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ABSTRACT

Watermarking allows robust and unobtrusive insertion of in-
formation in a digital document. Very recently, techniques
have been proposed for watermarking relational databases
or XML documents, where information insertion must pre-
serve a specific measure on data (e.g. mean and variance of
numerical attributes.)

In this paper we investigate the problem of watermark-
ing databases or XML while preserving a set of parametric
queries in a specified language, up to an acceptable distor-
tion.

We first observe that unrestricted databases can not be
watermarked while preserving trivial parametric queries. We
then exhibit query languages and classes of structures that
allow guaranteed watermarking capacity, namely 1) local
query languages on structures with bounded degree Gaif-
man graph, and 2) monadic second-order queries on trees or
tree-like structures. We relate these results to an important
topic in computational learning theory, the VC-dimension.
We finally consider incremental aspects of query-preserving
watermarking.

Categories and Subject Descriptors

H.1 [Information Systems]: Models and Principles; F.1.3
[Theory of Computation]: Complexity Measures and Clas-
ses; F.4 [Theory of computation]: Mathematical Logic
and Formal Languages
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Introduction

A growing part of Internet content is dynamically generated
from databases. Classical situations can be captured by the
following 3-tier model: data owners invest time and efforts
to elaborate large and detailed databases, and wish to sell
them to multiple data servers. Data servers buy such data,
and answer queries through e.g. a web interface to several
final users. A simple example is given by air travel infor-
mation web-sites: timetables of all flights are possessed by a
data owner. Data servers propose a search engine on these
flights, answering queries asked by final users such as “flights
from Paris to Delhi on the 1st of July”. Other common ex-
amples are lodging information systems, meteorological and
financial data, etc.

But data owners are exposed to malicious servers, trying
to sell illegal copies as their own. This problem is strength-
ened by the digital nature of these informations, since per-
fect copies of a document are easily produced and dissemi-
nated. Thus, an important tool for data owners is the abil-
ity to argue ownership of a database, once a suspect one has
been discovered, and to track back to the original malicious
server.

Indirectaccess. A data owner may not have a direct access
to the suspect database, since malicious servers try to evade
detection. To bypass this problem, a data owner can also act
as a final user, i.e. ask queries to the suspect server. Being
able to prove ownership based on these only informations is
a strong protection against illegal uses.

Watermarking. Informally, watermarking hides pertinent
information in a document, such as the owner or purchaser’s
identity. This information is used to identify the real owner
of a suspect document, or the original server who has per-
formed an unauthorized diffusion. A “syntactic”, invisi-
ble modification of the original document, such as adding
<owner></owner> markups in a XML file, is not an efficient
way of hiding informations, since a simple rewriting of the
document is sufficient to erase the original owner’s identity.
Information hiding have to be more sophisticated and occur
in a “semantic way”, i.e. must impact on the document’s
quality.

Adversarial and non-adversarial models. In a naive set-
ting, a data server will redistribute an identical copy of its
document along with the hidden information (i.e the owner’s



identity.) This model is called non-adversarial. In the ad-
versarial setting, a malicious server will perform distortions
on the document, in order to erase any identification mark.
An important problem is then to design robust watermark-
ing procedures, that resist to reasonable alterations of the
document. Fortunately, these alterations can not be too
large, since the data server still wants to distribute valuable
data.

Database watermarking. Very recently, algorithms were
proposed for watermarking structured data like XML doc-
uments and relational databases [1, 20]. In [1], Agrawal
and Kiernan clearly identify the need for watermarking tech-
niques in databases, and consider several important, data-
bases-specific aspects, like incremental updatability of the
watermark. In their setting, information insertion is per-
formed by flipping bits in numerical attributes.

Based on experimental results, they observe that the mean
and variance of all numerical attributes is preserved by this
operation, showing that their technique may be sufficient
for several situations. But they give no guarantee for the
distortion induced on queries that a server may perform.

Query-preserving watermarking. In this paper we fo-
cus on the watermarking of databases, in the general set-
ting where data servers perform queries in a language L.
The data owner has a valuable database instance, and data
servers apply for a copy of this database, providing queries
P1,...,%, they will answer to final users. These queries
are parametrized by final user inputs. The problem is then
to construct a query-preserving watermarking scheme that
respects the following conditions:

e the scheme maps owner’s database instance to several
watermarked versions, and induces a small distortion
on the results of queries 91 (a), .. ., ¥ (a), for any user
input a.

e the scheme can prove ownership based on answers to
queries 1,...,%, only (the owner acts as any final
user to get these answers.)

This watermarking is driven by what is important to the fi-
nal user: results of queries. Notice that data servers may an-
swer other queries to users, but only distortion on ¥1, ..., ¥y
is guaranteed. Of course, one tries to hide a large number of
information bits with a small distortion. In this perspective,
Agrawal and Kiernan’s work can be viewed as a watermark-
ing that only preserves (the mean of) a projection query on
each numerical attribute, without parameters.

As in [1], we distinguish between parameter values, which
can not be modified, because they act as parameters in
queries, and numerical data that can be distorted (this im-
plies that these numerical values do not act as keys, or are
not part of an integrity constraint.) We denote the latter
by weight values. Our watermarking schemes will modify
the weighted part of a database instance, while leaving the
parameter part unchanged. Attention is focused on numer-
ical data for the sake of simplicity, but other domains with
a distance function (e.g. strings with a similarity measure,
or a semantic distance) can be considered.

The fundamental difficulty in query-preserving watermark-
ing is to determine which weights to modify in order to get
a unobtrusive insertion. Khanna and Zane [10] already gave

some positive answers to this problem. They obtained a
query-preserving watermarking scheme for a specific para-
metric query: shortest path queries on weighted graphs.
Their information insertion does not modify the length of
any shortest path beyond an acceptable and provable dis-
tortion. Moreover their scheme can prove ownership on a
document based on query answers of the suspect data server.
There is no need to have a direct access to the suspect
database. They also provide a general method for water-
marking in an adversarial setting, where malicious servers
try to erase the watermark. From the theoretical point of
view, they observe that shortest path queries have very low
computational complexity, and suspect that watermarking
schemes for N P-hard search spaces are difficult to analyze.

