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Abstract

We compare two possible implementations of a resource al-
location service, one using a task server, the other using a
protected object. Both make use of the requeue statement,
the count attribute, and also the abort statement in order to
satisfy requests, depending on the parameters passed in by
the calling task and on the internal state of the service. Be-
cause the schema of requeue and entries has an execution se-
mantic based on state and transition, it can be coupled eas-
ily with a proof in terms of colored Petri nets. We consider
the dining philosophers problem, which is a good illustration
of the need for a resource allocation service and for which
deadlock- and starvation-free implementations have already
been given in Ada95, though not formally proven and some-
times unfair. We give an almost forgotten solution where
the dining philosophers problem is safely implemented with
protected objects, whereas its implementation with a server
task leads to deadlock. We provide two implementations,
one of which completes a solution presented by Brosgol in
Ada Europe 96 and makes it really fair. Informal proofs are
given and are confirmed by Petri nets proofs. Through these
examples, we show that the eggshell semantics of protected
objects are basic for attaining a reliable implementation.

1 Introduction

1.1 Resource Allocation

A resource allocation policy must take care of clients’ re-
quirements for quality of service (efficiency of allocation
management, availability of resources during a given time

period); it must also guarantee global invariant properties
of the system behavior such as the absence of deadlocked
clients, of infinitely postponed clients, and of clients never
releasing their allocated resources (or simply not releasing
the resources in the contractual delay).

We consider resource allocation controlled by a service
implemented in Ada95. We treat deadlock and starvation
prevention as well as client respect of deadlines. Deadlock
may occur if the opportunity is left to successive task re-
quests to empty the pool of resources without satisfying one
task completely; thus, all tasks still require more resources
while refusing to release a part of their loan. The reliability
approach must be global because preventing deadlock may
introduce starvation and preventing starvation may reintro-
duce deadlock.

1.2 Presentation of our Approach

Two possible implementations of a resource allocation ser-
vice, one using a task server, the other using a protected
object are compared. Both make use of the requeue state-
ment, the count attribute and also the abort statement.

The entry selection together with the requeue statement
provides the ability to satisfy a request depending on the
parameters passed in by the calling task and also on the
internal state of the server. This is sometimes called prefer-
ence control [Int95].

According to our experience, the underlying automaton-
like structure chosen for the semantics of the requeue state-
ment favors a design process mixing Ada95 program con-
struction and Petri net validation of this construction. The
presented work has been done by alternating between the
design and the validation.

‘We show that the eggshell semantics of protected objects
lead to a more reliable implementation than the task server
solution. For this, we give an example where a resource al-
location algorithm is safely implemented with protected ob-
jects, whereas its implementation with a server task leads to
deadlock (this deadlock, which is not likely to be observed,



is easily detected by formal methods).

2 The Dining Philosophers Problem

2.1 Statement of the Problem and Former Ada Imple-
mentations

To proceed, a task often needs the presence of a couple of
resources of different classes: for instance a channel with
each of two adjacent tasks, a printer and a disk drive to
print a stored file,...

The dining philosophers is a good illustration of such
a need. As stated by B.Brosgol in [Bro96] ”The Dining
Philosophers example is a classical exercise for concurrent
programmang. Originally posed by Dijkstra [Dij71], the prob-
lem may be stated as follows, generalized to allow an arbi-
trary number of philosophers: For an arbitrary integer N
greater than 1, there are N philosophers seated around a cir-
cular table. In front of each philosopher is a plate of food,
and between each pair of philosophers is a chopstick. The
"processing” performed by each philosopher is an endless t-
eration of the two actions Eat and Think. In order to per-
form the Eat action, a philosopher needs two chopsticks: in
particular the one immediately to the left and the one im-
mediately to the right. (Thus at most only N/2 philosophers
can eat simultaneously). Design a solution so that for an ar-
bitrary integer M, each philosopher is guaranteed to perform
Eat-Think sequence (at least) M times.”

Different Ada95 implementations of this problem can be
found. [BW95] gives a deadlock free and fair (only for FIFO
entry queues) solution with N + 1 server tasks. [BKPP97]
implements the same solution with a single protected object
that hides the service states from the clients and the authors
prove the correctness and fairness of this solution (for any
queuing policy). [Bro96] provides two solutions, both with
a protected object ; their implementations are deadlock free,
but none prevents starvation.

2.2 The Solution Implemented in this Paper

The eating condition defined by Dijkstra in the first pub-
lished solution [Dij71] was not stated in terms of the avail-
ability of chopsticks. Rather, the problem statement says
that the philosophers can be thinking, hungry, or eating,
and that a philosopher X can eat if and only if none of its
neighbors, X —1 and X + 1, is eating (they can be thinking
or hungry; in both cases, they have no chopstick allocated).
The eating condition is:

(X — 1 is not eating) and (X + 1 is not eating ).

This approach does not prevent starvation. Courtois and
Georges showed [CG77] that a solution preventing starvation
as well as deadlock can be constructed on the basis that a
philosopher X can eat if the left neighbor (i.e. X —1) does
not eat and also is not hungry. The condition is now :

(X —1 is thinking) and (X + 1 is not eating ).

In the next sections we compare the implementations of
this solution using tasks or protected objects. We give dual
implementations : one with philosopher status as above; the
other with chopsticks status in order to complete the second
solution presented by Brosgol in Ada Europe 96 and to make
the solution really fair.

2.3 Working Properly in the Presence of Requeue with
Abort

We add a deadline to the Eat action of a philosopher. When
the philosopher deadline is reached, its chopsticks request
or its chopsticks allocation is aborted, even if a request is
postponed after being requeued. This is possible in Ada95
by using the "requeue with abort” clause. All chopsticks are
returned to the pool, at the latest when the Eat action is
aborted.

3 Ada95 Programming

The complete Ada95 programs corresponding to the solu-
tions given in this paper can be found at the ftp site :
“ftp:/ /bacchus.cnam.fr/pub/articles/TriAda97 /programs”.

