Reliable, Fair and Efficient Concurrent Software
with Dynamic Allocation of Identical Resources

Claude Kaiser and Jean-Francois Pradat-Peyre

Conservatoire National des Arts et Métiers
Laboratoire CEDRIC
kaiser@cnam.fr, peyre@Qcnam.fr

1 Introduction

1.1 Presentation

Dynamic allocation of a class of identical resources, such as memory slots, is
considered for concurrent software. Resources are allocated at run time to pro-
cesses in a context prone to deadlock [Coffman 71] : the resources are allocated
to one process at a time, a process may hold allocated resources while awaiting
assignment of others, no resource can be forcibly removed from a process hold-
ing it. Safety of concurrent software, i.e. absence of deadlock, can be obtained
by avoidance policies, called in this paper beforehand precaution and dynamic
prevention. Both rely on the banker’s algorithm [Habermann 69] based on a
priori process claims and on service postponement when a request can lead to
deadlock once processes proceed requesting resources up to their claims. Fair-
ness of concurrent software, i.e. starvation avoidance cannot always be based on
a pure FIFO service of requests since it may block all the processes and therefore
introduce another source of deadlock.

We present a safe and fair implementation which rely on the concurrent
semantic of protected objects in Ada and which has been proven with the model
of colored Petri nets. However, safety and fairness may reduce concurrency and
therefore the efficiency of concurrent software. It may also imply a different
service for small claim and large claim processes.

We consider the case of large systems and how to partition the resources
and/or the processes and construct a composite allocator, in order to limit the
concurrency reduction or to limit the differences in quality of service. This par-
tition is tuned by the results of simulations.

The resource utilization is simulated with different policies. Global criteria
are computed such as a concurrency factor and a resource retention ratio. The
simulation results show the effectiveness of the partionning for some case studies.

1.2 Concurrent software

Concurrency is getting more and more present in applications with the extend
of synchronized multimedia man machine interfaces and of client-server intranet
architectures supporting concurrent servers. Developing reliable concurrent soft-
ware for these applications is therefore a growing challenge. Especially one must

be able to verify the reliability of programs when buying some on the shelf, or
when performing acceptance trials for some piece of software realized by sub-
contractors.

Recent programming languages such as Ada95 and Java provide features for
concurrency and distribution and they favor the development of concurrent and
distributed software. These object oriented languages allow dynamic creation
of objects, threads or tasks, which request and remove dynamically resources
at their creation and deletion. Threads and tasks may also request and remove
resources during their execution. Dynamic allocation of resources is also playing a
central role in object oriented distributed applications, which allow a variable and
evolving number of objects, tasks, threads, processes, stations, sites or servers.

This arms software developer’s with powerful but dangerous tools. Systems
composed of cooperating agents can be concisely specified, but the resulting
program may contain concurrency errors such as deadlock or starvation. Most
of these errors cannot be prevented statically at compile time since they will
depend of the system behavior resulting from hazardous requests and dynamic
allocation of resources. Thus considerable care must be taken to provide reliable
dynamic allocation policies such as deadlock prevention or avoidance policy.
Moreover one must take care that the usual two stage development, which first
deals with avoiding deadlock and second deals with introducing fairness, does
not reintroduce deadlock when coping with fairness.

1.3 Resource allocation

When resources are allocated at run time, the allocation policy may consider
various aspects such as:

— the state of the resources,

— the nature of the requests, such as size, duration of use, individual or co-
ordinated requests (for example a communication channel may need to be
requested by both end users ; another example is an allocation for a client
presenting a request which has to be authenticated by a third party ; in
object oriented concurrent applications the cooperation of agents introduces
some dependencies between the requests or the releases.),

— the priority of the requesting client or of the group of clients,

— the history of individual clients, of the group of clients, of resource allocation,

— the declaration of total resource claims and of the behavior of future resource
requests,

— postponing the calling client until the resource is available or just returning
a denial of service,

— controlling that the client respects the assumption of resource allocation for
a finite period (detecting faulty clients when their deadline is over),

— preempting or not the client allotment.

The allocation policy must take care of clients requests, of quality of service
(efficiency of allocation management, availability of resources during a given

time period) ; it must also guarantee global invariant properties of the system
behavior such as absence of deadlocked clients, absence of infinitely postponed
clients and absence of clients never releasing their allocated resources (or simply
not releasing the resources in the contractual delay).