Contribution: watermarking and learning theory. Our
first main result shows that the difficulty of query-preserving
watermarking is linked to the informational complexity of
sets defined by queries, rather than their computational
complexity. This is related to an important combinatorial
parameter in computational learning theory, the Vapnik-
Chervonenkis dimension of sets (or VC-dimension [2, 22].)
A finite VC-dimension for a family of sets is equivalent to
its learnability (in the PAC model [22].) Roughly speaking,
our result states that if the VC-dimension is not bounded
but is maximal, no watermarking scheme can be obtained.

Recently, Grohe and Turan [7] showed that the VC-dimen-
sion of sets defined by first-order logic and monadic second-
order logic is bounded on restricted classes of structures, and
this characterization is, in some sense, optimal. These re-
strictions concern bounding the degree of the Gaifman graph
of the structure, or bounding its tree-width, which measures
its similarity with trees. This last restriction has also fruit-
ful applications in both database theory and computational
complexity (see e.g. [4].)

Our second main result shows that under the same re-
strictions, a watermarking scheme can be obtained. First,
we construct a watermarking scheme for database instances
with bounded degree Gaifman graph, while preserving any
local query. Local languages contain particularly first-order
logic, order-invariant queries [6], and relational AGGRg queries
[12, 13], that expresses mostly plain SQL by adding grouping
and aggregate functions to relational calculus [8, 13, 14].

Second, we provide a watermarking scheme for first-order
and monadic second-order queries on trees or tree-like struc-
tures. Monadic second-order logic (M SO) is of a special
interest, since it is commonly used to model pattern queries
on labeled trees, i.e. used as a formal query language for
XML documents (see e.g. [16].) XML deals actually with
unranked trees, but several methods exist to encode them
into binary trees (as in [15]), so we will restrict our attention
to the binary case.

Finally, on structures with unbounded degree Gaifman
graph, one can construct a first-order formula that defines
sets with unbounded and maximal VC dimension. There
also exists an M SO-formula yielding such sets on structures
with unbounded tree-width. For both, no query-preserving
watermarking scheme can be obtained. This gives a rather
complete panorama of query-preserving watermarking.

For practical applications, database instances are likely to
have a bounded degree Gaifman graph or a bounded tree-
width. A data owner can measure these combinatorial in-
formations and estimate the watermarking capacity of the
instance with our results.



Organization. The paper is organized as follows: we first
give basic definitions on query-preserving watermarking, and
recall the standard notion of the VC-dimension. We then
show on section 2 that computing the exact watermark-
ing capacity is hard. We prove that one can not obtain a
general watermarking scheme for unrestricted database in-
stances even for trivial queries and relate this result to the
VC-dimension. We then exhibit restrictions on database in-
stances and query languages that allow watermarking with
a reasonable amount of hidden information: local languages
on structures with bounded degree Gaifman graph on sec-
tion 3, monadic second-order queries on trees and tree-like
structures on section 4. Finally, section 5 deals with incre-
mental updatability of watermarked instances.

Related work. A wide part of the watermarking literature
focuses on multimedia data including images, sound and
video [3, 9]. Beside works cited in the introduction [1, 10],
watermarking of structured data like trees, graphs, or so-
lutions of an optimization problem are studied in [18, 19,
23]. A watermarking algorithm is also proposed for semi-
structures like X M L in [20], as part of the CERIAS project
at Purdue University. These approaches do not consider the
notion of queries.

1. BASIC DEFINITIONS

Weighted structures. A signature 7 (or database schema)
is a finite set of relation symbols {R1, ..., R}, with respec-
tive arity 71,...,7¢. A finite structure G = (U, Ry,..., Ry)
(or database instance) is an interpretation of each relation
symbol of the schema 7 on a finite universe &/. We denote by
STRUCT|r] the set of all T-structures. First-order formulas
are built from atomic formulas on the database schema with
equality, and are closed under classical boolean connectives
A,V,— and quantifiers 3,V. In monadic second-order logic
(MSO), quantification is also on sets of elements. Given a
formula ¥ (u1,...,ur,v1,...,0s), a structure G and a € U",
let %(a,G) = {b € U" : G = (a,b)}.

Similarly to [1], we suppose that elements from the finite
universe Y map to (i.e. are keys for) some numerical values,
that our watermarking procedures will slightly modify in
order to hide information. A weighted structures (G, W)
is defined by a finite structure G and a weight assignment
W : U* — N that maps a s-tuple b to its weight W(b) (s € N
is fixed by the schema.)

A formula with parameter @ is a formula (a,v) with
two distinguished variable vectors, 4 and o, such that v has
arity s. Variables @ can be assigned to a value a by a final
user who wants to obtain the set A((—lg’w)’w
weights corresponding to the query result:

of elements and

AZ = (b, (D)) : b € ¢(a )}

The set A((—lg’w)’w will be denoted Az for short, when
(G,W) and 9 are clear.

EXAMPLE 1. We consider the following database instance,
with query ¥ (u,v) = Route(u,v) registered by a server, and
its translation into a weighted instance.

Route:

travel transport

India discovery F21

India discovery G12

Nepal Trek F21

Nepal Trek R5

Nepal Trek F2

TourNepal F2

TourNepal 733
Timetable:
transport departure arrival type  duration
F21 Paris Delhi plane 10:35
G12 Delhi Nawalgarh bus  6:20
R5 Delhi Kathmandu plane 6:15
F2 Kathmandu  Simikot plane 3:30
733 Kathmandu  Daman jeep  2:50
G13 Kathmandu  Paris plane 10:00

The only weight attribute is “duration”. The corresponding
structure is G = (U, Route, Timetable), with, as an example
of tuple (TourNepal, F'2) € Route, (F21, Paris, Delhi, plane)
€ Timetable and W(F21) = 10 : 35 (expressed in hours and
manutes.)

There are only three possible parameters for the query, with
e.g. Afimetable  _ [([21,10 : 35), (G12,6 : 20)}.

India discovery

Query-preserving watermarking. Without loss of gener-
ality, we focus on the preservation of a unique query v, but
extension to several queries 1, ..., 9y is straightforward by
simple projection techniques.

Definition 1. A (water)marking problem is a pair (K, ),
where K is a class of weighted structures on 7, and ¥ a
parametric query.

A watermarking algorithm will introduce perturbations
into the structure’s weight function WV, and these perturba-
tions must be restricted.