There are two versions: one focuses on the comparison
between the use of protected objects or tasks for the im-
plementation of the resources allocation server, the other
provides a complete simulation environment allowing us to
analyze performance of solutions. Both are composed of five
packages.

An APPLICATION package groups the set of PHILOSOPHERS
tasks that have a common cyclic behavior. During a cycle,
a philosopher thinks, then requests, uses and releases chop-
sticks. The time allowed for requesting and using chopsticks
is limited by a deadline which expiration is signaled to the
protected object SUPERVISION.CONTROL which triggers the
asynchronous transfer of control. The philosopher then re-
turns its chopsticks. The allocation, usage and release of
chopsticks are encapsulated in a procedure named transac-
tion which assigns the deadline. The SUPERVISION package
groups the protected object CONTROL and a task for time
service. The ALLOCATION package contains the task or the
protected object SERVER which is the shared service used by
all philosophers. The SCENE package provides a simulated
environment for philosophers and the package COMMON con-
tains the constants common to all packages.

3.1 Source Code of the Simpler Version

3.1.1 The Package COMMON

package common is
N : constant integer := 5; =-- number of philosophers
type philo_id is mod N;

end common;



3.1.2 The Package SCENE

As the implementation of this package does not present any
interest we give here only its specification (the body is pro-
vided in Appendix).

with common; use common;

package scene is
procedure thinking(x in philo_id);
procedure eating(x : in philo_id);
function random_duration (d1,d2 in duration)
return duration;

end scene;

3.1.3 The Package SUPERVISION

This package provides the protected object control used to
supervise a transaction.

When control.start_step is called, a timer associated
to x is set and its expiration opens the protected entry
control.stop_me which was initially closed. The procedure
control.end_of_step cancels the previous timer and closes
the protected entry stop_me.

The complete specification and body of this package can
be found at the ftp site mentioned above.

package Supervision is
protected Control is
procedure start_step(x
procedure end_of_step(x
entry stop_me(philo_id);

in philo_id; date: time);
: in philo_id);

end Control;

end Supervision;

3.1.4 The Procedure TRANSACTION

A transaction consists in requesting resources (here the two
chopsticks), eating and, releasing the resources. The re-
questing and the eating actions are processed with a dead-
line d.

with Ada.Calendar,Common,Allocation,Supervision,Scene;
use Ada.Calendar,Common,Allocation,Supervision,Scene;

procedure Transaction_With_Abort(me in philo_id;
d : in duration) is
-- d is the critical delay
deadline : time;
begin
deadline := Ada.Calendar.clock + Duration(d);
-- giving a deadline and requiring supervision
control.start_step(me, deadline);
select
control.stop_me(me);
-- the deadline is over; temporal fault

then abort
-- this is the abortable part of the transaction
request(me); -- requests the chopsticks
eating(me); -- eating action

end select;
-- stops the deadline supervision
control.end_of_step(me);
-- releases chopsticks after action or after deadline
release(me); -- release the chopsticks

end Transaction_With_Abort;

procedure Transaction(me in philo_id;
d : in duration) is

begin
request(me); -- requests the chopsticks
eating(me); -- eating action
release(me); -- release the chopsticks

end Transaction;

3.1.5 The Procedure APPLICATION

The procedure Application is the main procedure of the pro-
gram. The philosophers are tasks, and in order to name the
philosophers, we use a discriminant (X:Philo_Id) in the dec-
laration of the task type. Its default inititialization results
of the call to function Unique_Id.

Each philosopher loops forever being alternatively think-
ing (call to Scene.Thinking) or performing a transaction.

with Common, Transaction, Scene;
use Common;

procedure application is

Next_Id : Philo_Id := Philo_Id’last;
function Unique_Id return Philo_Id is
begin

Next_Id := Next_Id + 1;

return Next_Id;
end Unique_Id;

task type philo( X: Philo_id := Unique_Id);
philosopher : array(philo_id) of philo;

task body philo is
d : duration; -- critical delay before deadline
begin
loop
Scene.Thinking(X);
d := Scene.Random_Duration(0.5, 0.8);
Transaction_With_Abort(X, d);
end loop;
end Philo;

begin
null;
end Application;



3.1.6 The Package ALLOCATION Using a Protected Object

with common; use common;
package allocation is
procedure request(me : in philo_id);
procedure release(me : in philo_id);
private
type THEA is (thinking, eating);
type THEA_array is array(philo_id) of THEA;
end allocation; -- end of package declarations

package body allocation is

protected server is

entry request(philo_id);

procedure release(x : in philo_id);
private

status : THEA_array := (others => thinking);
end server;

procedure request(me : in philo_id) is
begin

server.request (me) ;
end request;
procedure release(me : in philo_id) is
begin

server.release(me );
end release;

protected body server is
entry request(for x in philo_id)
when status(x + 1) = thinking and
status(x - 1) = thinking and
request(x - 1)’count = 0 is
begin
status(x) := eating;
end request;
procedure release(x : in philo_id) is
begin
-- x is eating when not aborted
-- x may be thinking if aborted before
-- calling request
-- x may be hungry if aborted when
-- queuing for request
status(x) := thinking;
end release;
end server;

end allocation; --end of the package body

with Common; use Common;
package Unreliable_Allocation_Philo is
procedure request(me : in philo_id);
procedure release(me : in philo_id);
private
type THEA is (thinking, eating);
type THEA_array is array(philo_id) of THEA;
end Unreliable_Allocation_Philo;

package body Unreliable_Allocation_Philo is

task Server is

entry Request(Philo_Id);

entry Release(X : in Philo_Id);
end Server;

procedure Request(Me : in Philo_Id) is
begin

Server.Request(Me);
end Request;

procedure Release(Me : in Philo_Id) is
begin

Server.Release(Me) ;
end Release;

task body Server is
Status : THEA_Array := (others => Thinking);
begin
loop
select
when Status(1)=Thinking and
Status(4)=Thinking and
Request(4)’Count=0 =>
accept Request(0) do
Status(0) := Eating;
end Request(0);
or

or
when Status(0)=Thinking and
Status(3)=Thinking and
Request(3)’Count=0 =>
accept Request(4) do
Status(4) := Eating;
end Request(4);
or
accept Release(X : in Philo_Id) do
-- x is eating when not aborted
-- X may be thinking if aborted before
-- calling request
-- x may be hungry if aborted when
-- queuing for request
Status(X) := Thinking;
end Release;
or
terminate;
end select;
delay(Duration(0.5));
-- in order to make the deadlock more
-- likely to occur
end loop;
end Server;

end Unreliable_Allocation_Philo;