2 Reliable allocation of identical resources

Let a pool of m identical resources to be allocated to a set of n independent
processes.
A process P; (1 <14 < n) is represented by :

— claim(i) : the claim of process P;, i.e. the maximum number of resources it
ultimately needs,

— grant(i) : the total number of resources currently granted to process P;,

— dist(i) : the distance of process P; to its claim,
i.e. dist(i) = claim(i) — grant(i),

— add(7) : the current number of additional resources requested by P;,

— rank(?) : the rank of process P; when it is necessary to totally order the set
of processes

An allocation state is realizable if the following conditions hold :

(R1) : Vi€ 1l.n,0 <dist(i) < claim(i) <m

(R2) : Z grant(i) < m

i=1l..n

Let Stock be the current number of available resources; Stock is defined by
Stock =m — 3% ., . grant(i).

We deal only with realizable states and we assume that a process cannot be
forced to release a resource until it finishes (no resource preemption) but also
that it releases all its allotted resources in due time.

For convenience, we say that a process P; starts a new transaction when
grant(i) = 0 and add(i) > 1. It ends its transaction when it releases all its re-
sources (grant(i) = 0 and add(i) = 0). A process which has started a transaction
is said to be transactive until it ends it.

An allocation state is safe if it cannot ever lead to deadlock.

2.1 Deadlock avoidance (safety) by prevention or by precaution

Deadlock avoidance rely on dynamic prevention or on beforehand precautions.
Dynamic prevention controls the allocation and postpones request to avoid oth-
erwise possible deadlock situations. Beforehand precautions make deadlock sit-
uations impossible to be reached for any resource request.

Dynamic prevention A policy of dynamic prevention of deadlock is the banker’s
algorithm [Dijkstra 67, Habermann 69, Holt 71, Holt 72].

The key of the banker’s algorithm is to control the allocation such that, in
every allocation state, the allocator stock is large enough to allow a feasible
survival behavior of the allocator. In this survival behavior, the allocator would
satisfy the claims of all the transactive processes in sequential order, refraining
any concurrency.

More formally, given a list of n independent processes Pj(1 < j < m), an
allocation state is safe iff there exists at least one permutation of this list for
which the following condition holds :

(R3) :Vj€eln, dZSt(]) < stock + Eklrank(k)<rank(j)grant(k)1

If the allocation is controlled such that the system evolves from safe state to
safe state, deadlock is prevented.

Remarks Let us recall some known results [Habermann 69].

1. Let available_stock = minjc1..n(stock+ X rank(k)<rank(j) grant(k)—dist(j)).
If the state is safe, available_stock is non negative. Then any process that
makes a request that is lower than available_stock can be served safely, since
the system remains in a safe state after the service of that request.

2. If a state is safe, any resource allocation add(i) to a process P; such as
dist(1) < stock is safe since it leads to a new safe state where
dist(i) — add(i) < stock — add(i) with rank(i) = 1.

3. If (R3) holds for a sublist of s processes (s < n) and if (R3) never holds for
any of the n — s remaining processes added to the list at rank s + 1, then
no permutation of the n processes will hold (R3) for the whole list and the
state is not safe. It is not necessary to check some other permutation of the
sublist.

4. Suppose that the system is in a safe state and consider a new resource
allocation add(i) to a process P;; this leads to a new state. Suppose now
that there exists a permutation where P; is placed at rank h. The new state
is safe as soon as (R3) holds for rank = 1..h.

5. If a state is safe, adding a process with claim < m and grant = 0 leads to
another safe state. If a state is safe, a process releasing resources leads to
another safe state.

6. An efficient ordering of transactive processes is to order them by increasing
values of distances to their claims. (This is possible when the allocator has
to deal with one class of resources only).

7. Combining the result above leads to an efficient algorithm for testing the
request of P;:

— let the transactive processes of a safe state be ordered by increasing
distances;
— remove P; from that list and change the data relative to P;;

! where rank(i) denotes the rank of the process P; in the considered permutation

— insert P; with its new value in the list; let rank(i) be the new rank of P;

— the new state is safe iff (R3) holds from rank = 1 to rank = rank(i);

— from point 4, the new state is safe as soon as P; can use the revised
stock of rank(j) such as 1 < rank(j) < rank(i); this leads to check first
whether dist(i) < stock + Xy rank(k)<rank(j)grant(k).