Let W™ = 4(a,G) be the set of weighted elements in-
volved in the computation of v for parameter a. It is note-
worthy that Wf’w does not depend on the weight function
W: we can perturb W without modifying Wl-lg’w.

The weight figw)(a,v) of W is defined by the sum of
weights of its tuples:

fom @)= W)

We will often use notations W5 and f(a) only when G, W
and ¢ are clear from the context.

Function f will be used to control the overall distortion
induced on query results Az (the sum function can be re-
placed by mean, min or max without modifying the positive
results of this paper.)

ExaMPLE 2. For the database instance in example 1:

f(India discovery) = 16 : 55,
f(Nepal Trek) = 20 : 20,
f(TourNepal) = 6 : 20.

Given a constant ¢ € N, a weighted structure (G, W’) is
said to satisfy the c-local distortion assumption with respect
to another structure (G, W) if and only if for all @ € U°,
[W(w) — W'(w)| < e. Furthermore, given d € N, it satisfies
the d-global distortion assumption if and only if, for all



acU, |fgw(@v) — fiewy (@) < d. A structure is
a c-local distortion (resp. d-global distortion) of another
structure if it satisfies the c-local (resp. d-global) distortion
assumption.

ExaMmpPLE 3. We consider the original instance given in
example 1 and the same query 1. Let Timetable’ and
Timetable’” be two possible distortions of Timetable:

Timetable’ :

transport departure arrival type  duration
F21 Paris Delhi plane 10:45
G12 Delhi Nawal. bus  6:30

R5 Delhi Kathm.  plane 6:25

F2 Kathm. Simikot  plane 3:20
T33 Kathm. Daman  jeep  3:00
G13 Kathm. Paris plane 10:00
Timetable’ :

transport departure arrival type  duration
F21 Paris Delhi plane 10:25
G12 Delhi Nawal. bus  6:30

R5 Delhi Kathm.  plane 6:05

F2 Kathm. Simikot  plane 3:40
T33 Kathm. Daman  jeep 2:40
G13 Kathm. Paris plane 10:00

We have A7/ = {(F21,10 : 45), (G12,6 : 30)}.
Timetable’ respects the c-local distortion assumption for con-
stant ¢ = 0 : 10, but not the d-global distortion assumption
with respect to ¢ for d = 0 10 (because
Frimetabier (India discovery) = 17 : 15.) Timetable’ respects

both assumptions for c=0:10 and d =0 : 10.

If we can find 2' distinct distortions of a database instance,
we can distribute a distinct version to 2' data servers, and
hence identify 2! possible malicious servers. Similarly, this
means that we can hide [ bits of information in the database
instance. Each binary word will then constitute a different
mark.

In the sequel we focus on algorithms producing structures
that respect the local distortion assumption for a constant
value, say ¢ = 1 (i.e. weights are only modified by a +1 or
—1 distortion.)

Active weighted elements. Let W9 be the active weighted
elements of (G,W) with respect to 9, i.e.:

W = | wiv

aceur

We will use notation W for short. In our example 1, active
weighted elements are {F21,G12,R5,F2, T33}, and G13 is
inactive.

In the sequel, we will only distort weights of active weighted
elements. As a consequence, there will be at most |W| use-
ful weights to modify. Distortions in example 3 respect this
assumption. The next subsection will show why this restric-
tion is used.

Watermarking procedures. We now give some definitions
in the spirit of [10] for watermarking structured data, that
use probabilistic algorithms. A probabilistic algorithm has
the ability to pick a random bit b at each step, and to adapt
its computation according to the value of b. Hence a given
computation is a path in the tree of all possible random
choices along with its corresponding probability: both form
a probability space Q. It is convenient to consider such

algorithms that may succeed with high probability and may
fail, i.e. stop and abandon, or produce an incorrect result
with a small probability §.

Let A9 — fA9M)Y . G c 1"} be the set of all
possible query answers from a server using (G, W).

Definition 2. Given a formula %, and Il,d,d € N,
0<4§<1,a(ldd,d)-marking procedure preserving
is a pair of probabilistic algorithms M and D such that:

1. M takes as an input an original structure (G, W) and
a boolean mark m € {0,1}! and outputs a 1-local dis-
tortion G = (G, Wr,) such that:

. . . 3
%r[gmrespects the d-global distortion assumption] > 1

2. Let G* = (G, W?*) be a d’-global distortion of G,,. Al-
gorithm D is such that, given as input structure (G, W)
and all possible answers A9 from a suspect data
server that uses G*:

P(’Zr[D outputs m] > 1 — 4.

Algorithms M and D stand for the “marker” and the
“detector”, respectively. Parameter [ stands for the number
of bits to be hidden. Value d is the maximum acceptable
global distortion on structures produced by the marker, and
d' is the maximum global distortion an attacker can perform
on a structure in order to erase the watermark. Finally, § is
the failure probability of the detector.

Marker M takes the binary message m to be hidden in the
data, and computes the watermarked version of the original
structure. The same marker is used for any of the 2! different
messages. Detector D identifies a suspect structure G* based
on query answers A9% from the server.

Definition 8. A marking problem (K, 1)) is said to have a
marking procedure if there exists 0 < § < 1,1,d,d’ € N and
a pair (M, D) that is a (I,d,d’, §)-marking procedures for
structures in K.

We recall that distortions are made on active weighted
elements only. This leads to the two following observations.
First, for 1-local distortions considered here, each weight can
be modified by three means, i.e. a +1 or a —1 distortion,
or no distortion at all. Hence, we consider at most 3/"V!
different possible 1-local distortions of a structure, and the
maximum number of bits one can encode is at most O(|W|).

Second, these active weights can always be recovered from
a suspect server by asking Ag for all possible values of a.
But it is worth noting that modifying a weight W(a) of an
element a outside W does not impact on servers answers
Az. This is not an efficient way to hide information, since
those weights will not be recoverable by querying the server.
Hence information insertion should arise from distortions in
W only, and distortions outside W are useless.

Adversarial and non-adversarial model. Constructing a
correct global distortion G,, preserving 1 is a combinatorial
problem on its own. The probabilistic aspect of the marker
is useful, since we are going to produce correct structures
with the probabilistic method, but a deterministic version
can also be obtained. Once such a structure is produced,
the following problem is to resist to attacks.



