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Abstract. This paper deals with some modeling aspects that have to be ad-
dressed in the context of the integration of heterogeneous and autonomous XML
resources. We propose an integration system, but the emphasis of this paper is
neither on its algorithmic aspects nor on its technical details. Instead, we focus
on the significance of offering appropriate high-level primitives and mechanisms
for representing the semantics of XML data. We posit that support for such prim-
itives and mechanisms is a pre-requisite for realizing the goals of the semantic
Web.

1 Introduction

The last decade has seen the emergence of the Web as the central forum for data storage
and exchange, and as the infrastructure for a large part of human communications and
information-based activities in many domains, from art and medicine to business. The
utility of the Web depends, however, on the development of models and paradigms for
the representation and the manipulation of data, that enable the development of flexible
and expressive applications.

Towards this end, XML [1] has been proposed as a standard for data exchange,
possibly also for storage. Compared to the relational model, the de-facto standard for
database systems, its structural primitives for building trees of elements with attributes
offer much more flexibility in data organization and format.

Clearly, such standardization efforts must be accompanied by formal and experi-
mental studies of XML and its associated mechanisms : formal studies, to understand
their expressive power and the computational complexity of the algorithms they re-
quire, and experimental studies, to better understand the requirement of potential ap-
plication domains, and the support they require for conceptual modeling and manipula-
tion of data. For example, the shortcomings of DTD’s as the mechanism for specifying
schematic properties of XML have been identified, and an effort to overcome those
limitations has lead to the definition of XML Schema [16].

In this paper we report on XML data integration issues, encountered during the C-
Web project [13]. One of our goals was to design and implement a portal architecture
or mediator [27] which can be considered as an experimental study on the use of XML
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for data integration. The resulting prototype [17], follows the local as view approach
(LAV) [18] and offers to its users a virtual data repository in a given domain. The reposi-
tory is virtual in that the actual data resides in some external sources. However, the users
of the repository are not concerned with source location and source data organization
which are taken care of by the integration portal. We posit XML-enabled data sources,
with some support for XML querying, either by using XPath [10], or possibly (in the
near future) by using XQuery [7].

Our emphasis in this paper is neither on the algorithmic details nor on the technical
details of the system, which are thoroughly presented in [5, 3, 17]. Rather, we concen-
trate on the data model of the mediator and the mechanism for describing XML sources
at the mediator. We also discuss at length conceptual modeling issues that need to be
addressed in the context of a data integration project, and our approach to tackling them.
Our study emphasizes the significance of offering appropriate high-level primitives and
mechanisms for representing semantics of XML data. We posit that support for such
primitives and mechanisms is a pre-requisite for realizing the goals of the semantic
Web.

The outline of the paper is as follows. Section 2 is an overview of the approach to
data integration using cultural XML resources. In Section 3 we present the integration
model and discuss the studied problems and justify the decisions we have made. We
conclude in Section 4 and present the future work.

2 System Overview

We present in this section a general overview of our system architecture, its main ideas,
and main components. Detailed discussion of technical concepts and algorithms can be
found in [3]. Our goal here is to provide sufficient understanding of the system and its
underlying ideas, as a basis for the discussion of issues in subsequent sections.

2.1 XML Resources

We illustrate our approach using an example concerning the integration of two Web-
accessible XML-based cultural information sources. The first source, located at URL
http://www.paintings.com, contains information about painters and their paintings. The
DTD of this source defines two element types (Painter and Painting) where each of
them contains one XML attribute :

<!ELEMENT Painter (Painting+)>
<!ATTLIST Painter name CDATA #REQUIRED>
<!ELEMENT Painting EMPTY>
<!ATTLIST Painting title ID #REQUIRED>

The second source, located at URL http://www.all-about-art.com, is more complete
than the first source and describes paintings, artists and museums. Its DTD is the fol-
lowing :
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<!ELEMENT Art (Painting|Artist|Museum)*>
<!ELEMENT Painting Title>
<!ATTLIST Painting painter #IDREF #REQUIRED

museum #IDREF #IMPLIED>
<!ELEMENT Artist EMPTY>
<!ATTLIST Artist name #CDATA #REQUIRED

id #ID #REQUIRED>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT Museum (Name,City)>
<!ATTLIST Museum id #ID #REQUIRED>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT City (#PCDATA)>

Although the two sources deal with the same subject, they differ in terms of both
contents and terminology. The first source contains information about painters and their
paintings and the data is organized by painter. The locations of the paintings in muse-
ums are deemed irrelevant and are not described. In the second source, painters, artists
and museums are described. It organizes its data differently from the first source in
that paintings and artists are described independently. To designate the painter and the
museum of a painting the XML ID/IDREF mechanism is used.