Beforehand precautions A policy of beforehand precaution has been given
by R. Holt [Holt 71]. Any realizable system state is safe and deadlock is not
possible if even in the worst set of allotments there is enough resources left in
stock to allow at least one process to finish and if this happy ending for that one
process will afterwards allow the other processes to finish as well.

(R4):) (caim(i) —1) <m
i=1l..n
Note that at least m —3_,_; , (claim(i) — 1) processes will never be postponed.
If postponed processes are served FIFO, allocation is fair and this service will
not block all processes when postponing them since (R4) is such there is always
a process non postponed. (Nota : (R4) can be derived from (R3))

3 Fair allocation

3.1 A reliable dynamic allocation can be unfair

Example 1 Consider an isoclaim application, i.e. where all claims are equal.
Processes with large requests may be always overtaken by processes with smaller
requests if the stock is never large enough.

n=6;m=18; CLAIM = (4,4,4,4,4,4)

at top : GRANT = (3,3,3,3,3,2); DIST = (1,1,1,1,1,2); stock = 1;

at t1 : Ps requests two more resources; add(6) = 2; the resulting state is not safe
; P is postponed;

at to : P requests one more resource; it is served; stock = 0;

at t3 : P», P3, P4, P request all one more resource ; all are postponed ;
add(2) = add(3) = add(4) = add(5) = 1;

at t4 : P; releases one resource; stock = 1; P, is served; stock = 0 again.
GRANT = (3,4,3,3,3,2); DIST = (1,0,1,1, 1, 2); stock = 0.

at t5 : (resp. tg and then t7) : P releases one resource; stock = 1; P3 (resp. Py
and then Ps) is served; stock = 0 again. Note that P; has released all its
claim and grant(1) =0 at t7.

at tg : (resp. t10 and then t12) P requests one resource; it is postponed;
add(1) = 1.

at tg : (resp. t11 and then t13) P (resp. Ps and then P,) releases one resource and
Py is served.

at t14 : Ps releases one resource. The allocation state is the same as in ¢;. Py is
still starving.

Example 2 Consider now an heteroclaim application, i.e. where all claims are
not equal. Processes with large claims can be prevented from being served when
requests of processes with smaller claims are present anew, even if these processes
have previously released their total claim in one operation in due time.

at to
at tl
at tz

at t3
at t4
at t5

at t6
at t7
at ts

n=>5 m=6; CLAIM = (6,5,2,2,2)

GRANT = (1,1,1,1,1); DIST = (5,4,1,1,1); stock = 1;

P; requests one resource; the resulting state is not safe; P, is postponed.
Ps3, Py, Ps requests one resource; Ps only is served; stock = 0. Py and P; are
postponed.

P; releases all its resources; stock = 2; Py and Ps can be served; stock = 0.
P; starts a new transaction and requests one resource; it is postponed.

P, releases all its resources; stock = 2; P, cannot be served; P; can be served;
stock = 1.

P, starts a new transaction and requests one resource; it is served.

P; releases all resources. stock = 2; P» can still not be served.

Ps5 requests one resource and is served. The allocation state is the same as
in ty. GRANT = (1,1,1,1,1); DIST = (5,4,1,1,1); stock = 1; P» is still
postponed ; P, is starving. If P; had also made a request, it would also had
been in starvation.

3.2 A FIFO allocation ruins the safety of a dynamic prevention
policy

Example 3 Consider an heteroclaim application. A FIFO service leads to dead-
lock while stock = 1.

at t()
at tl
at t2
at t3

at t4

n=3;m=4; CLAIM = (4,2,1)

the allocation state is: GRANT = (2,1,1); DIST = (2,1,0); stock = 0.

P; requests one more resource; P; is blocked.

P, requests also one more resource; P» is queued after P;.

P3 releases all its claim, i.e. one resource. The allocator examines whether
P; can be served. The state with GRANT = (3,1,0) is not safe since it
may lead to deadlock if P, and Ps request both one more resource before
releasing any; thus the request of P; is denied. And as the service is pure
FIFO, the request of P, is not considered although servicing it would lead
to a safe state.

Ps3 requests one resource; it is queued after P». The system is deadlocked
with stock = 1. Recall that servicing P> (in a non FIFO service) would lead
to a safe state.