In the non-adversarial model, data servers do not mod-
ify the structure G,, they have received. Suspect structure
G* is exactly the watermarked structure G,,, and answers
A9"% are identical to A9"%. So if there is a marker satis-
fying property 1 in definition 2, there is a detector satisfying
property 2 with § = 0.

In the adversarial model, data servers can perform any
reasonable distortion on the watermarked structure G,,. In
this case, a failure probability § > 0 is required for the
detector. As a matter of fact, a natural attack is to guess the
inserted mark and its position, and to modify the structure
accordingly. Hopefully, the probability of this event will be
small.

Watermarking schemes. A marking problem may have a
marking procedure for a constant value of [. The interest-
ing situation is when [ is an increasing function of |W|, i.e.
the number of hidden bits grows with the number of ac-
tive weighted elements of the problem. The best situation
would be to hide |W| bits of data, without distorting results
of queries at all, in such a way that the hidden bits can al-
ways be recovered. But there is a natural trade-off between
|W| and the global distortion.

Definition 4. A watermarking problem possesses a mark-
ing scheme if there exists ¢ € N such that the same pair
of algorithms (M, D) with 0 < ¢ < % as parameter is a

(W79, L d’, 6)-marking procedure.

Naturally, the number of hidden bits increases with the
allowed distortion (when ¢ — 0.) For example, a scheme
with ¢ = 1 can hide /[W] bits with distortion X = 2 (this
would be a very efficient scheme.)

Watermarking in the adversarial model. In this paper
we restrict our attention to non-adversarial watermarking
schemes only, but this is not a limitation. Indeed, Khanna
and Zane [10] proposed a general technique to turn a non-
adversarial scheme into an adversarial one. We recall this
result here for completeness, and refer the reader to the
original paper for a more precise exposition.

Two natural hypothesis are used to constraint the behav-
ior of the attacker:

Assumption 1. Bounded distortion: the attacker respects
the global distortion assumption, for an absolute constant
d.

Assumption 2. Limited knowledge: the attacker has lim-
ited knowledge on the mark distribution of the owner (the
probability that an attacker constructs a weight function -
close to the original, secret one is bounded by g,

The first assumption indicates that there is a limit to the
distortion one can add to a structure, imposed by its in-
tended use. The second simply says that the attacker does
not know exactly what information has been introduced into
the structure (and does not know the original, non-marked
structure.) This models also the situation where a server is
indeed not malicious, but uses data from an other source,
similar to the owner’s database (false positive detection.)

FACT 1. [10] Under the Bounded distortion and Limited
knowledge assumptions, any non-adversarial watermarking
scheme can be turned into an adversarial one, with a con-
stant error probability max (3, 0(1)).

Observe that the watermarking robustness is obtained by
lack of knowledge (an attacker knows there is a mark, but do
not know its amplitude and distribution) and not by using
the intractability of a computational problem, like in the
cryptographic setting.

All the watermarking schemes presented in this paper
comply with Khanna and Zane’s framework, and support
the adversarial and non-adversarial setting.

We do not consider here the general problem of collusion
attacks, where servers combine several watermarked copies
of the database to erase the watermark. Nevertheless, a
specific notion of collusion is considered in section 5.

Vapnik-Chervonenkis dimension. Let V be a set and C be
a family of subsets of V. A set U C V is shattered by C if
CNU =2Y, where CNU = {CNU:C €} The VC-
dimension VC(C) of C with respect to V is the maximum
of the sizes of the shattered subsets of V', or oo if the max-
imum does not exist. For a formula ¢ (@,v) and a struc-
ture G, let C(v,G) = {¢(a,G) : a € U"}, and VC(¢,G) =
VC(C(¢,G)). We say that ¢ has bounded VC-dimension on
a class of structures /C if there exists k € N such that, for all

Gek, VC(,G) <k

2. QUERY-PRESERVING WATERMARKING:

GENERAL CASE

Computing the watermarking capacity. Computing the
exact watermarking capacity #Mark of a class of struc-
tures, i.e. the number of different possible perturbations
with distortion at most d is probably difficult. It appears
that computing # M ark for distortion ezactly d is as hard as
computing the number of accepting paths of any NP Turing
machine, i.e. is complete for the classical complexity class
#P [21].

THEOREM 1. #Mark(= d) is #P-complete.

PROOF. The problem #Mark(= d) is in #P by consider-
ing the N P-machine that guesses perturbations and checks
the global d-distortion condition.

We show that #Mark(= d) is #P-hard by reduction of
the classical # P-hard problem PERMANENT (i.e. count-
ing the number of perfect matchings in a bipartite graph.)

Let G = (V1, Vi, E) be a bipartite graph. Let Y = V1 UVa
and G such that Va € U, W, = {(u,v) : E(u,v)}. Construct-
ing a weighted structure and a function ¢ with such (W,) is
easy. Suppose now that we can compute #Mark((W,),= d)
for d = 1.

For all b € W, let W(b) = W(b) + ms be a possible
watermarked weight function. It respects the following con-
ditions:

Vaeu, > W(b)+my—W(b) =1,
beW,
where my are under constraints
Vb e W,0 <mp <1. (+1-weight distortion)

The number of possible values for m; is exactly the number
of perfect matchings of the previous graph G. [



Impossibility results. Guaranteed watermarking for arbi-
trary structures, preserving even trivial queries is impossi-
ble.

THEOREM 2. A problem (K,v) does not possess a water-
marking scheme if ¥G € K,VC(¢,G) = [W9¥|.

Proor. With at most k distorted weights, one can pro-
duce at most Zle (‘Vfl)T < (2|W))* different weighted
structures, encoding at most O(kIn|W|) bits. So any al-
gorithm encoding |W|'~% bits must use a mark M with at

least h(|W|],e) = % distortions with the same sign,
say +1. For a given e, h is increasing with respect to |W|
(since |[W]'790 > In|W|), and there exists no such that
h(no,e0) > %

We now consider a structure G,, which universe has no
weighted elements. A watermarking scheme with parameter
€ = €0 must add distortion +1 to weights from a set of
elements P with |P| > %

Since VC (1), Gny) = |Wm0 | there exists a subset S of
U° of size |W| which is shattered by sets in C(%), Gn,). But
since sets in C(¥, Gn,) are all subsets of W, there exists only
one possible S: S = W (sets in C(¢,Gn,) can not shatter
sets outside W.) So the set W is shattered by results of
queries, and there exists a tuple a such that P = W35. Hence
distortion on ¥(@, Gn,) is greater than %, which contradicts
the hypothesis to have a watermarking scheme. Probability

and adversarial arguments does not come into play. [

It is worth noting that this impossibility argument can be
followed with even trivial queries, e.g. ¥ (u,v) = E(u,v). To
do this, it is sufficient to consider the class of structures G,
with 2" + n vertices, and the simple binary relation E that
links the ith vertex of the first 2" vertices to the ith subset
Wi of the n last vertices.