As is common in integration scenarios, each of the sources may supply only part
of the information sought by a user. For the information about painters, the sources use
different terminologies (the first one uses the term Painter, the second Artist to
designate a painter). Observe that information concerning the same entity types might
be structured differently in different sources. For example, while in the first, paintings
are arranged “below” the painters, the second source prefers to organize the same data
by painting, with painters below their respective paintings.

2.2 The Global Schema

We base our integration project on the local as view approach [18]. That is, we assume
a hypothetical global repository that contains all the information of interest to the user
in a given subject area described by a global schema.

Each of the sources is a local view of this global repository. Being a view means that
it contains only part of the relevant data. It may contain only information about some
entity types, but not about others. Even concerning entity types that it contains, it may
not contain information about all the entities of that type that are present in the global
repository; or, it may not contain all information about an entity. And, its structure may
differ from that of the global repository.

In our case, the local views (sources) are represented in XML. However, the data
model used for the global schema is not XML, but rather an ontology. For us, an on-
tology is essentially a simple object-oriented schema describing concepts with typed
multi-valued attributes and connected by binary, symmetric, many-to-many roles. At-
tributes and roles can be inherited through inheritance ( ����� ) links between classes [4].

An example of an ontology for cultural artifacts, inspired by the ICOM/CIDOC
Reference Model [14] is shown in Figure 1 as a labeled directed graph.
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Fig. 1. An Ontology for Cultural Artifacts

Nodes of the graph represent the concepts of the ontology and their attributes. Each
concept has a unique name represented in bold-face followed by a possibly empty list of
attributes (name and type). The ontology describes six concepts for the representation
of cultural data : Actor, Person, Activity, Man Made Object, Image and Museum.
An example of an attribute is has name of type String in concept Person.

Concepts are related to each other by binary roles depicted by solid arcs. Inheri-
tance (isa) links between concepts are depicted by dashed arcs. The fact that an actor
performs an activity (instance of concept Activity) to produce a man made object is rep-
resented by roles carried out and produced. We postulate that each role has an inverse
which is depicted in the figure in parentheses (e.g. for role carried out its inverse is
carried out by).

The high level of detail in this ontology is due to the desire to enable the modeling of
as many sources as possible in the art domain. We defer to Section 3 the detailed discus-
sion of why we use ontologies, rather than XML, for the global data model. Additional
assumptions about ontologies and their components, as well as additional explanations
are presented in Section 3.

2.3 Derived ontologies

Each role has a ���������	� and a

 �����
� 
 . Roles ��� , � � can be concatenated, provided the

target of � � and the source of � � are compatible, taking into account the ��� � relation-
ships. For example, the ���������	� of role carried out is concept Actor and its


 �����
� 
 is
concept Activity. A role � can also be concatenated with an attribute � , under simi-
lar conditions. Concatenations of role/attribute sequences are referred to as role paths,
and can be viewed as derived roles (or derived attributes, if the last member is an
attribute). For example, role path carried out.produced defines a derived role from
concept Actor to concept Man Made Object. Each derived role has a ���������	� and

 �����
� 
 , and an inverse. For example, the inverse role path of carried out.produced is
produced by.carried out by.

A concept path � is either of the form � , or of the form ��� � , where � is a con-
cept and � is a role path, where the ����������� of � is � or a subconcept of � . A con-
cept path ��� � defines a derived concept, standing for “the instances of the


 �����
� 
 of �
that can be reached from instances of its ���������	� by following � ”. For example, Per-
son.carried out.produced defines a subconcept of Man Made Object and stands for
all the instances of concept Man Made Object that are reached from an instance of
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concept Person, following the role path carried out.produced. Adding the derived con-
cepts and derived roles to an ontology defines a derived ontology that properly contains
the given one.

Reasoning about subset relationships between derived concepts, one can also derive
� � � relationships between them. For example, the derived concept Person.carried out.produced
is a subconcept of Activity.produced (in general, suffixes of derived concepts define
more general derived concepts). Given a repository that conforms to a given ontology,
extents of derived roles/attributes/concepts are uniquely defined, so a repository for the
derived ontology is well-defined.