Example 4 Consider an isoclaim application. A FIFO service leads to deadlock
while stock = 2.

n=23;m=06; CLAIM = (4,4,4); all claims are identical

at to GRANT = (0,2,4); DIST = (4,2,0); stock = 0;

at t; P requests one more resource; P; is blocked.

at to P» requests also one more resource; P, is queued after P;.

at t3 Ps releases two resources, stock = 2. P; cannot be served since state
GRANT = (1,2,2) is not safe.

at t4 P3 requests one resource; it is queued after P,. The system is deadlocked
with stock = 2. Recall that servicing P or P3 (in a non FIFO service) would
lead to a safe state.

3.3 Fairness of dynamic prevention

Deadlock prevention forbids a pure FIFO service of postponed processes since it
relies on the potential of some transactive processes to finish their transaction
and then to give back their resources. The basic idea is to serve FIFO as long as
it does not contradicts deadlock prevention. In a safe state, the leading trans-
active process, the first in the list of transactive processes ordered by increasing
distances, is supposed to be never denied of service. This property has to be held
on especially when the leading process loses its position after giving back some
of its resources or all of them (terminating its transaction), and when the new
leading process has to be privileged.

Thus when resources are released, the postponed processes have priority over
new incoming requests and they are served in a FIFO order so long as the service
leads to a safe state. If not, the FIFO service is stopped. However, if the currently
leading process is still postponed, it is served (this is always possible from the
banker’ algorithm).

However a permanent flow of processes becoming the leading process by turns
should not indefinitely overtake the first postponed process. Thus :

— (A1) a process should not keep indefinitely its allotted resources,
— (A2) a process starting a new transaction should not start with a smaller
distance that already postponed processes.

Processes must be compelled to respect this assumption (A2) when starting a
new transaction, either in delaying the new transaction as long as its initial
distance is lower than the distance of processes postponed by the allocator, or
in allowing momentary to this new transaction an initial distance that is the
maximal distance of the postponed processes (distance inheritance).

Let us examine the effects of this fairness policy to the previous examples.

In example 1, an isoclaim system :

at t5 : no process is served since Py cannot be served and since the leading process
P; is not postponed; stock = 1.
at tg : stock = 2 and Fy is served. Fairness is respected.

In example 2, an heteroclaim system :

at t3 : Py only is served ; P; remains postponed since the leading process is now

Py ; stock = 1.
at t4 : P3 is delayed (or inherits of dist(2) = 4) ; obviates recurrent small trans-
actions.

at t; : stock = 3 ; P5 becomes the leading process and is served ; stock = 2.

at tg : Py is delayed (or inherits of dist(2) = 4) ; obviates recurrent small trans-
actions.

at t; : stock = 4 ; P, can now be served ; P3 and P, are reactivated (or back to
dist(3) = dist(4) = 2) and they are immediately served; stock = 1.

Fairness is respected again.

In example 3 : at t3, the leading process is P, which is therefore served. There
is no deadlock.

In example 4 : at t3, the leading process is P, which is therefore served. There
is no deadlock.

3.4 A fair dynamic prevention algorithm for isoclaim systems

We consider isoclaim configurations which happen often when there is no a priori
knowledge available about the distribution of requests. In this case the algorithm
of fair dynamic prevention is simplified.

Suppose that all processes have the same claim ¢ (Vi, claim(i) = ¢).

If for the leading process, named X; below, (R3) holds then dist(X;) = stock
which is same as dist(X;) + grant(X;) = stock + grant(X;) which is same as
¢ = stock + grant(X;)

As for all processes dist(i) = ¢ then dist(i) = stock + grant(X;) and (R3)
holds for all processes.

In this isoclaim system it is sufficient that the allocator always keeps enough
resources to satisfy any request of the leading process.

A resource request is accepted when it is issued by the leading process, or
when there remains enough resources left for that leading process once the re-
quest has been granted to another process.

Non accepted requests are postponed and they are examined anew when
resources are released. This examination of postponed processes is done before
accepting new requests.