REMARK 1. Unbounded VC-dimension is not sufficient:
one can construct a class of structures G, of size n where
only half of the active weights are shattered (VC(i,Grn) =
[W|/2), with a (|W]/4,0,6)-marking scheme.

Consider the class of structures G, with on/2 +1+n ver-
tices, and the simple binary relation E that links the ith
vertex of the first 2"/ yertices to the ith subset of the n/2
last vertices, and the 2™/% + 1th vertez a to all of the n last
vertices. The watermarking problem defined by the query
Y(u,v) = E(u,v) has n active weights and unbounded VC-
dimension. The last n/2 vertices of the active weights are
involved only for query E(a,Grn). Putting balanced distor-
tions (+1,—1) or (=1,+1) only on these n/2 weights gives
a watermarking scheme encoding n/4 bits with distortion 0.

3. WATERMARKING WHILE PRESERVING

LOCAL QUERIES

Locality of queries. Given astructure G = (U, Ry, ..., Ry),
its Gaifman graph is the new structure (U, E), where (a,b) €
FE iff there is a relation R; in G and a tuple ¢ in R; such
that @ and b appear in & The distance d(a,b) between
two elements a and b is the length of a shortest path be-
tween a and b in the Gaifman graph of G. If no such
path exists, d(a,b) = oco. Given a € U, p € N, the p-
sphere S,(a) is the set {b : d(a,b) < p}, and for a tu-
ple ¢, S,(€) = UaezSy(a). Given a tuple € = (c1,...,¢n),

its p-neighborhood N, (¢) is defined as the structure (S,(¢),
RinNS,(e)™,...,RNS,(&)™,c1,...,cn), where Vi, R; has
arity r;. Let ~ denotes isomorphism of structures. We con-
sider the equivalence relation ~, on elements of a structure
G where @ =, b iff N,(a@) ~ N,(b). Finally, let ntp(d,G) be
the number of equivalence classes of the relation ~,. We in-
troduce the important notion of the locality rank of a query:

Definition 5. Given a query ¥ (u1, ..., ur), its locality rank
is a number p € N such that, for every G € STRUCT7]
and two r-ary tuples a1 and a2 of G, N,(a1) =~ N,(az) im-
plies G = ¢(a1) & G = ¢¥(az). If no such p exists, the
locality rank of v is co. A query is local if it has a finite
locality rank. A language is local if each of its queries is
local.

Gaifman’s theorem [5] states for example that every first-
order (relational calculus) query is local. The locality rank of
a formula 1 is basically exponential in the depth of quantifier
nesting in 1, but does not depend on the size of G.

As an example, we consider a graph instance G = (U, R)
and the query ¥ (u,v) = R(u,v) that enumerate all elements
v at distance 1 of element u. This query has locality rank
1, i.e. it is sufficient to look at a neighborhood of radius 1
around u and v to devise if G & 9¥(u,v). Figure 3 shows
G and neighborhoods Ni(a) and Ni(d) of elements a and
d. Observe that there is 3 distinct (up to isomorphism)
neighborhoods of radius 1, and that Ni(a) &~ N1(b), N1(d) =
Nl(e) and Nl(c) ~ Nl(f)

We associate to each equivalence class of neighborhoods
a unique number. Let type(u) be a the number of the
equivalence class of the neighborhood of u. In our exam-
ple, type(a) = type(b) = 1, type(d) = type(e) = 2 and
type(c) = type(f) = 3.

c
d N, (a): <
b

e N,(d):
f

a

Figure 1: Instance and neighborhoods

Watermarking and locality. In the sequel we restrict our
attention to structures in ST RUCTy[7], i.e. structures with
Gaifman graph of bounded degree k. Our aim is now to
prove the following result:

THEOREM 3. There exists a (Wl_qe,%7d/76)-marking -
scheme preserving any local queries on STRUCTy[t], for
the adversarial and non-adversarial model.

To prove this theorem, we first observe that locality rank
of queries implies a similarity between weighted elements
involved in query computation, as shown is the following
lemma.

LEMMA 1. Let ¥(u1,...,ur,v1,...,0s) be a formula with

locality rank p, G € STRUCTY[7] andn = (rk2p+1)%. Given
a,beUr, ar,b— Wa\Wy| <.



PROOF. We prove it for s = 1. Let G € STRUCTy[7] and
(@, ?) a query of locality rank p. Let @ and b € U", and
@ ~, b. Suppose that |[Wz\Ws| > 2rk®**!'. So there exists
an element @ € Wz\Wj such that @ ¢ So,41(a,b), since
Sa,41(a,b) has at most 2rk* ! elements. By hypothesis,
W € Wa, so G = (@, w). But since @ ¢ Sa,11(a,d), we
know that N,(a,w) ~ N,(b,w). By locality of ¥, G &=
(b, @), and @ € Wj. This contradicts the hypothesis. [

Figure 2 shows for any parameter u of ¥ the set W, and
the isomorphism type of Ni(u). Remark that although d
and e have the same type, W4 and W, are not identical, but
differ on 2 elements.

u [ type(u) Wu
alblcl|ld|el|f

a 1 Oo| 0o

b 1 oo

c 3 0

d 2 o|o|o

e 2 o|0o O

f 3 O

Figure 2: types and active weighted elements

Let us consider watermarking for the previous example.
It is worth noting that W, and W, are identical, i.e.

few)(a,¥) = figw)(b,9) = W(d) + W(e).

Suppose now that we modify the weight function W to a new
function W, where W' (d) = W(d)+1 and W’ (e) = W(e) —
1. Then the distortion on function f is exactly zero, and
query v is preserved by this 1-local distortion. The neutral
transformation, where W’(d) = W(d) and W'(e) = W(e)
yields of course the same property. Hence choosing one of
these two distortions is an obvious way to hide one bit of
information into this instance with global distortion 0 on a
and b.