4 The Validation by Colored Petri-Nets

Ada83 tasks and the rendez-vous statement have already
been modeled by means of Petri nets in the past [MSS89,
TSM90]. In this paper, we extend the modeling to pro-
tected object, requeue and abort statement and we use ex-
tensively new results and available tools that allow us to
model more realistic situations. Among these results one can
quote colored reductions [Had91, BHPP97] and structure
theory based on the controlled siphon property [BPP96].
We are using tools ! such as GreatSPN, CPN-AMI or De-
signCPN.
Our validation process follows three steps:

1. the complete program is modeled using a hierarchical
approach (for instance using DesignCPN);

2. the model obtained is then reduced by applying col-
ored Petri nets reductions (with for instance CPN-
AMI) while preserving fundamental properties of the
model (such as deadlock freeness, fairness, ...);

3. finally, the reduced model is analyzed for proving (or
disproving) the absence of deadlock and starvation us-
ing principally a characterization of liveness by means
of the controlled siphon property and structural invari-
ants.

This methodology reduces the complexity of the analysis
and allows us to treat realistic situations. In this paper,
the whole program structure is analyzed including the asyn-
chronous transfer of control.

In particular, we prove that the solution using a pro-
tected object to implement the resource allocator is fair and
deadlock free while the solution using a task is not deadlock
free.

4.1 Petri Nets and Colored Petri Nets

A Petri net [Rei83] is a 4-tuple ( P,T,W*, W~ ) where P is
the set of places, T is the set of transitions, W~ (resp. W)
is the the backward ( resp. forward) incidence application
from P x T to IN.

A Petri net can be viewed as a state transition system
where the places denote some kind of tokens and the tran-
sitions the actions that produce and/or consume tokens. A
marking of a net is an application from P to IN that de-
fines for any place p the number of tokens of kind p. The
backward incidence application (W ™) reflects for a kind
of token (a place p) and an action (a transition ¢) how
many instances (W™ (p,t)) of this token are needed to do
this action (to fire the transition ¢). In the same way, the
forward incidence application (W) defines how many in-
stances of a kind of token p are produced by an action ¢
(W*(p,t)). A transition t is fireable at a marking M if

for more informations on these tools, please refer to the url
http://www.daimi.aau.dk/PetriNets/tools/ quick.html

and only if M(p) > W~ (p,t) for all place p. The marking
M’ reached by the firing of ¢ at marking M is defined by
Vp € P,M'(p) = M(p) — W™ (p,t) + WT(p,t). The set of all
accessible markings from the initial marking My is denoted
by Ace(N, My).

A Petri net is commonly represented by a bipartite val-
uated graph where nodes are items of P U T, and arcs are
defined by W and W~ in the following way : an arc valued
by n > 0 exists from a place p to a transition ¢ (resp. from
t to p) if and only if W~ (p,t) = n (resp. W (p,t) = n).
One notes *p (resp. p°) the set of tramsitions such that
there exists an arc from these transitions to p (resp. from
p to these transitions): °®p = {t e T|IW*(p,t) > 0} and
p* = {t€T|W (p,t) > 0}.

Three properties are fundamental in Petri nets theory :
the liveness, the deadlock-freeness and the deadlock-ability.

A net is said to be live when, whatever the state reached
by the net, all transitions remain fireable in future: Vm €
Acc(N, My),Vt € T,3Im' € Acc(N, m) | m'[t >.

A net is said to be deadlockable when it can reach a
marking at which no transition is fireable. This marking
is called a dead marking and one says that the net has a
deadlock: 3m € Acc(N, M) |Vt € T, m[t ¥.

A non deadlockable net is said to be deadlock free. At
each reachable marking, we insure that at least one transi-
tion is fireable: Vm € Acc(N, My),3t € T | m[t >.

Colored nets allow the modeling of more complex sys-
tems than ordinary ones because of the abbreviation pro-
vided by this model. In a colored net, a place contains
typed (or colored) tokens instead of anonymous tokens in
Petri nets, and a transition may be fired in multiple ways
(i.e. instantiated). To each place and each transition is at-
tached a type (or a color) domain. An arc from a transition
to a place (resp. from a place to a transition) is labeled by
a linear function called a color function. This function de-
termines the number and the type (or the color) of tokens
that have to be added or removed to or from the place upon
firing the transition with respect to a color instantiation.
These different concepts can be formalized by the following
definitions.

Definition 1 A colored Petri net (or colored net) is a 6-
tuple CN =< P,T,C,W , W™, My > where:

o P is the set of places, T is the set of transitions with
(PNT=0,PUT#0)

o C is the color function from PUT to 2, where ) is a
set of finite non empty sets. An item of C(s) is called
a color of s and C(s) is called the color domain of s.

o W' ( reps. W™) is the forward (resp. backward)
incidence matriz defined on P x T where W (p,t)
and W~ (p,t) are linear applications from Bag(C(t))
to Bag((C(p)). 2 The incidence matriz of the net is

2if A is a finite and non empty set, then Bag(A) denotes the set
of multi-sets (i.e. sets that may include multiple occurrences of the
same item)over A



defined by W =W+ —W~.

o My is the initial marking of the net and is an applica-
tion defined on P whith Mo(p) € Bag(C(p))-

Definition 2 Let CN = <P,T,W+,W7,Mo> be a col-
ored net. A marking of CN is a vector indezed by P with
Vp € P,M(p) € Bag(C(p)). A transition t is fireable for a
color ¢; € C(t) and for a marking M if and only if: Vp €
P, M(p) > W (p,t)(ct). The reached marking M’ is defined
byVp € P,M'(p) = M(p)=W " (p,t)(ct)+ W™ (p, t)(ct). One
note, M[t >., M'.