Our interest in the derived ontology is motivated by the fact that some sources may
provide data only for derived concepts. The ��� � relationships in the derived ontology en-
able us to use these sources to provide answers in terms of the original concepts. For ex-
ample, even if a source provides only information about Person.carried out.produced,
this allows us to obtain some instances of Man Made Object, although not necessarily
all. Note that answers obtained from sources in the LAV approach are partial answers
in any case.

2.4 Source Descriptions

To evaluate a user query expressed in terms of the ontology, we have to translate it into
one or more queries on the XML sources. For this, we need to establish a correspon-
dence between each source and the global ontology. This correspondence is described
by a mapping, which is a collection of mapping rules. Mapping rules for XML are
considered in [11], where several options of granularity for mapping rules between
trees are mentioned (node-to-node, path-to-path, tree-to-tree, etc.). We have chosen the
path-to-path approach. Specifically, the rules we use map a restricted sublanguage of
XPath [10] (XPath patterns without predicates) to schema paths in the ontology. For
example, the following rules map XML fragments of source http://www.paintings.com
to the ontology of Figure 1 :

� � : http://www.paintings.com/Painter as � ��� Person� � : � � /@name as � � � has name���
: � � /Painting as �

� � carried out.produced���
: �
�
/@title as �

� � has title

A rule has the form �����
	�� � ��
 � � , where � is the rule’s label, � is either a URL
or a variable, 
 is a variable, � is an XPath pattern and � is an ontology schema path.
The variable 
 is bound (or defined) in the rule; if � is a variable, then it is a use of the
variable, and we assume it is bound in some rule. The path � is called the source path
of the rule and is an XPath pattern using only the child and descendant axis. The path �
is a concept or role path in the ontology, called the schema path of the rule.

Rules define instances of derived concepts : XML fragments obtained by the rules
are viewed as object instances of concepts. For example, mapping rule

� � states that
the elements of type Painter (bound in variable � � ), root elements of the XML docu-
ments in http://www.paintings.com, are instances of concept Person. Rules also define
instances of (possibly derived) attributes and roles. For example rule

� � specifies that
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the XML attribute name corresponds to the concept attribute has name. More precisely,
it tells that for any instance � of concept Person, we can obtain a value for concept at-
tribute has name by following path @name from the root of � (remind that � is an
XML fragment). In the same way, rule

� �
defines instances of the derived role car-

ried out.produced connecting each instance of concept Person obtained by rule
� � to

all fragments, instances of concept Man Made Object, obtained by
� �

when evaluat-
ing location path Painting (which is an abbreviation of child::Painting).

Rule concatenation : Variables serve as a glue, that allows us to concatenate mapping
rules. They are also convenient in the formulation and implementation of query pro-
cessing. Finally, they can be used to express a semantic relationship between different
XML elements. For example, the following mapping contains four rules from the source
http://www.all-about-art.com to our ontology :
� � : http://www.all-about-art.com/Painting as 
 �� Man Made Object� � : 
 � /id(@painter) as 
 � � produced by.carried out by� �

: http://www.all-about-art.com/Painter as 
 �� Person� �
: 
 � /@name as 
 � � has name���
: http://www.all-about-art.com/Sculpture as 
 �� Man Made Object

We see that one can reach 
 � (that binds instances of concept Person) by two dif-
ferent routes, and then continue one step down @name to obtain the value for attribute
has name for a person. In this example, the two routes, namely the rule concatenation� ��� � � and the rule

� �
lead to the same element type. Observe also that

� � , and
���

bind the same variable 
 � , allowing us to relate different element types (Painting
and Sculpture) that are semantically related, and have a similar structure.