Note that, for the sake of deadlock prevention, a postponed request shall not
block all later requests, since one of these later request may be issued by the
currently leading process which therefore must not be blocked. This is the case
when the leading client is running. This is also the case for postponed processes
since, indeed, when the leading process releases some resources and therefore
no longer holds the max allotment, the new leading process may be one of the
postponed processes. This forbids a pure FIFO service of requests

Fairness is obtained by applying a FIFO service when not in contradiction
with the deadlock prevention policy. Deadlock is impossible if the leading process
is never blocked and is allowed to overtake the other process which are FIFO
served. If we observe that this leading process will in turn end its transaction and
release its resources, thus this release will settle another leading process which
must also be allowed to overtake the FIFQO service. This recurrent settlement
of successive leading processes ends when the oldest postponed process becomes
itself the leading process. There is no opportunity for a starting transaction to
overcome a postponed one since all initial distances are equal.

The fair algorithm and its proof are derived from these observations. A re-
questing process is always served when it is a leading process ; if not, it is yet
served, partially or fully, if it leaves enough resources in the pool, once served, for
allocating the leading process up to its maximum claim. If the requesting process
is only partially served, it is postponed. Each time resources are released, these
resources are allocated in priority to postponed processes (fortunately this is
the concurrency model for Ada protected objects). The currently leading task,
if postponed, is served and if all resources are not saved for future requests of
the leading task, the remaining resources are allocated to the first postponed
process until its request is fully served.

Safety and fairness have been formally proven with a colored Petri net model
[Kaiser 97] using techniques detailled in [Barkaoui 98].

4 Large systems. Taking advantage of scale for
partionning the resources and for structuring a composite
allocator

4.1 Cost of safety for large systems with a unique allocator

Let a pool of m identical resources to be dynamically allocated to n processes
and consider the effects of scale. Let a unique allocator of resources be installed.

To prevent deadlock, it uses dynamic prevention or, if there is enough re-
sources, beforehand precaution. However respecting safety has a cost which may
be too high in some situations.

For example, suppose an overload situation which lead to a burst of requests.
Suppose a current state where the stock is zero and where one process, which
claim was one, is running using its unique resource while all other n — 1 pro-
cesses are postponed because they request more resources. Naturally the state is
safe and some of the postponed processes have a distance of one. In this state,
deadlock prevention costs a maximum in resources being locked up since m — 1
resources are stuck on blocked processes and costs also a maximum in reactivity
since the number of concurrently running processes is one instead of n.

The larger m and n, the heavier the cost. Since processes waiting for re-
sources retain also resources and contribute to reduce the stock, the probability
of blocking new requests is certainly higher when the stock is small, i.e. when
the postponed queue is large ; and therefore this high probability of blocking

results in making the chain larger. Note that in such an overloading situation
it is preferable to react quickly in order to resorb the overload. If postponed
processes are to be served according to a priority order, this order cannot always
be respected since it could bring back deadlock situations as shown for fairness,
and here also it might be necessary to serve first successive currently leading
processes if they are postponed. The response of urgent transactions could be
delayed a lot. A first objective, when seeking after efficiency, is to limit this
concurrency reduction as well as the related resource retention and therefore to
break this lengthy chain of mutually obstructing processes.

Respecting fairness with a pseudo FIFO service, as shown before, may also
introduce an additional cost. Processes with large claims may wait for a long
time before being safely served and if a fairness policy is implemented, they
may refrain small claim processes to get resources if their requests are posterior
in the queue. The response time of small transactions could be augmented too
much for the application. Another objective, when seeking after efficiency, is to
introduce some kind of weaker fairness which allows small transactions to finish
before large ones but which prevents them to overtake the large ones too many
times.

4.2 Structuring composite scheme for efficiency of allocation

In the case of large numbers of processes and resources, it is necessary to improve
the efficiency of allocation since avoiding deadlock and providing fairness may
introduce high costs especially when the system is overloaded.

Several approaches may be considered for reducing the response time of burst-
ing processes and therefore the cost of safety and fairness. All install a composite
allocation scheme which partition the process set and/or the resource set. Pro-
cess priority, process response time or urgency (deadline), rate of unutilized
resources, rate of potentially concurrent processes as well as efficiency of alloca-
tion for a given distribution of request arrivals and removals, may help choosing
one of the composition.

We are investigating an approach based on the examination of the application
specificity and requirements, on the measurement of its resource usage and on
comparisons by simulation of possible composition scheme and various tuning of
a composition.

