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Abstract. We propose a methodology for finding the empirical distribution of the
Rand’s measure of association when the two partitions only differ by chance. For
that purpose we simulate data coming from a latent profile model and we partition
them according to 2 groups of variables. We also study two other indices: the first
is based on an adaptation of Mac Nemar’s test, the second being Jaccard’s index.
Surprisingly, the distributions of the 3 indices are bimodal.
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1 Introduction

When one observes two partitions of the same set of units, a natural question
arises: do the partitions agree or disagree? One of the most popular measures of
concordance is the Rand’s measure of association (Hubert & Arabie 1985), which
is based upon the number of pairs of units, which belong to the same clusters. A
natural idea is to decide that the 2 partitions do not differ significantly if the index
is larger than a critical value. We thus need to know, even approximately, the
distribution of Rand’s index under some null hypothesis. Few publications (Idrissi
2000) deal with that problem, and only under the hypothesis of independence.
However this hypothesis is unrealistic, and departure from independence does not
mean that there exists a strong enough agreement (Saporta 1997).

But the difficulty consists in conceptualising a null hypothesis of “identical”
partitions and a procedure to check it.

In this communication we first remind the main properties of Rand’s index and
its distribution under independence. We propose an alternative to Rand’s by
using an idea derived from Mac Nemar’s test for comparing proportions: here we
compare proportions of discordant pairs. Finally we also use Jaccard’s index. We
simulate similar partitions coming from a common latent class model. Then we split
arbitrarily the p variables into two groups and perform a partitioning algorithm on
each set with the k-means’s method.
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2 Measures of agreement between partitions

2.1 Notations
Let V1 and V2 be two partitions (or two categorical variables) of n objects with the
same number of classes k . If K1 and K2 are the disjunctives tables and N the
corresponding contingency table with elements nij, we have: '

1 2N K K=
   Each partition V is also characterized by the nn × paired comparison table C with

general term ijc :

ijc =1 if i and j are in the same class of V, ijc =0 otherwise

We have '
111 KKC =  and '

2 2 2C K K=
The  four types of pairs of objects are:
Type 1: pairs belonging to the same class of V1 and to the same class of V2

Type 2: pairs belonging to different classes of V1 but to the same class of V2

Type 3: pairs belonging to the same class of V1 but to different classes of V2

Type 4: pairs belonging to different classes of V1 and to different classes of V2

If the respective frequencies of these four cases are : a, b, c, d , we have:
( 1 )

2
n n

a b c d
−

+ + + = .

We note also A = a + d  (total number of agreements) and D = b + c (total number
of discordances)

2.2 Rand index
The Rand index (similar to Kendall’s measure) is the proportion of agreements:

2
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A
R

n n
=

−
It may be proved that:
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We will not use the index corrected for chance by Hubert and Arabie (1985), but
Marcotorchino’s modified version (1991) for all n2 pairs :

2 2 2 2
. .

2

2 ij i jn n n n
R

n

− − +
= ∑∑ ∑ ∑

which leads to a simple expression based in terms of paired comparisons:
1 21 2

2
1 1

( )n n i j i ji j i j

i j

c c c c
R

n= =

+
= ∑ ∑       With cc −= 1

Idrissi (2000) used this last formula to study the asymptotic normality of R under
the hypothesis of independence. If the k  classes are equiprobable, one finds that
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1 21 2
ij ijij ijc c c c+  has a Bernoulli distribution with parameter 2

221
kk

+− . Hence:

2

2 2( ) 1E R
k k

= − +

A. Idrissi claims that the Rand index between two categorical variables with k
equiprobable modalities follows asymptotically a normal distribution with variance:

2 2 2

1 1 2 2 2 2( ) (1 )(1 )( )V R
n n k k k k

= − − + −

This expression is not valid for small k  (especially k=2) and only approximately
true for large n since the ijc  are not independent due to the transitivity constraints

ij jk ikc c c=

2.3 An adaptation of Mac Nemar’s test
Mac Nemar’s test is a well known non-parametric test used to check equality of 
proportions in matching samples:

a b

c d

For instance a represents the number of individuals who keep the same favorable
opinion before and after a campaign, d the number of individuals who keep the
same unfavorable opinion before and after, b and c are the frequency of those who
are changing their opinion. The test statistic corresponding to the null hypothesis

of equally changing opinions is: 
b c

Mc
b c

−=
+

 and Mc has a normal distribution

N(0,1) under Ho for n large.
By using the test for the set of object pairs, we have a new way to measure the

agreement between two partitions. It is easy to get :

2 2
. .