2.5 Query Rewriting and Evaluation

The description of the global schema in terms of the ontology allows users to formulate
structured queries, without being aware of the source specific structure. We illustrate
querying with a simple sub-language of OQL defining tree queries. These queries allow
no explicit joins and aggregate operators, but are sufficiently powerful to illustrate the
issues of answering queries from source data, using the mapping rules. Given a user
query � and a set of sources

�
, we need to get all possible answers that satisfy � . Since

each source � may provide a subset of the possible answers for � , we need to evaluate
query � over all (applicable) sources ��� � . Consider the query 	 � below that requests
“the title of the objects created by Van Gogh” :

	 � : select �
from Person � ,

� .name 
 ,
� .carried out.produced.has title � ,

where 
 = “Van Gogh”

In query 	 � , the variables and the paths that connect them form a tree. To evaluate
this query over a source we need to rewrite it into a query that the source can answer.
For that, we consider the binding paths of the query variables, and compare them to the
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schema paths of the mapping rules for a given source. For example, if we consider the
mapping for source http://www.paintings.com, we can bind the variable � (associated
with Person) with rule

� � , the variable 
 with rule
� � , and the variable � with the path

obtained by the concatenation of rule
� �

with rule
���

; we obtain a variable to rule
binding (in this example there is exactly one; in the general case there may exist a set
of such bindings, even for one source.)

The variable to rule binding is now used to replace the variable binding paths in
the query from clause by the location paths of the mapping rules to which they have
been associated. For the example query 	 � , this replacement produces the query 	 ��� ���
illustrated below.

	 ��� ��� : select �
from http://www.paintings.com/Painter � ,

� ./@name 
 ,
� ./Painting/@title � ,

where 
 = “Van Gogh”

If the source supports some general XML query language such as XQuery [7], then
this query can be rewritten to the XQuery expression 	 ��� 
�� illustrated below, and sent
to the source for evaluation.

	 � � 
�� : FOR $a IN document(“http://www.paintings.com”)/Painter,
$b IN $a/@name,
$c IN $a/Painting/@title

WHERE $b = “Van Gogh”
RETURN $c

If the source supports only restricted query facilities such as XPath 1.0 [10], then
the query needs to be rewritten into XPath. This is rather easy for this example, since
we are requesting only the value of title elements, with some conditions on the paths
leading to them. In the general case, an XQuery expression may need to be decomposed
into several XPath queries, or the XPath query may return a larger tree that needs to be
further filtered at the integration site to obtain the answer XML fragments (see [5] for
more details).

Of course, such a rewriting of a user query to a source query should be attempted for
each source. Some problems that arise when attempting to discover such rewritings are
described later. However, assuming we have performed several rewritings, and obtained
several answer sets, these have to be merged and presented to the user. The merge may
be just a simple union, but often we can and should do better. If we obtain (possibly
partial) information about the same entity from two sources, a join rather than union is
called for.

To decide on, and to perform join, one needs to ensure that the entities represented
by two elements, from different sources, are identical. This requires the use of keys,
both in the global schema and in the sources. We will discuss keys in more detail in
Section 3.

In some cases we cannot obtain a full answer from one source. Then, our rewriting
algorithm [3] tries to find the largest subquery, the main subquery, of the user query
that can be answered by the source. Remainder subqueries that cannot be answered by
the source are identified, and processed against other sources. Results of the main and
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remainder subqueries are then joined at the integration site. Assume the following query
	 � that requests “the title of the objects created by Van Gogh, as well as the name and
the city of the museum where they are exposed” :

	 � : select � , � , �
from Person � , � .name 
 ,

� .carried out.produced � , � .has title � ,
� .located at � , � .museum name � , � .city �

where 
 = “Van Gogh”

The source http://www.paintings.com does not contain any mapping rule whose
schema path matches variable’s � binding path (located at). Consequently we can only
obtain incomplete answers from this source: for an object created by Van Gogh, we do
not get the museum where it is located, nor its name and city. To get this information,
we identify the remainder subquery asking for ”the name and city of the museum of man
made objects”, that is, the subquery that involves the variables � , � , � , � , and process it
against the other sources. The variable � is included in the remainder subquery since it
is the join variable between the two queries. We will glue the results of the main and
the remainder subqueries by joining on � . The two queries are:

	 � � ��� : select � , c 	 � � 
 � : select � , � , c
from Person � , � .name 
 from Man Made Object � ,

� .carried out.produced � , � .located at � ,
� .has title � � .museum name � ,

where 
 = “Van Gogh” � .city �

There is one issue that needs to be considered here. The values bound to � are
elements which might be of different type. How do we know which elements represent
the same man made object? Here also the answer is the use of keys. If a key for man
made objects is available in the source http://www.paintings.com, on which the first
subquery was evaluated, and the same key is available in whatever source against which
the remainder subquery was evaluated, then a join can be performed. Otherwise, the best
we can do is to present to the user only the partial results from the first source. Note
that if such keys are available, then we can optimize the remainder subquery by first
evaluating the first subquery, then using the values bound to � , and the corresponding
keys to generate the remainder subquery for the other source. Obviously, this specific
query may return a very large set of answers, so optimization is called for. The issue of
optimization is described with other algorithmic issues in [3].

