
1

Processes and tools for sound design

in computer games

V. Gal*, C. Le Prado*, J.B. Merland+, S. Natkin*, L. Vega*

* CEDRIC/CNAM, + Cryo interactive

1 Abstract

This paper is a survey of the process and technology used in sound design for video games. The first part of the
paper addresses the general state of the art in the design of video games: market and technology constraints,
production process, game design and level design practices, game engines. The second part is devoted to the
sound aspects of games: sound components, interactive composition, sound engines. We analyze the probable
evolution of this technology from mixed recorded sound to generative composition. As a conclusion we discuss
how sound designers who are not interested in video games can use the game technology and, reciprocally, what
game designers can gain from the development in other fields of interactive music.

2 Rationales

In 1999 the CNAM (Conservatoire National des Arts et Métiers), the Universities of La Rochelle and Poitiers in
collaboration with IRCAM (Institut de Recherche et Coordination Acoustique/Musique) and the CNBDI (Centre
National de la Bande Dessinée et de l’Image) decided to create a new postgraduate training in video game design
and development. To define the contents of this training, the authors of this paper interviewed representatives of
all the main activities involved in the game industry. This work was completed by a bibliography analysis. This
paper is a survey of the result of this work in the field of sound design. To understand the specific features of
sound design in video games, it is necessary to presents general aspects of the game industry design process and
technology. The first section of this paper is devoted to this subject. In the second part we focuss the presentation
on sound design and the possible evolution of the sound technology is the subject of the last section. The
conclusion addresses the relationships between sound design in games and other fields of interactive music.

3 Game industry state of the art

3.1 A few words about the game industry

The computer game industry is one of the most important fields of the interactive multimedia industry. A 21.1
Millions $ revenue is forecasted in 2003 [Gal 02]. The market is split between PC and console games (PS, PS2,
Xbox, GameCube…) with two special cases: game for small console (Gameboy, Palm.) and Online persistent
games (like Everquest), which are sold on a subscription basis.

In the last twenty years game editors and distributors were generally also producing most of their products and
developing the software tools used in games. There is an increasing trend to separate, like in more classical
audio visual fields, these three domains into editing company, studio and specialized software editors.

Console manufacturers are the great winners of the game industry: each time a console game is sold, the
manufacturer gets royalties. Moreover the console manufacturer controls the game design and development.

2

3.2 Writing for games

3.2.1 Introduction

Writing for games is a rather difficult task. Of course it is an interactive composition and, as in other fields of
open work, the author must leave a controlled freedom to the player. But, in the opposite of the art installation
field or interactive music composition, the game industry is driven by marketing goals. Game is mainly
entertainment, hence the player must solve non trivial but not too complex problems, leading to a succession of
goals in a reasonable amount of time. The player must feel an open interactive work, but should be driven to the
game solution. To solve this paradox the game industry has invented several techniques derived from game
theory and object oriented specification, which are summarized in this section.

3.3 Game design and level design

A game is first and foremost an imaginary universe. Then the first step of the game specification is to define the
main aspects of this universe: Era and style, context of the game, goal to be reached, main types of objects
involved, user perception of the game… This part of the game definition is called the game design.
We will consider two opposite examples. In the game Black and White, the player is a God of a small world. His
main goal is to be recognized and honored by his people. To reach this goal he can be a good God, helping
people in their life or a kind of devil, known for his cruelty. The objects of the game are, for example, the
representation of the God (a hand), the people classified by sex and profession, the animals, the houses and
monuments, the materials to built house and monuments. There is also a good and a bad angel which are an on
line help … Other objects are used as elements of the staging, for example virtual camera allowing several point
of views of the same scene (first person, third person)…
On the other hand consider a car racing game such as Gran Turismo 3, in this case, the objects are the set of car,
which can be used, the elements of possible racing circuit…

In both cases objects have numerous attributes: geometry and appearance, variable parameters (strength, speed,
robustness), type of actions allowed on the object (move right, jump, ring, explode…)…In term of sound design
the nature and characteristics of all sound sources are defined at this level. It can be associated with a given
object (sound produced by the heroin when she is swimming), or an object by itself (Environmental sounds and
music). For example each possible car is associated with a motor sound. The ability to alter this sound as a
function of the car speed is also specified at this time.