4.3 Evaluation criteria

Several factors can be recorded each time the allocator is called (serving or post-
poning a request, releasing a request and possibly serving postponed requests).
Corresponding mean values are computed at the end of the experimentation.
Concurrency factor CF
This factor records the current number of processes that run concurrently.
CF =1 when the processes run sequentially and CF' = n when all n processes
are concurrent.

Resource retention ratio RF

This ratio records the resources not in use since their recipient process is
postponed or since the allocator has denied their allocation for safety.

RF = 0 if no requestor processes are postponed (also CF = n)

RF = [} aaa(iy>0 9grant(i) + Stock] /m, if there exists i such that add(i) > 0.

4.4 Case studies

Example 5 Let us examine the case of an isoclaim system. Consider a set of
n = 100 processes which share a pool of m = 200 resources. All processes have
an identical claim of ¢ = 4. This configuration may correspond to telecommuni-
cation systems. Suppose a unique allocator of 200 resources has been installed. It
uses fair dynamic prevention since there is not enough resources for beforehand
precaution.

However respecting safety and fairness may have a high cost as in the follow-
ing scenario.

Suppose for example that during normal conditions 53 processes have been
granted of 3 resources each, which leaves a stock of 41. Let a burst of activities
occur and create an overload situation. Thus the 47 remaining processes all start
their transactions with a request of 1 resource each. Responding to the overload
involves also that the 53 normal processes request one more resource each for a
while before releasing it and proceeding again with their loan of 3. Once served,
each bursting process makes some primary computation, then requests 2 more
resources for its final computation.

At bursting time, only 40 bursting processes are served, this leaves a stock of
1 and a queue of 7 bursting processes (each having a distance of 4, a grant of 0
and a request of 1) ; the queue is soon augmented by 52 normal processes (each
having a distance of 1, a grant of 3 and a request of 1) and the stock becomes
null. From now on, only 41 processes run concurrently.

When the 40 bursting processes have concurrently finished their primary
computation, they become postponed (each having a distance of 4, a grant of 1
and a request of 2). Thus only 1 process, a normal one, is running. The FIFO
queue of postponed processes contains 7 bursting processes preceeding 52 normal
processes proceeding 40 bursting processes.

After this peak of inactivity, the number of running processes starts growing
very slowly as the processes finish their transactions.

When this scenario is simulated, it is caracterized by a mean resource reten-
tion ratio is of 61% and a mean concurrency factor of 187 during a total execution
time of 1213 time units.

Several approaches may be considered for reducing this cost of fairness. All
install a composite allocation and expect taking advantage of the small value of
claims and of the short duration of bursting transactions for maintaining a large
concurrency factor and for reducing the length of the postponed queue. Let us
examine some approaches.

A first approach consists in dividing the resource service for the nt trans-
active processes in two parts. An allocator of 200 resources with fair dynamic

prevention or fair beforehand precaution serves a subset of processes, called the
fortunate processes and a waiting-room holds the others, called the expecting
processes. Only a maximum of nf transactive processes can be fortunate at a
given moment. Any process starting a new transaction when the number of for-
tunate processes is less than n f will be accepted immediately as a fortunate one;
if not, it becomes expecting and it has to wait until one of the current fortunate
transaction finishes. The number of expecting processes is ne = maxz(0,nt—nf).
This policy aims to limits the number of resources retained by postponed pro-
cesses and to avoid a long chain of processes waiting for resources. An urgent
transaction, if any, can be placed ahead of the process queue in the waiting-room
and then waits only until the end of the first finishing fortunate transaction.

The scenario has been simulated for this first approach with fair dynamic
prevention with nf = 82 and with fair beforehand precaution with nf = 66 and
nf = 50 (For beforehand precaution, nf is at most 66 since 66 x (¢ — 1) < 200
and when nf = 50 the fortunate process are never postponed). The results show
the importance of preserving a high concurrency factor.

nf a I[)%tl:?tci;n waiting-room res:):ﬁr(c)e(rrﬁte:wnt)l on Conf:::rt Lerncy total f.;xnizuti on
100 | e no 61% 18 1213
g2 | [yes 26% 37 608
66 | e yes 13% 51 407
50 | A e yes 8% 37 610

Fig. 1. Results of the simulation

Example 6 Let us examine now the case of an heteroclaim system. The im-
plementations of distributed object oriented systems such as Guide [Hagimont
94] have shown the coexistence of several size of memory chunks allocated to
objects and a distribution of objects with a peak of small objects and another
peak of large objects. Buffers for data communication may contain small texts,
large files or very large set of image pixels.