Generally, color domains are compositions of basic ones,
called classes, and color functions are tuple of basic functions
defined on these classes. A class is a finite and non empty
set and its size may be parameterized by an integer. The
particular class e contains the only item o: ¢ = {o}.

The color functions used on our models are the identity
(or selection) denoted by X or d, the successor mapping
denoted by X ++ and the predecessor mapping denoted by
X——. If D is a domain, D.All denotes all the token of D.

4.2 Modeling by Means of Colored Petri Nets

The previous Ada program can be modeled using colored
Petri nets. We give the model in three parts: we first model
the global structure of the program (Fig. 1); second, we
discuss how the resources are allocated by the server (Fig.
2); and third, we explain how the resources are released (Fig.
3).

The complete model is obtained by merging these three
subnets and is depicted in Appendix (Fig. 5).

In these models, dashed transitions are priority transi-
tions, meaning that when there is a conflict between two
transitions, preference is given to the transition with the
highest priority. We use these semantics to take into ac-
count the Ada95 processing policy of protected objects and
of the abort instruction: at the end of a protected call,
already queued entries (whose barriers are true) take prece-
dence over new calls, and an abort sequence takes prece-
dence over new call.

We use three levels of priority : a level 0 for nonprior-
ity transitions, denoted in the graph by white transitions,
a level 1 for transitions regarding the internal actions of
the protected object server, denoted in the graph by gray
transitions, and a level 2 for transitions regarding the abort
sequence, denoted by black transitions.

4.2.1 The Model of the Global Program Structure

This net is composed of two parts: one deals with the evolu-
tion of the philosophers, the other (drawn with dashed line)
concerns the abort part of a transaction.

The philosophers can be in one of the following states,
modeled in the net by the gray places :

DAl ? Idle: D

X
begin
X
T
X
transaction
X
Begin Transaction : D
X control.start_step
R

Dormai ns :
0..N-1]
1..inf]

hinking: D

X
<X, deadline>
X

equest+Eating : D <X,d>
- ,Y..Tivmer :DXT Yy time
X . L . [d>0]
- S
: <X,d->
X <X d2 X <X,0>
. Y
control.end_of_step _ control.stop_me
X
Release: D X
X

L) endloop

Figure 1: The model of the global program structure with
the asynchronous transfer of control

e Idle : the initial state of all philosophers (modeled in
the net by Mo(Idle) = D.All).

e Thinking : a philosopher who is calling thinking.
e BeginTransaction : ready to perform a transaction

e Request + Eating : performing a call to request and
then to eating

e Release : performing a call to release.

A philosopher z becomes Thinking by firing transition
begin. It can then fire transition transaction and enter state
BeginTransaction. From this state it can fire the transi-
tion control.start_step and enter state Request + Eating.
It enters then state Release by firing either the transition
control.end_of _step or the transition control.stop-me. At
the end it returns to state Thinking.

A part of a transaction can be aborted if the associated
deadline expires. Place T4mer models the time remaining
for a philosopher z to perform its transaction. When transi-
tion control.start_step is fired (by a philosopher z), a token
(z, deadline) is added to place Timer. Transition time be-
comes fireable and can then decrease the timer associated
with z (each firing of transition tiéme decrease the timer by
1: a token (z,d) is replaced by a token (z,d — 1) in place
Timer). This transition remains fireable until either the
deadline has expired (d = 0) and the philosopher x has fired



transition control.stop, or the transaction has ended and the
philosopher z has fired transition control.end_of _step.

4.2.2 The Model of the Request Action

We take a look now on the subnet (Fig. 2) modeling the
allocation policy used by the protected object server. This
model details the state Request + Eating of the previous
model.

control.start_step

Requesting: D X

X Y goto_queue

X NotInQueue: D

InQueue: D

StatusT : D D.AIl requestQ

X T <X+H+> + <X--> * * <XK++> + <X-->

Eating: D X

X

|:| control.end_of_step

Figure 2: The model of the request action

When performing a call to server.request or perform-
ing a call to scene.eating, a philosopher z can be in one of
the three following states:

e Requesting : z is evaluating the guards associated to
the entry request

o InQueue : x has been queued on the entry request
e Fating : x has been served and is calling eating

The guard associated with the entry server.request ex-
amines whether or not some philosophers are Thinking.
Thus, the place StatusT models the status variable with
the following meaning: M (StatusT (z)) = 1 if and only if
the philosopher z is thinking. Initially, all philosophers are
thinking (Mo (StatusT) = D.All).

Place NotInQueue models the absence of philosophers
in the queue of the entry request. Initially, no philosophers
are in this queue and Mo(NotInQueue) = D.All.

This subnet can be interpreted as follow: after firing
transition control.start_step, a philosopher x enters state
Requesting. From this state, it can fire transition request
if £ — 1 (more precisely the result of the mapping X — —
on x) is not in the queue (the test arc between request and
NotInQueue with valuation X — —),andif z+1 and z — 1
are thinking (because of the test arc between request and
StatusT valuated by the mapping < X++ > + < X —
— >). In this case, it enters state Eating and a token z is

removed from place StatusT, meaning that x is now eating.
If request is not fireable, then z fires goto_queue, enters state
InQueue and a token x is removed from place NotInQueue,
meaning that z is now in the queue.

As for the transition request, a philosopher z in state
InQueue can fire transition requestQ if £ — 1 is not in the
queue and x + 1 and z — 1 are thinking. In this case it
enters the state Fating and a token z is added to place
NotInQueue, meaning that x is no longer in the queue.

Note that in this subnet, the transition request has pri-
ority over the transition goto_queue, meaning that x enters
InQueue if and only if it cannot fire request.