2 2 2
. .
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2 ( )
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i j
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i j i j
i j i j

n n
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n n n

−
=

+ −
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In this case also, the transitivity relations between pairs goes against the

assumption of independence between pairs.

2.4 The Jaccard’s index
The Jaccard’s index is a well-known measure of similarity between objects
described by presence-absence attributes, used in cluster analysis. It counts the
number of common attributes divided by the number of attributes possessed by at
least one of the 2 objects.

Applied to the four types of pairs we have:
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3 The latent class model

Now we have to define what we mean by “two partitions are close”. Our approach
consists in saying that the units come from the same common partition, the two
observed partitions being noisy realisations. The latent class model is well
adapted to this problem for getting partitions and have been used by Green and
Krieger (1999) in their consensus partition research. More precisely, we use the
latent profile model for numerical variables.

Latent variables
Observed Variables Qualitative Quantitative
Qualitative Latent class Latent traits
Quantitative Latent profile Factor analysis

Figure 1. Latent variables methods (Bartholomew & Knott 1999)

The basic hypothesis is the independency of observed variables conditional to
the latent classes:

)/()( kxfxf j
j

k
k

k ∏∑= π

The kπ are the proportion of classes and x is the random vector of observed
variables, where the component xj are independent in each class. Here we use the
model only in order to generate data and not to estimate parameters.

For getting “near-identical partitions”, we suppose the existence of such a
partition for the population according to the latent profile model. Data are
generated according to this model, with independent normal components in each
class, in other words, a normal mixture model. Then we split arbitrarily the p
variables into two sets and perform a partitioning algorithm on each set. The two
partitions should differ only at random. We are thus enabled to get simulated
sampling distributions of Rand, Mc Nemar or Jaccard’s index. Our algorithm has
four steps:

1. Generate the sizes n1, n2, .., nk of the clusters according to a multinomial
distribution M(n; 1π … kπ )

2. For each cluster, generate ni values from a random normal vector with p
independent components

3. Get 2 partitions of the units according to the first p1 variables and the last
p-p1 variables

4. Compute association measures
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4 Empirical results

We applied the previous procedure with 4 equiprobable latent classes, 1000 units
and 4 variables. The parameters of the normal distribution are chosen in such a
way that jkkj mm '− >1.5 jσ  for every j and k.

The number of iterations N is 1000. We present only one of our simulations
(performed with S+ software).

Class n°1 Class n°2 Class n°3 Class n°4
X1     N( 1.2,1.5)
X2     N(-10,2.5)
X3     N(6,3.5)
X4     N(-20,4.5)

X1     N( -2,1.5)
X2     N(0,2.5)
X3     N(12,3.5)
X4     N(-12,4.5)

X1     N( 5,1.5)
X2     N(-17,2.5)
X3     N(13,3.5)
X4     N(0,4.5)

X1     N(8,1.5)
X2     N(3.8,2.5)
X3     N(-5,3.5)
X4     N(7,4.5)

Table 1. The normal mixture model

The following figure shows the spatial repartition of one of the 1000 iterations.

Figure  2. The first two principal components  of one of the 1000 samples

Then, we compute 2 partitions with the k-means methods:the first one with X1

and X2, the other one with X3 and X4; we calculate the association indices 1000
times. Our results show that the distributions of these indices are far from a normal
distribution, which is not surprising since the theoretical values should be high
(close to 1 for Rand), but they are actually bimodal: this unexpected result has
been observed systematically.

We noticed that all the observed Rand’s values are over 0.72. Under the
hypothesis of independence ( ) 0.625E R = , and with 1000 observations,
independence should have been rejected for R>0.626 at 5% risk. The 5% critical
value is much higher than the corresponding one in the independence case. It
shows that departure from independence does not mean that the two partitions are
close enough. However it is not possible to derive universal critical values since
the distribution of R depends on the number of clusters, on their proportions and
separability. An ad hoc  bootstrap method may solve this problem.
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Figure  3. Distributions of Rand, Mac Nemar and Jaccard’s indices

5 Discussion

A latent class model has been used to deal with the problem of comparing close
partitions and three agreement indices have been studied. The Rand index give the
same importance to pairs in the same class, and to pairs in different classes of both
partitions, which is arguable. Mac Nemar and Jaccard indices do not have this
drawback. The distributions of the three proposed indices have been found very
different from the case of independence and are bimodal. The bimodality might be
explained by the presence of local optima in the k-means algorithm: we are
studying this point. Finally, one has to add that agreement measures are only one
of the many facets of comparing partitions.
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