When an overload occurs, if there is a safe but unfair dynamic allocation,
processes with large claims may wait for a long time before being served since
they may be overtaken by a flow of processes with small claims. Furthermore,
if a fair policy is implemented, the large claim processes may refrain the small
claim processes to get their resources and to execute within a small response
time. This shows that it is difficult in both cases to provide an equal quality of

service to all processes.

A composite allocation may be an approach for avoiding a too large difference
in the service.

Consider a concurrent application where 60 processes have a claim of 11 and
realize short transactions for which the response time is important (they are
considered as small clients) and where 8 processes have a claim of 101 and a
long transaction (these are considered as large clients).

In normal working conditions, there is an observed mean of 10 small clients
and 6 large ones. This leads to provide a stock of 700 resources and to allocate
them by dynamic prevention (i.e. without fairness).

Let now consider at time ¢ = 0 a load of 8 large clients starting a transaction
with an initial request of 50 each. Then each client has a cyclic behavior in which
it requests 40 resources for a while before releasing them.

At time t = 1 a flow of 60 small clients starts, 15 by 15 with a lag of 1
between them. These clients request 10 resources for 2 units of time and then
quit.

This scenario corresponding to an overload has been simulated with four
different allocation policies. We give below the total execution time and for the
600 first time units, the concurrency factor, the mean working time and the
mean waiting time for large and small clients.

at t=600
. Large clients small clients
allocat i
(:)“ N total e.XeCUtI on CF working time waiting time working time waiting time
p Cy time mean on 8 clients mean on 8 clients mean on 60 clients mean on 60 clients
el 1233 29 5 594 295 125
e 1076 15 504 95 39 533
fair beforehand 6 at 561 6 at 39
; 1124 10 107 419
precaution 2438 | 2at561
fai bined
o 1343 16 255 344 133 375

Fig. 2. Results of the simulation

With the dynamic prevention policy, large clients are not served (only 5 units
of working time per client) while small clients monopolize the allocator (295 units
of working time per client for a maximum working time of 300).

If we transform the dynamic prevention policy in a fair one (clients starting
a new transaction are placed in a waiting-room if there is some client postponed
by the allocator), large clients can easily obtain the requested resources (504
units of working time for a maximum working time of 561) while small clients

are almost always postponed (only 39 units of working time).

With the fair beforehand precaution policy (clients starting a new transaction
are placed in a waiting-room if condition (R4) does not hold), 6 large clients
monopolize the resources for 561 units.

The fair combined prevention policy (clients starting a new transaction are
placed in a waiting-room if they are neither accepted by the fair dynamic pol-
icy managing 560 resources nor by the fair beforehand policy managing 140
resources), makes progress equally the small and the large clients.

5 EXPERIMENTATIONS

5.1 Programming in Ada

Simulation programs have been implemented in Ada with tasks and protected
objects. Programs are available on ftp://bacchus.cnam.fr/pub/articles/

Several allocation policies have been programmed such as unfair dynamic
prevention, unfair beforehand precaution, fair dynamic prevention, fair before-
hand precaution.

We suppose that a processor is allocated to every process, thus all active
transactive processes (not sleeping) which are not postponed execute concur-
rently.

5.2 Simulation scenario

The simulation scenario is described by a script, in which
Claim i, Enter i, Get i, Release i concern i resources,
Sleep j, Work j concern j time units and
Quit is associated with the releasing of all granted resources.
The 2 classes of processes in example 5 are expressed as following:

— Ex5normal : Claim = 4, Behaviour =

(Sleep 1, Enter 3, Work 1, Get 1, Work 100, Release 1, Work 200, Quit)
— Ex5_bursting : Claim = 4, Behaviour =

(Sleep 2, Enter 1, Work 80, Get 2, Work 1, Quit)

The 6 classes of processes in example 6 are expressed as following:

— Ex6large : Claim = 101, Behaviour =

Sleep 1, Enter 50, 10*(Work 4, Get 40, Work 50, Release 40), Quit
— Ex6_smalli : Claim = 11, Behaviour =

100 * (Sleep i, Enter 10, Work 2, Quit); where 7 = 1..5.