3 The Integration Model

In this section two issues are addressed: (i) we discuss the choice of ontology as the
integration data model : a user is presented with and poses queries on an ontology that
represents a certain domain of interest; (ii) we introduce the notion of keys as an essen-
tial feature for the querying and integration of data from heterogeneous XML sources.



9

3.1 XML Integration

Most previous data integration projects and the relevant theory were presented in the
framework of the relational model [26, 19, 22]. When the sources are relational, using
the relational model for integration has some advantages; in particular the same query
language can be used to define the source-global schema mappings. However, we are
concerned with sources that use XML.

Which model to use for the global data model in such a context is not an easy deci-
sion to make. An obvious question is “Why not XML?” Indeed, Xyleme [11], MIX [20],
Nimble [25] and Agora [21] use XML. Nimble and MIX employ the global as view ap-
proach (GAV) and are not directly comparable to our approach. The major advantage
of this approach is that the mediator is defined as a traditional view (query) on different
sources and user queries can be rewritten to source specific queries by unfolding the
view definitions.

However, as in Xyleme and Agora, we use the local as view (LAV) approach [18]
where this advantage does not exist and query rewriting becomes necessary.

In the Agora system [21] an XML global schema is used for the integration of rela-
tional and XML resources. This schema is represented by a generic relational schema
that faithfully captures the XML document structure. Then resources are represented as
relational views over this generic schema. User queries are XQuery expressions over the
XML global schema, which are then translated to SQL queries in terms of the generic
relational schema; these SQL queries that are evaluated by the sources. Although XML
is used as the global data model, an extended use of the relational model is made for
source-global schema mappings as well as for query rewriting.

Xyleme [11] defines a global schema as a simple XML DTD (called abstract DTD).
As in our approach, XML resources are described using path-to-path mappings where
absolute source paths (starting from the document root) are mapped to absolute paths
in the abstract DTD. Source paths and abstract paths can only follow descendant rela-
tionships. In addition, by using XML DTDs for the global user’s data model, it is not
possible to distinguish entities from relationships, which leads to less precise mappings.

Another usage of ontologies to access sets of distributed XML documents on a
conceptual level is presented in [15]. The integration is achieved by the assumption
that all documents respect a canonical DTD derived from the ontology. The expressive
power of XML and DTD grammars is compared to more powerful ontology models.

3.2 Conceptual Integration Model for XML

In the choice of an integration model, several problems have to be dealt with when
the sources are XML : two entities of the same type can be represented by two elements
with different structure even in a single source; different sources with the same structure
may use different tags; the structure of the same elements may differ between sources;
as aforementioned, a piece of data can be represented by an element in one source, an
attribute in another.

We use concepts to represent entity types. Each has a unique name; XML elements
from sources, with different tags, may be mapped to the same concept. Thus, a user
sees one concept name, and does not need to worry about the diversity of tags used in
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different sources. These are taken care by the mapping rules used by source authors
to describe their source in the mediator. Each entity type in the global schema has a
well defined structure. Sources may contain, for a corresponding entity type, only a
subset of the entities of that type and also only a part of the entity’s structure. This is
commensurate with the LAV approach.

One might argue that a global data model based on XML could as well correctly take
into account the above features [11]. In the following we briefly discuss the shortcom-
ings of XML as a user-oriented, conceptual, data model. For simplicity, the discussion
assumes DTD’s are used to describe XML. Although in the XML Schema proposal [16],
some of these shortcomings are partially solved, we believe that the following argu-
ments merit attention and also help for a better understanding of XML Schema.

Let us first state some nice properties expected from a conceptual model. Such mod-
els distinguish between entities (or objects) and values, that may be simple or complex.
Entities are related to each other by relationships, that may be constrained by various
cardinality constraints. Often, the relationships are symmetric. Entities also have at-
tributes that relate them to values. Entities are identified by keys. Finally, entity types
may be related by ��� � relationships, that emphasize commonality of structure. All of
these provide a user with a simple yet expressive model of a domain, with support for
visual presentation of schemas, and both declarative and visual query languages.