The abort part is now decomposed in two parts depend-
ing on the state of the philosophers (Fating or InQueue)
and can be viewed in the global model (Fig. 5).

4.2.3 The Model of the Release Action

The last subnet concerns the release action and is shown in
Figure 3. It details the state Release of the first model.

control.end_of_step

control.stop_me

Releasing : D X

release

StatusT : D
D.AIl

EndRelease: D

—

Figure 3: The model of the release action

When performing a call to server.release, a philoso-
pher x can either be in state Releasing (z is ready to call
the procedure release) or be in state EndRelease (it has
just called release).

In state Releasing, a philosopher x can fire transition
release and enters state EndRelease. In this case, a token
z is added to place StatusT (the same place than in the
previous model), meaning that z is now thinking again.

4.3 Proving Correctness of the Complete Model

The complete model (Fig. 5) can be automatically reduced
using reduction theory of Petri nets[Ber86, Had91] while pre-
serving properties of the initial model (checking the liveness
or the absence of starvation in the reduced net is equivalent
to checking these properties in the original one). We obtain
the net depicted in Figure 4.

One can remark that some transitions have been merged :
the transition transaction with control.start_step, and the



DAIl Idle D

Domai ns

begin D=1[0..N1]
T =[1..inf]
Thinking: D
transaction

Requesting: D X
X ¥ goto_queve
NotinQueue: D
X-- Xer InQueue: D
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Figure 4: The reduced net of the dining philosophers

transition release with endloop. Intermediate states have
been suppressed (BeginTransaction and EndRelease).

A less trivial reduction associates each instance of tran-
sition time with its successor (time(z,d) with time(x,d+
+)), making possible a aggregation of the transition time(0)
with the transitions control.end_step, control.stop_meA and
control.stop-me(Q). After this reduction, place Timer be-
comes redundant and is suppressed while the two transi-
tions control.end_step and control.stop-meA become iden-
tical and are merged.

This last reduction can be interpreted as a compression
of the time: the time is now infinitely fast : the deadline
expires at the moment the timer is set.

4.3.1 Proving Deadlock Freeness of the Model

A siphon S is a subset of places such that each transition
that puts a token in S also needs and consumes some tokens
in § (*S C S®). Thus, as soon as a siphon is empty of
tokens, all transitions of S* are dead and therefore the net
is not deadlock free. A siphon is said to be controlled if
it can never become empty of tokens. The theory [BPP96]
proves that if all the siphons are controlled, then the net is
deadlock free. Therefore we have to prove that all siphons
of the net are controlled.

Without the Abort Part

In the net of Figure 4, there are several siphons but only
one is not controlled: the siphon D = {NotInQueue}. In-
deed, suppose that the philosopher 0 is eating and that

the philosopher 1 fires transaction. By construction, this
philosopher goes to state InQueue (because 0 is eating) and
becomes hungry (the token x = 1 has been removed from
place NotInQueue). Let us suppose now that the philoso-
pher 2 calls transaction. Because 1 is hungry, 2 also goes
to state InQueue and also becomes hungry. If all other
philosophers (from 3 to N — 1) also fire transaction, they
will all become hungry (only the token z = 0 remains in
place NotInQueue).

Let us suppose now that philosopher 0 fires successively
transitions control.end_of _step, release and transaction.
Without the protected object semantics, is is possible that
the other philosophers do not progress (they all remain in
state InQueue). Thus, the philosopher 1 goes to state
InQueue and removes the last token of place NotInQueue:
the siphon is empty and the net is deadlocked. This is the
reason why the implementation of the server with
a task is not deadlock free. Indeed, if just after having
serviced the entry release for the philosopher 0, the server
task is preempted (it loses the processor due to the scheduler
or due to a call to a blocking action like a delay), then the
only eligible task is the philosopher 0, that can call the entry
request(0) and then is put in the queue of this entry. When
the server becomes active again, all the entries request(z)
are then closed, and the program is deadlocked.

However, the Ada95 processing policy of protected ob-
jects ensures that at the end of a protected call, already
queued entries (whose barriers are true) take precedence
over new calls. So, when the philosopher 0 fires release,
it enters state T'hinking and the philosopher 1 enters state
Eating marking anew the place NotInQueue. The siphon

= {NotInQueue} is then controlled as a result of the
Ada9b processing policy of protected objects and then the
model is really deadlock free.

With the Abort Part

In we consider the complete model (including the abort
part), then place NotInQueue is not a siphon, and previous
complications cannot occur. Indeed, when a philosopher z is
in state InQueue, transition control.stop-me is always fire-
able, and its firing marks place InQueue again. Therefore,
a circular deadlock cannot occur.

4.3.2 Proving Starvation Freeness of the Model

Without the Abort Part

The philosophers can be in six different states, but only
one (the state InQueue) is a state in which philosophers
may remain indefinitely due to a bad policy of the server.
‘We have to prove that any philosopher necessarily leaves the
state InQueue after a finite time.

The key point in proving the starvation prevention of this
solution is based on the fact that when a philosopher x goes
in state InQueue, it takes the resource NotInQueue(zr) and
forces the philosopher = + 1 to wait until z leaves the state
InQueue for the state Fating.

Let us suppose that at a marking M, a philosopher z
in state InQueue (M(InQueue)(x) = 1) cannot fire the



transition request@ and access the state Eating. There are
four cases:

1. M(Eating(z — 1)) =1 and M (Fating(z + 1)) =1
After a finite time (the net is deadlock free), z — 1 or

x+1 will fire transition release, and we fall then under
the next cases.

2. M(Eating(z + 1)) =1 and M (Eating(z — 1)) =0
When the philosopher z + 1 fires transition release,

it enters state Thinking and we fall under the next
cases.

3. M(Eating(x + 1)) =0 and M (Eating(z — 1)) =1
When the philosopher z — 1 fires transition release it
enters state Thinking and, as « is in the queue, x + 1
is still not in state Eating, and we fall under the next
case.

