
(There is only a finite number of occurrences of Path during P).

 
For a destabili zing set, we will use the following notation: Desta_Set(Path ; G) 
The destabili zing sets can be used in conjunction with all the deactivation cases of 
path li sted by the previous algorithms [BCP95, BCP98, BW94, DH00, KU96, 
LL97, TUDK97, WH95].  
 
For example, if it is possible to establi sh a generali zed triggering formula along a 
path which cannot be satisfied [KU96, LL98, TUDK97], but if this formula 
contains attributes which can be updated by the database, a destabili zing set of the 
path contains all the rules Ri such as the action of the rule Ri can modify attributes 
contained in the generali zed triggering formula.  
 
Note that a path can have zero or several destabili zing sets. 
 
Example. See the motivation example and figure 1. { R3, R4} is a destabili zing set 
of (R2→R1). Indeed, we can establi sh a triggering formula along the edge (R2→R1) 
using the "Refined Triggering Graph" Method [KU96, TUDK97] :  
 
(A1.rate = "low") ∧ (A1 = A2) ∧ (A2.rate = "high") 
 
This triggering formula can not be satisfied. But the attribute rate can be updated 
by the rules R3 and R4. If there is just a finite number of instances of R3 and R4 
during a rules process, there is just a finite number of occurrences of the path 
(R2→R1) during the rules process. 
 
 
 

5.2 Reduction of the triggering graph 
 
We can reduce the triggering graph thanks to the four following considerations: 
 
(1) The rule R can be removed from the triggering graph if R has no incoming 
edge. Indeed, R will be just triggered a finite number of times. 
 
(2) Let R be a rule. Let Pathj be a path of Path_Set(R ; G). We can remove Pathj 
from Path_Set(R ; G) if ∅ is a destabili zing set of Pathj. Indeed, in this case, it is 
impossible for the rules process to go through the path Pathj an infinite number of 
times. 
 



11 

 

(3) The rule R can be removed from the triggering graph if Path_Set(R ; G) = ∅. 
Indeed, in this case, it is impossible for the rules process to reach the rule R an 
infinite number of times, since all the paths which lead to R are deactivated after a 
finite time. 
 
(4) Let us consider now a destabili zing set { R1, R2, … , Rs} of the path Path.  
 
If we observe one of the following properties : 
(i) the maximal priority of Path_Set(Path ; G) is strictly smaller than the minimal 
priority of Path_Set(Ri ; G) or: 
(ii ) the maximal priority of Path_Set(Ri; G) is strictly smaller than the minimal 
priority of Path_Set(Path ; G), 
then the rule Ri can be removed from the destabili zing set { R1, R2, … , Rs} . 
 
Proof of (4). Let us consider the case (i). We show that there is no occurrence of 
Path between two instances of Ri. Let us suppose that there is an occurrence of Path 
between two instances of Ri. This means that there is a rule R' which belongs to the 
path set of Path and which is evaluated and executed before a rule R'', which is 
triggered and which belongs to the path set of Ri. But the priority of R' is strictly 
smaller than the priority of R'' (since each rule of the path set of Ri has a priority 
stronger than each rule of the path set of Path). This leads to a contradiction. So, 
since there is no occurrence of Path between two instances of Ri, there is no 
instance of Ri between two occurrences of Path. Thus, Ri can be removed from the 
destabili zing set. We can do the same type of reasoning for the case (ii ). 
 

5.3 Termination algorithm  
 
We can now sketch the termination algorithm. The termination algorithm captures 
the four properties which we have shown above : 
(1) We can remove a rule from the current graph if the rule has no incoming edge. 
(2) We can remove a path Path from a path set if ∅ is a destabili zing set of Path.  
(3) We can remove a rule from the current graph if the path set of the rule is empty.  
(4) We can remove a rule from a destabili zing set depending on the priorities. 
 
REPEAT  
 REPEAT  
  Remove the nodes without incoming edge 
  Remove the edges without origin node 
 UNTIL (no node is removed) 
  
 FOR EACH rule R of G  
  Determine Path_Set(R ; G) 
  FOR EACH path Path of Path_Set(R ; G) 
   Determine Path_Set(Path ; G) 
   Determine the sets Desta_Set(Path ; G) 
   FOR EACH set Desta_Set(Path ; G) 

    FOR EACH rule Ri of Desta_Set(Path ; G) 



12 

 

 IF (M_p(Path_Set(Path ; G)) < m_p(Path_Set(Ri ; G))) 
OR (M_p(Path_Set(Ri ; G)) < m_p(Path_Set(Path ; G))) 

      Remove Ri from Desta_Set(Path ; G) 
   ENDIF 

    ENFOR 
   ENDFOR 
   IF there is a set Desta_Set(Path ; G) such as Desta_Set(Path ; G) = ∅ 
    Remove Path from Path_Set(R ; G) 
   ENDIF 
  ENDFOR 
  IF Path_Set(R , G) = ∅ 
   Remove R from G 
  ENDIF 
 ENDFOR 
UNTIL (no entity is removed) 
 

Algorithm 2. 
 