In contrast, XML is a hierarchical data model, in which most relationships are di-
rected from parent to child. There is no notion of a symmetric relationship, and unlike
the case in the ODMG standard, there is no notion of inverse relationship to represent
symmetry. Not all relationships in XML are hierarchical. The ID/IDREF mechanism
allows for horizontal relationships, and these may be one-to-one or one-to-many. Still,
these relationships are untyped and there is no mechanism that allows one to declare a
symmetric relationship, that is represented by a pair of directional links.

Attributes and relationships Conceptual models usually distinguish between attributes
and relationships. In XML there is a distinction between attributes, for which only a
single occurrence is allowed (but an attribute may be multi-valued!), and elements, for
which either one or any number of occurrences are allowed. However, there are no clear
guidelines when data should be represented in one of these forms and not the other. As
a matter of fact, it is well-known that XML serves two masters: the document com-
munity and the database community. The distinction between attributes and elements
is straightforward for documents: The sectional units of a book are represented as el-
ements. Extra information about the book, such as publication data, is represented as
attributes. This distinction, however, is quite meaningless for data. It is not clear at all
that the notions of attributes and elements in XML correspond to attributes and rela-
tionships in conceptual models.

�����
relationships Type inheritance described by � � � relationships - not supported by

DTD’s but introduced in the XML Schema proposal-, conveniently summarizes similar-
ity of structures. In a database context, these relationships also represent containments
of sets of entities. If Person � � � Actor, then if a query asks for actors with certain
properties, and a source offers information about Person, it makes sense, in the LAV
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approach, to generate a query on this source to retrieve the persons that have these
properties. These form a subset of the answer to the query.

In addition to its simplicity for representing common structure and its querying
power (a query can request information about a concept or a subconcept there of) this
feature also helps to overcome terminological differences between sources.

Symmetric relationships With XML, a symmetric binary relationship is modeled by
an asymmetric parent-child relationship between two elements. A source can choose
either of the two element types as being the parent of the other. For example, Painting is
a child of Painter in the source http://www.paintings.com. Another source might as well
choose to invert this relationship, so Painting becomes a parent of Painter. Of course,
binary relationships may as well be represented by the XML ID/IDREF mechanism.
However, as of today, there is no established methodology that directs XML authors
to generate XML documents in some normal form, in which entities are represented as
top-level elements, and relationships between them as horizontal references. A first step
in such a direction has recently been made in [6]. However, currently, in an integration
scenario, we have to accept all possibilities.

If XML was chosen as the global data model, and element nesting as the represen-
tation of relationships, this problem of inverse hierarchies between a global schema and
a source would force the use of the ancestor axis of XPath in mapping rules. This would
not only render the source description complex but also significantly complicate query
processing. Our symmetric representation of relationships, where each relationship has
an inverse, and either direction can be used, is much more intuitive. It also allows us
to view sources as simple hierarchies, whose description requires only the child and
descendant axis of XPath.

In summary, the use of a simple conceptual model for the global data model has the
advantages of simplicity and expressive power. While it can possibly be viewed as some
veneer for an XML-based data model, we believe that these advantages are significant,
and should not be given up.

3.3 Semantic Keys for XML

Keys are essential for data integration. In fact they are the only way to decide whether
two XML fragments of two different sources are identical or not when considered as
concept instances.

The XML resources we are dealing with are heterogeneous and autonomous. Con-
sider for example our two sources http://www.paintings.com and http://www.all-about-
art.com. The first source uses the ID attribute title to identify a painting (there might
not exist two paintings of the same title). In the second source, ID attributes are used
to identify museums and painters. Paintings are not identified by their title (there might
exist two paintings with the same title in the second source). So, two distinct sources
might provide us with different local key definitions and, for integration, we have to
define keys at the global schema.
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Key paths and identity We define a key on concept � as a set of role paths with source
� , called key paths. While, in general, a concept may have zero, one or more keys, we
assume for simplicity that each concept has exactly one key, denoted �
��� � � � . Observe
that the key of a concept might be empty, which means that instances of this concept
cannot be identified. We also assume for simplicity that isa-related concepts all share
the same key.