4. M(Eating(x + 1)) =0 and M (Eating(z — 1)) =0
At such a marking we have to consider two sub-cases:

(a) M(InQueue(xr—1)) =0: x+1 cannot enter state
Eating because M (NotInQueue(z)) =0 (z is in
the queue) and x — 1 cannot enter state Eating or
enter state InQueue because preference is given
to already queued tasks (here ).

So the philosopher x necessarily fires requestQ
before z — 1 or z 4+ 1 can move and z accesses to
the state Eating.

(b) M(InQueue(x —1) =1): if z — 1 can access the

state Fating, when it fires Release we fall under
the previous sub-case.
Otherwise, the only possibility is that z — 1 is
waiting that x —2 fires requestQ, which is waiting
that x — 3 fires request(), and so on; in this case,
the net is deadlocked, and this is impossible as
proved above. So, z fires necessarily requestQ
after a finite time.

With the Abort Part

If we consider the model including the abort part, the
model does not prevent starvation. Indeed, we cannot for-
bid a philosopher to fix too short a deadline putting itself
into self-starvation. This problem is not due to the resource
allocation policy but is due to a possible bad strategy of the
philosophers.

5 Discussion

So far we have considered a solution where all the resources
are requested once and are allocated globally. If a client can-
not be given all the requested resources (i.e., two chopsticks
in the case of the philosophers example), it is postponed un-
til these resources all become available; no resources are set

apart for its postponed claim; all the unallocated resources
are available for any other request.

It is a well known result that such a policy avoids dead-
lock, but does not prevent starvation.

5.1 A Deadlock Free Solution Which can Lead to Starva-
tion

As an example, consider the dining philosophers solution
proposed by B.Brosgol in [Bro96].

with common; use common;
package Brosgol_Allocation_chops is
procedure request(me : in philo_id);
procedure release(me : in philo_id);
private
type Boolean_Array is array(philo_id) of boolean;
end Brosgol_Allocation_chops ;

package body Brosgol_Allocation_chops is
protected server is
entry get_pair(X :
procedure release_pair(x :
private
available
entry please_get_pair(x :
Flush_Count: Natural := 0;
end server;

in philo_id);
in philo_id);

: boolean_array := (others => true);
in philo_id);

procedure request(me : in philo_id) is
begin server.get_pair(me); end request;

procedure release(me : in philo_id) is
begin server.release_pair(me ); end release;

protected body server is
entry get_pair(x :in philo_id) when true is
begin
if available(x) and available(x + 1)then
available(x) := false;
available(x + 1) := false;
else
requeue please_get_pair with abort ;
end if;
end get_pair;

entry please_get_pair(x :in philo_id)
when flush_count > 0 is
begin
flush_count := flush_count - 1;
if available(x) and available(x + 1) then
available(x) := false;
available(x + 1) := false;
else
requeue please_get_pair with abort ;
end if;
end please_get_pair;

procedure release_pair(x :
begin
available(x) := true;

in philo_id) is



available(x + 1) := true;
flush_count := please_get_pair’count;
end release_pair;
end server;
end Brosgol_Allocation_chops ;

Consider now the following execution with 5 philoso-
phers: 0 calls get_pair, gets the chopsticks and eats. 1
calls get_pair and is requeued to please_get_pair. 2 calls
get_pair, gets the chopsticks and eats. 3 calls get_pair
and is requeued to please_get_pair. 4 calls get_pair and
is requeued to please_get_pair.

At this state, 0 and 2 are eating while 1, 3 and 4 are in
the queue of please_get_pair in this order (it is a FIFO
queue).

Let us suppose that 2 releases its chopsticks. Because
of the semantics of the protected object, as the guard of
please_get_pair has become true, the code of this entry is
re-executed first for the philosopher 1, then for 3 and then
for 4. 1 cannot be served because 0 is still eating and is
then requeued, 3 is served and 4 is then also requeued. At
this point, 0 and 3 are eating while 1 and 4 are in the queue
of please_get_pair. Let us suppose now that 3 releases
its chopsticks. For the same reasons, the requests of 1 and
4 are re-examined but cannot be satisfied. If 2 then calls
get_pair, it is served. If now 0 releases its chopsticks, 4
can eat but 1 remains in the queue. And so on. As long as
his two neighbors eat in alternation such that at least one
of them is always eating, there is no possibility for philoso-
pher 1 to get his pair of chopsticks, even if all the other
philosophers release their chopsticks regularly.

5.2 The Approach Used to Avoid Starvation

The idea is to use a kind of control such that, if a client x
requests resources, all the other clients cannot continue to
be served indefinitely before z. A function is added which
forces an order of allocation once z is blocked. The key
problem is to be sure that this additional function does not
introduce a deadlock when several clients are blocked.

This additional function is stated in terms of additional
resources. Thus it can be tractable in Petri net theory. This
leads to the following presentation.

Each client z possesses a personal resource R(z) which
can be allocated to = only. This resource R(z) is managed
in the following way :

e initially R(z) is free for all z

e when z claims of shared resources (chopsticks in the
example of philosophers) and is postponed, then R(z)
is consumed by

e when z is given shared resources, R(x) becomes free
again. Moreover, we impose the condition that there
exists one and only one client, denoted A(z), such that
A(x) cannot be served if R(x) is not free.

We also require also that A(x) # A(z') if x # «’. This
means that A(z) is a permutation in the set of clients. We
also require that for all z : 2

o Vz€ 1.N —1,A*(z) # z and that
o AV(z) ==z

If no deadlock results from the introduction of this block-
ing policy using A(x) and R(z), then this policy avoids star-
vation. To prove it, let us suppose that a client x makes a
claim and is never served. When z is postponed for the
first time, it consumes R(z). Thus the client A(z) is pre-
vented from being served. A(z) also consumes its personal
resource R(A(z)), and this blocks the client A(A(z)). This
also blocks the client A%(z)) and so on. Because we require
that Vz € 1..N, A*(z) # z and that AV (z) = =, if = is never
served, it generates a chain of blocking which corresponds to
a global deadlock, which contradicts our initial supposition.