If the final triggering graph is empty, termination is guaranteed. Else, the 
remaining rules can possibly be triggered an infinite number of times. Note that our 
termination algorithm can discover  the termination situations detected due to the 
self-deactivating rules [BCP95, BCP98, BW94], due to the monotonous bounded 
operations [DH00, WH95], due the RTG method [KU96, TUDK97], due to the 
deactivation of a condition because of the action of a rule [LL97], and the 
termination situations detected by the "Path Removing Technique " [LL98].  
 
Much more termination situations can in fact be discovered by our algorithm, since 
our termination algorithm exploits the priorities of the active rules.  
 
Example. 
Let us study the termination of the set of rules of our motivating example. 
{R3, R4}) is a destabilizing set of the path (R2→R1) (see section 5.1). 
 
We have:  
Path_Set((R2→R1); G) = {(R2→R1)} 
Path_Set(R3 ; G) = {( R1→R2→R3)} 
Path_Set(R4 ; G) = {( R2→R1→R4)} 
 
We determine the priorities of the path sets: 
m_p(Path_Set((R2→R1) ; G)) = 2 
M_p(Path_Set(R3 ; G)) = 1 
M_p(Path_Set(R4 ; G)) = 1 
 
We observe that: 
M_p(Path_Set((R3) ; G)) < m_p(Path_Set((R2→R1) ; G))  
and that:  
M_p(Path_Set((R4) ; G)) < m_p(Path_Set((R2→R1) ; G))  
 



13 

 

So, we can remove R3 and R4 from the destabili zing set of the path (R2→R1). 
 
Thus, ∅ is a destabili zing set of (R2→R1). The path set of R1 is { (R2→R1)} . Since 
∅ is a destabili zing set of (R2→R1), we can remove the path (R2→R1) from the path 
set of R1. The path set of R1 is then ∅. This leads to remove the rule R1 from the 
triggering graph. Once the rule R1 is removed, we can remove the other rules of the 
triggering graph.  
 
The termination of this rules set can be guaranteed by our algorithm. Note that no 
previous algorithm is able to detect this termination situation. 
 

5.4 Implementation  
 
By means of a syntactic analysis of the set of rules, an initial triggering graph G is 
built (cf. figure 2). The graph G is analyzed by the main module. The main module 
uses the Deactivation Module to detect the destabili zing sets of a path. The 
Deactivation Module uses several Evaluation Modules. The Evaluation Modules 
allow to determine destabili zing sets of a path using the techniques developed by 
the previous termination analysis techniques. At the moment, we foresaw two 
Evaluation Modules: the RTG module (which corresponds to the method "Refined 
Triggering Graph" [KU96, TUDK97]), the Module "Monotonous Bounded 
Operations" (which corresponds to the "Monotonous Bounded Operations" method 
[DH00, WH95]). We plan to add other Evaluation Modules in the future.  
 
Note that the main module is independent from the rules language. Only the graph 
building module and the evaluation modules depend on the used rules language.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ensemble de 
règles 

Terminaison 
garantie ? 

Main 
Module 

Deactivation 
Module 

Evaluation 
Modules 

Graph Module 
 

R.T.G. 

M.L.O. 



14 

 

 
 
 
 

 
Fig. 2. Implementation of the termination algorithm. 

 
For the optimization of the algorithm, we observe the following property: if a path 
Path' is included in a path Path, and if Path' is deactivated, then Path is 
deactivated. Thanks to this observation, some calculations can be avoided.  
 
An other observation can avoid calculations: if G' is a subgraph of G, we can obtain 
Path_Set(Entity ; G') from Path_Set(Entity ; G), removing from Path_Set(Entity ; 
G) the paths containing a rule which is no more in G'. This observation is also 
available for Desta_Set(Entity ; G') and Desta_Set(Entity ; G).

6 Conclusion 
 
We have presented a significant improvement of the termination analysis of the 
active rules defined with priorities. We have developed the notions of path set of 
rule and path set of a path. The notion of destabilizing set has allowed us to 
represent the deactivation cases of a condition listed by the previous algorithms 
[BCP95, BCP98, DH00, KU96, LL97, TUDK97, WH95]. We can then reduce the 
destabilizing set of a path thanks to the priorities of the path sets. When the 
destabilizing set of a path is empty, the path can be removed from the path set of a 
rule. When the path set of a rule is empty, the rule can be removed from the 
triggering graph. So, the triggering graph can be reduced thanks to considerations 
about the priorities of the rules. 
 
In the future, we plan to conceive an algorithm which proposes priorities between 
rules, when the termination can not be guaranteed.  

References 
 
AWH92 A. Aiken, J. Widom, J.M. Hellerstein. Behavior of Database 

Production Rules : Termination, Confluence and Observable 
Determinism. In Proc. Int’ l Conf. on Management of Data 
(SIGMOD), San Diego, California, 1992. 

BDR98 J. Bailey, G. Dong, K. Ramamohanarao. Decidability and 
Undecidability Results for the Termination Problem of Active 
Database Rules. In Proc. ACM Symposium on Principles of 
Database Systems (PODS), Seattle, Washington, 1998. 