For example, persons and actors are identified by their names : �
��� (Actor) =
�
��� (Person) = ��� � � � ��� �
	 . The key of concept Man Made Object is � has title,
produced by.carried out by 	 , which means that man made objects are identified by
their title and the artist who produced them. Instances of concept Activity are not iden-
tifiable : �
��� (Activity)= � .

Calculating key values In order to decide whether two instances � and 
 of some
concept � are identical, we have to calculate and compare their key values. These values
can be obtained by considering � ��� � � � as a key query evaluated on � and 
 . If all key
paths �
��� � � � are attribute paths, this query simply follows all key paths starting from the
corresponding instance. In the case of key paths ending in some concept, the query is
obtained by replacing all target concepts by their key queries. For example, the follow-
ing key query returns the key value for some instance of concept Man Made Object
represented by the variable � :

select


, �

from � .has title


,

� .produced by.carried out by � ,
� .has name �

A concept � is a joinable concept if and only if it has a non-empty key and all
concepts ��� which are the target of a key path in �
��� � � � are joinable concepts. It is easy
to see that key values can only be calculated for instances of joinable concepts (our
notion of joinable concept is very similar to the notion of value-representable concept
in [23]).

As in [2] and other semi-structured query languages, we assume that all attributes
and roles in the global data model may be multi-valued and optional. This means that
the result of a key query (the key value of an instance) is a set of tuples and we have the
choice of defining the identity of an object by the whole set of tuples or just one tuple.
As in most semi-structured query languages, we have chosen the second solution and
define two fragments to be identical, if their key values are not disjoint.

Like user queries, key queries have to be rewritten w.r.t. the corresponding source
mapping. This rewriting consists essentially in replacing schema paths by the rules’
location paths that can be applied to some XML fragment of the source (similar to
XML keys as defined in [9]). There might exist zero, one or several such rewritings
which only return a subset of the “complete” key value (it is for example possible that
our two sources identify the same artist by two different names). In other words, by
the LAV approach, we might miss some tuples of the real key value of � in order to
conclude that � is equal to some other instance 
 .

Observe that, unlike user queries, a key query is issued against a single source. If
we do not obtain a complete binding for a source (i.e. some variables are not bound),
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key queries are not decomposed. We will end our discussion about keys with one other
issue concerning the rewriting of key queries.

An existing mapping might not allow the system to find the instances of some con-
cept � but be sufficient to find the key values of these instances. For example there might
be no rule for binding path � .produced by.carried out by � of the previous key query,
but some other rule returning the name of the artist who has produced the artifact.

In this case, the key query might be unfolded by replacing all key paths � with target
concept ��� by the set of paths � � � where � is a key path in �
��� � ��� � . The previous key
query would then be rewritten into the following query :

select


, �

from � .has title


,

� .produced by.carried out by.has name �
Observe that this rewriting is correct since the key of the replaced concept contains

only one key path. If an artist would have been defined by a first name � and a last
name � , unfolding would have relaxed the condition that � and � correspond to the
same person.

4 Conclusions

This paper addressed the problems encountered, and the design choices made in the
context of the integration of heterogeneous XML sources in the C-Web project. In par-
ticular we justified our choice of an ontology instead of XML as the mediator data
model, and discussed the benefits we draw out of it.

In the context of the semantic Web, an applicable data model that could be used
to represent our ontologies is RDF Schema [8] or DAML+OIL [12] which define all
(DAML+OIL) or almost all (RDF Schema lacks the notion of inverse roles) the prop-
erties that we have identified to be necessary in the context of XML data integration.
Authors in [24] advocate the need to develop a unified model for XML and RDF in
order to bridge the gap between the syntax (XML) and the semantics (RDF) for Web
applications. Our approach fits well into their context.

Another important problem raised by our cultural application example, is the ex-
ploitation of semantic metadata. By this, we denote information concerning the con-
tents of a source, that is not present in the actual data, and thus cannot be represented
by the source-global schema mappings. As far as we are aware of, all data integration
projects, assume that all the information necessary for query processing is available in
those mappings. The presence of other semantic metadata can be taken into account in
our system in two different ways : first, to process queries that request information that
is not present in the actual data and, secondly, to filter the sources which do not sat-
isfy the query conditions before starting the rewriting process. We are working towards
the choice of a language to define such semantic metadata, as well as an algorithm that
exploits the metadata as well as the source-global schema mappings for query rewriting.
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