Let us use this approach to the Brosgol implementation
presented above and add a variable named Requestor(x)
which denotes that the philosopher z is being postponed.
Requestor(z) corresponds to the resource R(z) and the per-
mutation A(z) is A(z) = (z + 1) modulo N.

package body Fair_Brosgol_Allocation_chops is

protected server is
entry get_pair(X : in philo_id);
procedure release_pair(x : in philo_id);

private
available : boolean_array := (others => true);
-- chopsticks
requestor : boolean_array := (others => false);
-- philosophers

entry please_get_pair(x : in philo_id);
Flush_Count: Natural := 0;
end server;

procedure request(me : in philo_id) is
begin server.get_pair(me); end request;

procedure release(me : in philo_id) is
begin server.release_pair(me ); end release;

protected body server is

entry get_pair(x :in philo_id) when true is
begin
if available(x) and available(x + 1) and
not requestor(x-1) then

available(x) := false;

available(x + 1) := false;
else

requestor(x) := true;

requeue please_get_pair;
end if;

end get_pair;

3A%(z) denotes A(A(...(A(z)))) z times, and A%(z) =z



entry please_get_pair(x :in philo_id)
when flush_count > 0 is
begin
flush_count := flush_count - 1;
if available(x) and available(x + 1) and
not requestor(x-1) then

available(x) := false;

available(x + 1) := false;

requestor(x) := false;
else

requeue please_get_pair;
end if;

end please_get_pair;

procedure release_pair(x : in philo_id) is

begin
available(x) := true;
available(x + 1) := true;
flush_count := please_get_pair’count;

end release_pair;
end server;
end Fair_Brosgol_Allocation_chops;

This solution is very close to the solution presented in
Sections 2 and 3 (where R(x) is consumed when z is queued
at the request entry). The same kind of proofs allows us
to state that this solution is deadlock free (and then also
starvation free) when the allocator is implemented with a
protected object and that, on the contrary, this solution is
not deadlock free when the allocator is implemented with a
server task.

Remark :

1. The Brosgol implementation supposes that the queues are
served FIFO. If there are not, it is necessary to use two
queues in alternation and two private entries [BW95].

2. If we also want to take care of abort situations (and use the
requeue with abort clause), it is necessary to note the state
of the philosophers, because a philosopher can be aborted
when being postponed (he is not eating and has no chop-
sticks to release) or when eating (he has two chopsticks to
release).

3. The initial Brosgol implementation can also be transformed
in the following way to become fair :

(a) all requests are put in a unique FIFO queue (for ex-
ample, the entry get_pair just requeues all claims at
the entry please_get_pair) and

(b) no request from this queue can be serviced before the
first request. Here the fairness relies entirely on the
FIFO service of the requests.

5.3 Comparing the Controlling Capabilities of Protected
Objects and of Server Tasks

The following points are to be considered:

1. About barriers and guards

- The barriers of protected object entries and the guards
of tasks entries are evaluated one after the other in mu-
tual exclusion.

- The barriers and guards both can be programmed
with encapsulated data that are private to the pro-
tected object or to the task. The modifications to these
private data are also executed in mutual exclusion with
the evaluation of barriers and guards.

- Therefore, the analysis of the parameters of a re-
quest, which may result in postponing and requeuing
the request, can be recorded in a variable (such as the
number of already postponed requests). This variable
can be used in the expression of barriers or guards in
order to prevent a circular blocking.

2. About the count attribute

- The count attribute of a protected entry is computed
in a mutually exclusive region. Indeed, a calling task
is counted as blocked at an entry only once the corre-
sponding barrier has been evaluated to false. Similarly,
mutual exclusion is used to handle the abort action
which may decrease the count attribute.

- On the other hand, modifications of the count at-
tribute of task entries may occur concurrently at any
moment and not only during the evaluation of guards.
The count attribute of a task entry is increased at the
arrival of a new call unless the called task is at the
rendez-vous. This attribute is decreased either when
the caller is serviced or as a result of a timed entry
call or of an abort. Thus, between two successive eval-
uations of guards, several count attributes can change
and cause several guards to become false.

The evolution of this attribute is difficult to predict
and control and may cause circular blocking.

3. About the standard service policy

- In a protected object, internal waiting tasks take
precedence over external tasks.

- In a server task, all open entries (even the private
ones) are equivalent.

From this brief summary, let us remark that, conceptu-
ally, the behavior of protected objects that do not use the
count attribute can be simulated by a server task. This
simulation may use additional private variables and requeue
statement, and it may modify the guard expressions.

For example, the previous solution given is section 5.2
can be adapted. To provide a fair server task, the entry
please_get_pair is given preference over the entry get_pair
by the addition of the guard flush_count = 0.




with common; use common;

package reliable_and_fair_server_chops is
procedure request(me : in philo_id);
procedure release(me in philo_id);

end reliable_and_fair_server_chops ;

package body reliable_and_fair_server_chops is
type boolean_array is array(philo_id) of boolean ;
task server is
entry get_pair(x :in philo_id);
entry release_pair(x : in philo_id);
private
entry please_get_pair(x
end server;
procedure request(me : in philo_id) is
begin
server.get_pair(me);
end request;
procedure release(me : in philo_id) is
begin
server.release_pair(me );
end release;
task body server is

in philo_id);

flush_count integer := 0;

available : boolean_array := (others => true);

--available denotes availability of the chopsticks

requestor : boolean_array := (others => false);

eating : boolean_array := (others => false);

-- requestor and eating denote philosopher states
begin

loop

select

when flush_count = 0 =>
accept get_pair(x : in philo_id) do
if available(x) and
not requestor(x - 1) and
available(x + 1) then
available(x) := false;
available(x + 1) := false;
eating(x) := true;
-- useful to know if aborted
else
requestor(x) := true;
requeue please_get_pair with abort;
end if;
end get_pair;
or
when flush_count > 0 =>
accept please_get_pair(x: in philo_id) do
flush_count := flush_count - 1;
if available(x) and
not requestor(x - 1) and
available(x + 1) then
available(x) := false;
available(x + 1) := false;
requestor(x) := false;
eating(x) := true;
-- useful to know if aborted
else
requeue please_get_pair with abort;
end if;
end please_get_pair;
or

accept release_pair(x
if eating(x) then

in philo_id) do

available(x) := true;
available(x + 1) := true;
eating(x) := false;
end if;
requestor(x) := false;
-- can be done anyway
flush_count := please_get_pair’count;
end release_pair;
or
terminate;
end select;
end loop;

end server ;
end reliable_and_fair_server_chops ;

Remark : As the number of tasks in the queue of the
task entry please_get_pair may be different from the value given
by please_get_pair’count, the exact solution should be imple-
mented with two queues and two entries used in alternation. We

have given the present solution for the sake of simplicity.