5.3 Simulation results
Each simulation run provides :

— the mean values of the resource stock, of the resource retention ratio, of the
concurrency factor,

— the total execution time and the ratio of time spent by the processes in each
of their states,

— for each process the total time spent in the different process states : Sleeping,
Entering, Claiming, Working, Releasing, Quitting,

— for each significant simulation date, the number of processes in each state.

Bibliography

[Barkaoui 98] Barkaoui K., Pradat-Peyre J.F., Verification in Concurrent
Programming with Petri Nets Structural Techniques, 3th IEEE conf. on High
Assurance Systems Engeenering (HASE’98), pp.124-133, November 1998.
[Coffman 71] Coffmann E., Elphick M.,Shosani A., Systems Deadlocks, Com-
puting Surveys 3.2, pp.67-78, June 1971.

[Dijkstra 67] Dijkstra E.W., Cooperating Sequential Processes, in Program-
ming Languages, F.Genuys, ed., Academic Press 1967.

[Habermann 69] Habermann A.N., Prevention of System Deadlocks, Com-
munications of the ACM 12.7, pp. 373-377, August 1969.

[Hagimont 94] Hagimont D., Chevalier P.Y., Freyssinet A., Krakowiak S., La-
courte S., Mossiere J., Rousset de Pina X., Persistant Object Support in the
Guide System : Evaluation and Related Work. 9th Conf. on Object-Orientd
Programming Systems, Languages and Applications (OOPSLA) Portland
oct 1994

[Holt 71] Holt R., Comments on Prevention of Systems Deadlocks, Commu-
nications of the ACM 14.1, pp 36-38, January 1971;

[Holt 72] Holt R., Some Deadlock Properties of Computer Systems, Com-
puting surveys 4.3, pp 179-196, September 1972

[Kaiser 97] Kaiser C., Pradat-Peyre J.F., Reliable Resource Allocation with
Ada95 Preference Control, Cedric R.R. 97-06, CNAM 1997

Annexe

Banker’s algorithm with transactive processes ordering

Let the set of transactive processes be ordered totally by increasing values of
dist(7); if two processes have same dist(i), no matter their relative order.
Suppose the current allocation state is safe, i.e. (R3) holds.

a) request of Py
Let a candidate process Py, with an additional request add(k) > 0. If P, was
not transactive, than insert it in the transactive set. The banker’s algorithm
is called when an allocation seems possible since stock > add(k) and its role
is to check whether the new state, after allocation, is still safe.

procedure bankers_decision(k :in processid; request :in positive; safe
--The old safe state Sold has to be saved
stock_prime : positive := stock;

out boolean)

g_prime : positive := grant(k);
d_prime : positive := dist(k);
r_prime : positive := rank(k);
begin
-- The candidate state Scand is settled down
stock := stock - request ;
dist(k) := dist(k) - request ; grant(k) := grant(k) + request ;
-- starting the banker’algorithm
total := stock; safe := false;
if dist(k) <= total then -- sufficient condition always checked first
safe := true; —— Scand is safe;
-- in this case also dist(k) <= stock_prime
else
i := first (ordered processes); —-- rank(i) =1
while dist(i) < dist(k) loop —— if dist(i) > dist(k) then Scand is not safe
if dist(i) <= total then
total := total + grant(i);
i := succ(i);
if dist(k) <= total then -- sufficient condition always checked first
safe := true; exit; —— Scand is safe
end if;
else
exit; —— Scand is not safe
end if;
end loop;

-- if dist(i) = dist(k) and dist(k) > total then
- safe = false since Scand is not safe;
-- end if;
if safe then
—- Pk will be removed from ordered set
-- and be reinserted in a new rank rank(k) = r_prime
else
—— The old safe state Sold is restored
stock := stock_prime;
grant (k) := g_prime;
dist(k) := d_prime;
end if;
end bankers_decision;

b) release by P
After a release the new allocation state is safe
— P, will be removed from ordered set and be reinserted in a new rank
rank(k) = r_prime(k);
— if P has finished its transaction, it is no longer in the set of transactive
processes.
For fairness, postponed candidates are checked for possible allocation. They

is

are served in FIFO order as long as possible and thereafter, if the leading
process is still in the postponed queue, it is also served (as a property of the
banker’algorithm, this is always possible).

This article was processed using the BTEX macro package with LLNCS style