However, these distortions yields non-zero perturbations
on other query results, e.g. for parameter c or f. The overall
picture is given in figure 3.

u | type(u) mark distortion
+1| -1
alblc]| d e | f

a 1 [m] [m] 0

b 1 o | O 0

c 3 ] +1

d 2 o|o|o 0

e 2 o|o m] 0

f 3 o 1

Figure 3: mark and types

The general problem is then to find several distinct pairs
of weighted elements to apply this (+1,-1) trick, with a re-
stricted perturbation. With [ such pairs, we can insert any
boolean mark of [ bits.

We briefly sketch the general technique used to find such
pairs. We will first focus on canonical parameters, i.e. choose
one representative parameter of each possible neighborhood.
Because G € STRUCT}[7], there is a finite number ntp(p, G)

of such neighborhoods in the Gaifman graph of G (i.e. in-
dependent of the size of G.) In our example, there are 3
different neighborhoods (or isomorphism types.)

We will then consider a partition of weighted elements into
pairs, such that elements of each pair are in the query result
set of the same canonical parameters. Using the preceding
(41, —1) trick on these pairs guarantees a zero perturbation
on queries with a canonical parameter.

To bound the distortion on any other possible parame-
ter (not only canonical), we will apply lemma 1. A query
with parameter of type ¢ must depend on (almost) the same
weights as the query of the corresponding canonical param-
eter. This limit the distortion to a constant. In order to
get a watermarking scheme, where the distortion can be re-
duced at will, we will combine the previous technique with
a randomized argument.

More formally, for all i € {1,...,ntp(p,G)}, let a; € U”
be a tuple of type i, and S = {a1, ..., Gnipa,g)}. Wecall S a
set of canonical parameters for the query. Given a weighted
element w, its class cl(w) is the set of isomorphism type of
canonical parameters a; such that w € Wa,. A partition
W1 ...,W"™ of a subset of W into pairs is said to be an
S-partition if Vi and W' = (w, @), cl(w) = cl(@').

Given a subset W' of {1,...,n}, a W’-pair marking is the
weight function W’ such that Vo, W' (w) = W(w0) + ma,
where, for all W* = (w;, @}):

e icW —mg, =+1,mgy =—1.
e i g W — mg, =mg =0.
Observe that the sum of distortion on each pair is always
0.
PROPOSITION 1. Any W' -pair marking according to an
S-partition is such thatVa; € S, fgw)(@i)— fig,w(a:) = 0.

PROOF. FQr a; € S, Wa, = Wi a...p W'ﬁ where
Vg,V € W' i € cl(w). Distortion on W5 is the sum of
distortion on each pair, and each pair’s distortion is 0. [

Figure 4 shows for our example canonical parameters,
weighted elements and their classes, and a pair marking.

| clw) | 2 ]2 ]2]v3]1] |

u | type(u) mark distortion
+1 ] -1
a b lc| d |e]|f
a 1 o |0 0
c 3 a 0
d 2 O O | O 0

Figure 4: canonical parameters, classes and pair
marking

A pair marking is said to be e-good if it induces a global
distortion smaller than % We will use a probabilistic dis-

tortion of weights, according to a specific partition.

PROPOSITION 2. Let N be the number of distinct possible
queries, and W' obtained by randomly choosing sets from
an S-partition with probability p = W Then the W'-
pair marking is an e-good marking set of size Q(p|W) with
probability at least %.



PrOOF. We first suppose that the S-partition can be cho-
sen to cover a large part of W. For a as parameter, we
consider the distortion induced on f(a). If @ € S, we ap-
ply proposition 1. Let a ¢ S with type ¢, and a; € S its
canonical parameter. Recall that

Wa, =WioW2q -0 WY.
Since a =, a:, by lemma 1, W5 and W5, differ by at most n
weights, i.e.

Wa=(WroW?2...0 W9)\A)UB,

where A are elements from W5, and B are elements not in
Wa,, with |A|+|B| < n. The probability that AUB contains
at least d = [1] weights from W' is bounded by

[AUBI\ 4 _ a4 1 1
< a P =P TN =N

For such a marking W’ and the corresponding structure
(G,W'), we have for any a:

1 1

Pr{lfig.w) (@) = figwn (@)] = f{_:“ S SN
Applying the union bound for all of the N possible queries
to the previous equation, with probability at least %, global
distortion is bounded by d on all queries. Furthermore, with
probability at least 2, [W'| = Q(p|W|), using classical Cher-
noff bounds. Finally, if the S-partition does not cover W,
we can apply the randomized technique of [10], proposition
4.3. O

We now prove our main theorem.

PROOF OF THEOREM 3. We begin with the non-adversarial

model. By lemma 1, there is a constant ¢ (independent of
|W|) such that N is bounded by W?. The marker gener-
ates random W’ and checks until a e-good marking W* is
obtained (each time, the distance is computed by consid-
ering all possible valuations for queries.) For any word m
of length I = p|W]| as input, (G, W) is returned, where
Wi, is the m™ e-good marking corresponding to the m™
subset of W*. The detector asks for weights described in
W* and outputs m. The marker performs O(ntp(p,G)|U"|)
isomorphism tests on constant size graphs, and generates
O(In(nN¢)) random bits. The detector checks O(|W]) val-
ues by querying the suspect server. Notice that the marker
needs only to find a random e-good marking once, and can
compute from it every watermarked instances.

Finally, this scheme follows Khanna and Zane’s frame-
work for the adversarial setting. Hence this watermarking
scheme for the non-adversarial case can be turned into an
adversarial scheme ([10], theorem 5.1.) O

REMARK 2. For example, if ¢ = 30 and if we consider
that a distortion % = 40 is acceptable, the amount of hid-

den bits is |W\i Hence, for a database with |W| = 5000

weighted elements, 50007 = 8 bits are hidden, hence 28 = 64
different watermarked copies can be distributed. But q is re-
lated to the locality rank of queries, and can be rather huge
for practical applications.

4. PRESERVING MSO-QUERIESON TREES
AND TREE-LIKE STRUCTURES

In this section we consider the problem of watermark-
ing labeled trees and tree-like structures, while preserving
M SO-queries. These structures can easily model X M L doc-
uments.