5.4 Another Policy

A generalization of the policy given above is to allow the
allocator to reserve the chopsticks one by one. The allo-
cator still postpones the requesting philosophers until both
chopsticks are available. This policy is reliable and fair if :

1. a postponed philosopher cannot be overtaken by an
infinitely rapid neighbor that releases its chopsticks
and requests them anew, and also if

2. the blocking due to the reservation of one chopstick
does not lead to a deadlock.

The eggshell model of the protected object provides these
two conditions and allows the following solution to be reli-
able and fair, while again the server task implementing the
same solution fails to provide both deadlock freeness and
fairness.

with common; use common;
package chopsticks_object is
procedure request(me : in philo_id);
procedure release(me in philo_id);
end chopsticks_object ; -- end of package declarations

package body chopsticks_object is
type boolean_array is array(philo_id) of boolean ;

protected chopsticks is
entry get_pair(philo_id);
procedure release_pair(x

private
available : boolean_array := (others => true);
entry finish_pair(philo_id);

end chopsticks ;

in philo_id);



procedure request(me :
begin

chopsticks.get_pair(me);
end request;

in philo_id) is

procedure release(me :
begin

chopsticks.release_pair(me);
end release;

in philo_id) is

protected body chopsticks is
entry get_pair(for i in philo_id) when
available(i) is
begin
available(i) := false;
requeue finish_pair(i + 1);
end get_pair;

entry finish_pair(for i in philo_id) when
available(i) is

begin
available(i) := false;

end finish_pair;

procedure release_pair(x :
begin
available(x) := true;
available(x + 1) := true;
end release_pair;
end chopsticks ;
end chopsticks_object ; -- end of package body

in philo_id) is

Remark :

1. If we want to take care of abort situations (and use the
requeue with abort clause), it is necessary to note the state
of the philosophers because a philosopher ¢ can be aborted
when being postponed at the entry get_pair (it is not eat-
ing and therefore has no chopsticks to release) or when be-
ing postponed at the entry finish_pair (it is not eating
and then has its chopstick 7 to release) or when eating (it
has then two chopsticks, ¢ and ¢ + 1, to release).

2. A correct server task can be implemented with an addi-
tional variable

requestor : boolean_array := (others => False)

The guard of the entry get_pair(i) is now
available(i) and not requestor(i)

The code of the entry get_pair(i) sets requestor(i+1)
to True while the code of the entry finsih_pair(i) resets
requestor(i) to False.

6 Conclusion

It has been shown that programming resource allocation
with Ada95 can lead to programs which are easy to design
and to understand and which can be proven to be (or not
to be) deadlock free and starvation free.

From the case study presented in this paper, some gen-
eral conclusions can be drawn.

A policy aiming at preventing deadlock, i.e. at prevent-
ing circular wait of requested resources, may introduce star-
vation. Similarly a policy aiming at preventing starvation
may introduce deadlock.

The eggshell model of Ada 95 protected objects, which
queues new requests sequentially (and therefore provides a
reliable attribute count) and which serves, in priority order,
internally waiting tasks before external tasks, is a very pow-
erful tool and is basic for proving the absence of starvation.
Especially, when a task releases a resource while the request
of another task has been postponed inside the protected ob-
ject, then this latter task will always be serviced before any
new request of the former task. This prevents an infinitely
fast task from monopolizing the resource. This behavior is
the basic reason why the solutions presented in this paper
are safe and fair when implemented with protected objects
and not when implemented with a server task.

The Ada95 schema relies on automaton-like and state
transition execution. This is exactly what is used when
modeling a problem with Petri nets (or with some state
transition model). This is why we were able to program the
allocation policies and jointly to validate (or invalidate) the
chosen implementation. Other examples of this approach
are given in [BKPP97] and [KPP97]. Thus this coopera-
tive approach may be a basis for systematic construction of
reliable concurrent programs.
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A Appendix

A.1 The Package Body SCENE

with Ada.Text_I0, Ada.Numerics.Float_Random,
Ada.Numerics.Discrete_Random;
use Ada.Text_I0, Ada.Numerics.Float_Random;
package body scene is
Gl : Generator;
-- uniform distribution from 0.0 to 1.0

procedure thinking(x : in philo_id) is

how_long : Float range 0.0 .. 1.0;
begin
how_long := 0.1 * Random(G1);

-- we suppose that Random executes
-- in mutual exclusion

put_line("the philosopher : " &

philo_id’image(x) &

" is thinking");
delay(duration(how_long)); -- this takes a while
put_line("the philosopher : " &

philo_id’image(x) &

" has finished thinking");

end thinking;

procedure eating(x : in philo_id) is

how_long : Float range 0.0 .. 1.0;
begin
how_long := 0.1 * Random(G1);

put_line("the philosopher " &
philo_id’image(x) &

" is eating");
delay (Duration(How_Long));
put_line("the philosopher " &

philo_id’image(x) &

" has

end eating;

function random_duration (d1,d2 : in duration)

return duration is

x : Float range 0.0 .. 1.0;
begin
x := Random(G1); -- random execution duration

return duration(Float(D1) + Float(d2 - di1) * x);

end random_duration ;

end scene;

A.2 The Complete Model Corresponding to the Program

finished eating");
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