BCP95 E. Baralis, S. Ceri, S. Paraboschi. Improved Rule Analysis by 
Means of Triggering and Activation Graphs. In Proc. Int’ l 



15 

 

Workshop Rules in Database Systems (RIDS), Athens, Greece, 
1995. 

BCP96 E. Barali s, S. Ceri, S. Paraboschi. Modularization Techniques for 
Active Rules Design. In ACM Transactions on Database Systems, 
(TODS), 21(1), 1996. 

BCP98 E. Barali s, S. Ceri, S. Paraboschi. Compile-Time and Run-Time 
Analysis of Active Behaviors. In IEEE Transactions on 
Knowledge and Data Engineering, 10 (3), 1998. 

BW94 E. Barali s, J. Widom. An Algebraic Approach to Rule Analysis in 
Expert Database Systems. In Proc.  Int’ l Conf. on Very Large 
Databases (VLDB), Santiago, Chile, 1994. 

BW00 E. Barali s, J. Widom. Better Static Rule Analysis for Active 
Database Systems. In ACM Transactions on Database Systems 
(TODS), 2000. 

CW90 S. Ceri, J. Widom. Deriving Production Rules for Constraint 
Maintenance. In Proc. Int’ l Conf. on Very Large Databases 
(VLDB), Brisbane, Queensland, Australia, 1990. 

CT97 S. Comai, L. Tanca. Using the Properties of Datalog to prove 
Termination and Confluence in Active Databases. In Proc. Int’ l 
Workshop on Rules in Database Systems (RIDS), Skoevde, 
Sweden, 1997. 

Cou01a A. Couchot. Improving Termination Analysis of Active Rules 
with Composite Events. In Proc. Int' l Conf. on Database and 
Expert Systems Applications (DEXA), Munich, Germany, 2001. 

Cou01b A. Couchot. Termination Analysis of Active Rules Modular Sets. 
In Proc. Int' l Conf. on Information and Knowledge Management 
(CIKM), Atlanta, Georgia, USA, 2001. 

Cou02 A. Couchot. Improving the Refined Triggering Graph Method for 
Active Rules Termination Analysis. In Proc. Briti sh National 
Conf. on Databases (BNCOD), Sheff ield, United Kingdom, 2002. 

DBC88 U. Dayal, A.P. Buchmann, D.R. Mc Carthy. Rules are Objects 
too: a Knowledge Model for an Active Object Oriented Database 
System. In Proc. Int’ l Workshop on Object-Oriented Database 
Systems, Bad Münster am Stein-Ebernburg, Germany, 1988. 

DH00 S. Debray, T. Hickey. Constraint-Based Termination Analysis for 
Cycli c Active Database Rules. In Proc. Int' l Conf. on Deductive 
Object Oriented Databases (DOOD). London, United Kingdom, 
2000. 

FG98 S. Flesca, S. Greco. Declarative Semantics for Active Rules. In 
Proc. Int’ l Conf. on Database and Expert Systems Applications 
(DEXA), Vienna, Austria, 1998.  

KU94 A.P. Karadimce, S.D. Urban. Conditional Term Rewriting as a 
Formal Basis for Analysis of Active Database Rules. In Proc. Int’ l 
Workshop on Research Issues in Data Engineering (RIDE-ADS), 
Houston, Texas, 1994. 



16 

 

KU96 A.P. Karadimce, S.D. Urban. Refined Triggering Graphs : a 
Logic-Based Approach to Termination Analysis in an Active 
Object-Oriented Database. In Proc. Int’ l Conf. on  Data 
Engineering (ICDE), New-Orleans, Louisiana, 1996. 

LL97 S.Y. Lee, T.W. Ling. Refined Termination Decision in Active 
Databases. In Proc. Int’ l Conf. on Database and Expert Systems 
Applications (DEXA), Toulouse, France, 1997 

LL98 S.Y. Lee, T.W. Ling. A Path Removing Technique for Detecting 
Trigger Termination. In Proc. Int’ l Conf. on Extended Database 
Technology (EDBT), Valencia, Spain, 1998. 

LL99 S.Y. Lee, T.W. Ling. Unrolling Cycle to Decide Trigger 
Termination. In Proc. Int’ l Conf. on Very Large Databases 
(VLDB), Edinburgh, Scotland, 1999. 

TUDK97 M.K. Tschudi, S.D. Urban, S.W. Dietrich, A.P. Karadimce. An 
Implementation and Evaluation of the Refined Triggering Graph 
Method for Active Rule Termination Analysis. In Proc. Int’ l 
Workshop on Rules in Database Systems, Skoevde, Sweden, 1997. 

VGD97 A. Vaduva, S. Gatziu, K.R. Dittrich. Investigating Termination in 
Active Database Systems with Expressive Rule Languages. In 
Proc. Int’ l Workshop on Rules in Database Systems, Skoevde, 
Sweden, 1997. 

WH95 T. Weik, A. Heuer. An Algorithm for the Analysis of Termination 
of Large Trigger Sets in an OODBMS. In Proc. Int' l Workshop on 
Active and Real-Time Databases. Skoevde, Sweden, 1995. 