EXAMPLE 4. This picture shows an XML document with
a possible 1-local distortion. We also consider the following
parametric Xpath query:

Y(a,v) = school/student [firstname=a]/ezam

<school>
<student>
<firstname>John</firstname>
<lastname>Doe</lastname>
<exam>11</exam>
</student>
<student>
<firstname>Robert</firstname>
<lastname>Durant</lastname>
<exam>16</exam>
</student>
<student>
<firstname>Robert</firstname>
<lastname>Smith</lastname>
<exam>12</exam>
</student>
</school>

<school>
<student>
<firstname>John</firstname>
<lastname>Doe</lastname>
<exam>11</exam>
</student>
<student>
<firstname>Robert</firstname>
<lastname>Durant</lastname>
<exam>15</exam>
</student>
<student>
<firstname>Robert</firstname>
<lastname>Smith</lastname>
<exam>13</exam>
</student>
</school>

Then f(Robert,) = 28 on the original document, and has
distortion 1 on the second.

We will use Grohe and Turdn notion of definability of a
k-ary formula by a tree-automaton [7].

Trees and automaton-definable queries. A binary tree is
viewed as a {S1,S2 <X}-structure, where Si,S2 and < are
binary relation symbols.

A tree T = (T, 57,57 ,<7) has a set of nodes T, a left child
relation S7 and right child relation S7 . Relation <7 stands
for the transitive closure of ST U S7, i.e. the tree-order
relation. A weighted tree (7,W) is a tree with a weight
assignment W : T° — N. Given a finite alphabet X, let
7(X) = {51, S2, 2} U{P:|c € £} where for all c€ &, P, is a



unary symbol. A Y-tree is a structure 7 = (T, 57,57 , <7
,(PT)cex), where its restriction (T, S7,57,=<7) is an or-
dered binary tree and for each a € T there exists exactly
or}fe ¢ € ¥ such that a € PZ. We denote this unique a by
o’ (a).

We consider trees with a finite number of distinguishable
pebbles placed on vertices. For some k > 1, let X = 3 x
{0,1}*. For a ¥-tree 7 and a tuple @ = (a1,...,ax) of
vertices of 7, let 7z be the X-tree with the same underlying
tree as 7 and 7@ (b) = (07 (b), cu1, ..., ax), where a; = 1 iff
b= Q.

A Y-tree automaton is a tuple B = (Q, J, F'). Set @ is a set
of states, and F' C @ is a set of accepting states. Function
§: ((QU{*})? x X) — Q is the transition function (* € Q.)
Arun p: T — @Q of B on a X-tree 7 is defined as follows.
If @ is a leaf the p(a) = &(,*, 07 (a)). If a has two children
by and be, then p(a) = §(p(b1), p(b2),0” (a)). If a has only
a left child b then p(a) = §(p(b), *,c” (a)) and similarly if a
has only a right child b, p(a) = 6(x, p(b),0” (a)). Finally, a
Yk+s-tree automaton defines a s-ary query with k& parame-
ters B(a,7) = {b € T® : B accepts T} on each Z-tree 7.
Let W5 = B(a, T).

It is well known that M SO-sentences and tree-automata
have the same expressive power. For formula with free
variables, a Yj-tree automaton is equivalent to an M SO-
formula ¥ (u1,...,ux) of vocabulary 7(X) if for all ¥-tree,

B(T) = 4(7T).

LEMMA 2 (GROHE,TURAN [7]). For any M SO-formula
Y(u1,...,ur) of vocabulary T(X) there exists a Xy-tree au-
tomaton B that is equivalent to 1.

Preserving M SO-queries. Our final goal is now to prove
the following theorem:

THEOREM 4. There exists a watermarking scheme pre-
serving any M SO-definable query on trees or classes of struc-
tures with bounded clique-width or bounded tree-width, in the
adversarial and non-adversarial model.

To prove this result, we first prove the following theorem,
in order to apply lemma 2.
1—qe
THEOREM 5. There exists a ( ‘lem : , %, d', §)-marking-
scheme preserving the query defined by a tree automaton
with m states, in the adversarial and non-adversarial model.

We begin by the following lemma:

LEMMA 3. Let B be a Xa-tree automaton with m states.
Then for every X-tree T, there exists n = |W|/4m distinct
sets Vi,..., Vo, C W and n distinct pairs (b;,b';) € V2 of
distinct weights such that Vi # j,V;NV; =0, and Va € T':

a @ Vi— (b € Wy Vs € Wa).

PROOF. We iterate a construct from [7]: from the bottom-
up, we form |W|/4m subtrees of T of size at least 2m. Since
the automaton has only m states, one can find in each V; a
pair of vertices such that the automaton ends in the same
state on a given subtree, for all a & V.

More formally, from the bottom-up of 7, let U; be a min-
imal subtree with respect to inclusion with at least 2m ele-
ments. Since 7 is binary, U; contains at most 4m elements.

We can repeat this construct 2n = [|T'|/4m| times, obtain-
ing sets Uy, ..., Usn.

We consider the binary relation F on H = {Ux,...,Uz,}
to be the set of all pairs (U;,U;) such that lea(U;) <7
lea(U;), and there is no k such that lea(U;) <7 lea(Uy) <7
lca(Uy). Then (H, F) is a forest with 2n vertices and at most
2n — 1 edges. Therefore there is at most n elements of this
forest with more that 1 child. Without loss of generality,
suppose that Ui, ..., U, have at most one child.

If U; has no children, let V; = {v € Tl|lca(U;) =7 v}, i.e.
elements of the subtree of 7T rooted at lca(U;). If U; has one
child U, then let V; = {v € T|lca(U;) <7 v and lca(U;) 27
v}, i.e. the set of all vertices of the subtree of 7 rooted
at lca(U;) that are not in the subtree rooted at lca(U;).
Observe that Vi,...,V, are pairwise disjoint.

Let 1 < i < n. If U; has no child, then there exists two
distinct elements b;, b; € U; such that:

e For all a € V;, automaton B running on 7,3, or 7:11);
reaches lca(U;) in state g¢;.

Now if U; has a child U;, and qi,...,gm are the states
of B, we define pairs bi,k,b/i’k for 1 < k£ < m by induc-
tion on k. Suppose 1 < k < m and that b;; and b'“
are already defined for | < k. Since |U;| > 2m we have
|[Ui\{bi,1,-..,bik—1} > m. Therefore there exists distinct
elements b¢7k7 b/i,k S Ui\{b@l, Cey bi,k71} such that:

e There is a state ¢;r of B such that if a € V;, the
automaton running on either 745, or 7., and leaving
lca(Uy) is state g reaches lca(U;) in state ¢; k.

Finally, if U; has no children, and a ¢ V;, B accepts Za,
if and only if B accepts 7,r,. If U; has one child Uj, a € U;
and B ends in lca(Uj) is state g:, B accepts Tap, , if and only
if B accepts Zapr, - O

We now claim that pairs (b;,b’;) are good candidates for
a watermarking algorithm.

PROOF OF THEOREM 5. In the non-adversarial case, for
a Yo-tree automaton, let a € T. Suppose there is a j such
that a € V;. Notice that in this case j is unique. Then for
all i # j, a € Vi and B accepts Tap, if and only if it accepts
’Z;b/i. Since distortion on weights b; and b’; is zero, distor-
tion on f(a) is limited by the pair b;,b}. This distortion is
at most 1. Otherwise, if Vi,a & Vi, then the induced distor-
tion of all pairs is 0. This result generalizes to a ¥y s-tree
automaton with the same randomized technique as propo-
sition 2. For the adversarial case, we apply Khanna and
Zane’s transformation to the previous algorithm. [

We can now end with the proof of the main theorem.

PROOF OF THEOREM 4. For trees, applying lemma 2, we
obtain an automaton B equivalent to ¥. Then, by theorem 5,
there is a corresponding adversarial and non-adversarial wa-
termarking scheme. To a structure G with bounded clique-
width we can associate a labeled parse-tree 7. For any
M SO-formula (@) there exists a M SO-formula () such
that for G and the corresponding parse-tree 7, 1(G) = (7))
(see [7], lemma 16.) Then by the previous remarks, there ex-
ists a watermarking scheme preserving 1]1, hence . Finally,
structures with bounded tree-width k has clique-width at
most 2%, and the previous remark applies. [



Finally, we can state a converse to the previous result.

THEOREM 6. There exists an M SO formula v and a class
of structures with unbounded tree-width that do not possess
a watermarking scheme preserving 1.

PRrROOF. Example 19 in [7] exhibits a MSO formula ¢
with unbounded V C-dimension on the class of grids, which
has unbounded tree-width. This shows actually that for all
grid G, the set |J, ¥ (@, G) is shattered by sets in {¢(a,G) :
@ € U"}. The corresponding watermarking problem with the
same formula ¥ on the same class of structures is such that
for all G, W9¥ = U, ¥ (@, G). Hence for all G, its set of ac-
tive weighted elements is shattered, so VC(v,G) = |[W9Y|,
showing by theorem 2 that no watermarking scheme is pos-
sible. [

5. INCREMENTAL WATERMARKING

In this section we suppose that a data owner needs to
update the database and propagate changes to each of the
registered data servers. The problem is then to maintain
the watermark he has inserted.

Definition 6. For a class of updates U, a watermarking
procedure/scheme (M, D) maintaining U is such that the
same D is a detector for any database update in U.

Let (G,W) be a weighted instance. We consider first
weights-only updates: the data server updates only the weight-
ed part W while leaving G unchanged. In this case, updating
the watermarked instance is easy.

THEOREM 7. Previous watermarking schemes maintain
weights-only updates.

Proor. For a weight distortion
Wo(a@) = Wo(a) + M,

in the original watermarked instance, and a new weight
Wi (@), we propagate the same distortion M:

Wi (a) = Wi (a) + M.

The same global distortion is obtained for the new instance.
Since the detector extract the watermark by computing the
difference between W(a) and W' (@), it is only sensitive to
the modification M, and the watermark can be recovered. [

Now if updates modify G, hence modify sets W5, bounded
distortion is not guaranteed. This problem is harder than
incremental updatability considered in [1]. The brute-force
method that consists in computing a new watermarked ver-
sion of the new database and distributing it is expensive,
and moreover exposes the owner to auto-collusion attacks in
the adversarial model. A server, receiving several successive
versions of a database can remove the watermark by aver-
aging numerical data. An important point is then to detect
when an update operation requires the brute-force method.
In the sequel, an update is said to be type-preserving if no
isomorphism type has been created or suppressed by this
update.

THEOREM 8. In the non-adversarial model, there exists a
(IW|,n,0,0)-marking procedure (M, D) for local queries on
STRUCT[T] maintaining any type-preserving update.

PRrROOF. We restrict our ambition to a marking procedure
(not a scheme) with constant distortion n. Observe that any
pair-marking introduced by the algorithm of theorem 3 has
distortion at most 1 on any W5 whose isomorphism type
is in S. Since no new type is created, it is not needed to
modify the mark, and the detector can still detect it. [

A note on relative error

Classical studies from the literature on approximation con-
sider relative errors rather than absolute ones, because rela-
tive approximation is preserved under composition. Observe
first that a relative perturbation 1+¢ of weights always yields
a global distortion of at most 1 + €. Hence the watermark-
ing problem becomes trivial. But relative error is not always
appropriate because 1) for very small weights (close to 0), it
induces a small and fragile perturbation, and 2) relative er-
ror does not necessarily model the problem we have in mind
(mainly when error is less tolerable as weights increase.)

Conclusion and future work

In this paper we considered the problem of watermarking
databases or XML documents, while preserving a set of
queries in a specified language £. We gave structural ar-
guments for the existence of a watermarking scheme related
to the VC-dimension of sets definable in £. We showed that
watermarking on arbitrary instances is impossible, and that
languages and structures with bounded VC-dimension es-
tablished by Grohe and Turan have also good watermarking
properties. But we do not know if bounded VC-dimension
is a sufficient condition to obtain a watermarking scheme.

Our model does not capture exactly the result from [10]
since shortest path queries are indeed an optimization prob-
lem (notice however that the VC-dimension of weighted
graphs with respect to their shortest path is bounded.) Op-
timization has received a large interest from the finite model
theory community [11, 17]. An interesting point is to find
relationships between logical definability of such problems,
mainly their weighted versions [24], and their watermarking
capacity.
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