Next steps of the game specification are called level design. A level of the game is a combination of a virtual
space, a set of puzzles to be solved in this space, the main actions to be done by the player to reach a given goal.
Generally the level is first defined by the geometry of the space: a given maze, a race circuit. It is possible, if the
game uses a 3D sound engine, to specify the acoustic characteristics of each room in the space.

Then the level designer chooses the positions and actions associated with the objects in this level. The goal is
either implicit (win the game on this circuit) or explicit (find three elements of a totem to open a gate). In both
cases the player is conducted by an implicit scenario, which limits the number of possible effective actions. In
Black and White, he can move everywhere in the universe, but the pieces of the puzzle to be solved are well
positioned and easy to find (at least for the first levels) to determine a quasi-linear sequence of actions. In the car
game, you must follow the circuit until the end of the race!
To keep the sensation of freedom, several solutions are used: first, a set of independent actions can be performed
in any order, in more complex games the player can pursue, in the same space, several games in parallel. This is
the case in Black and White, where the player (God itself) can have at any time a look to the level of
achievement for each task (and rest on the seventh day!).

3

3.4 Games engines and game platforms

Several companies (Infograme, Darkworks, Virtools…) have developed a programming environment, which
allows to develop the game according to the previous steps. Objects specified in the game design are
implemented by the programmers and the team of graphic artists as classes in an object oriented library using all
the facilities of object oriented programming (heritage, polymorphism…). The level designer defines the
geometry using a standard 3D tool such as 3ds max or Maya. A scripting language is then used to specify the
level in term of objects in the space. In an ideal world tools like Direct Music producer should be used to define
the interactive composition and EAX for sound spatialization. In practice, like for other audiovisual media,
sound design is the last piece of the chain.

The implementation of a game relies generally on software called a game engine. A game engine is first a set of
software libraries. Each library performs a set of functions needed to code the dynamic and interactive behavior
of the game. General purpose game engine includes a 3D graphic engine used to code interactive animation, a
sound engine which includes sound synthesis, effect and spatialization functions and more specific libraries like
Artificial Intelligence engines used to code the gameplay and physic engines used to simulate physical systems
(like cars for example).

Architecture Levels Examples
Level design scripts editors God.move(right, 2);Wait_Event;

On button.click God_Anger:=new(thunder)
God_Anger.lightning, God_Anger.sound

Game classes class thunder
methods: lightning , sound

Game engine library: general purposes game oriented
libraries

Graphic
engine

Sound
engine

Physic
Engine

IA
engine

Create_new_object(God, god_geometry.vrml,
god_texture.gif,god_voice.wav)

General purpose multimedia libraries
(Direct X, Open GL, Open AL…)

GlMatrixMode(); alsourceplay(source1)

Operating system Windows, PS2 Monitor…
Hardware

Central
Processor,
memory…

Graphic
accelerator

Sound card PC, PS, GameCube, XBox

When a collection of game relies on the same universe (Ubi Soft Ray Man games, for example) the studio can
define a specific game engine at the game classes level.

 In several game engines there is also a software monitor which schedules events defined by the level design
script either on a synchronous mode or asynchronous mode. On console platforms the synchronous monitor
approach is almost always used. On PC (as Windows 95,98… are highly asynchronous operating systems) the
asynchronous approach is possible.

Synchronous Monitor Asynchronous monitor
Cycle

reset timer
read the game pad inputs,
compute the next state
 sound and image synthesis
wait for time out

end cycle

wait for game pad input or time out
compute the next state
 sound and image synthesis
reset timer

The use of portable game engines1 allow to minimize the work to be done to create multiplatform games. The
Criterion engine2 is a typical example of game engine. It contains a 3D Graphic engine, a sound engine
originated from Sensora, a Physic engine originated from Karma and an IA engine. A game developed with

1 http:// 3dgraphics.about.com/cs/gameengines/
2 http://www.renderware.com/

4

Criterion game engine can be, in principle, ported on PC, Xbox and PS2 consoles. In practice the differences
between the hardware of platforms induce to adapt, even in certain cases change, the design of games.

An other main point is the percentage of the CPU time allocated to the different functions.. Image synthesis is
the most expensive function. This is the consequence of a marketing constraint (The quality of the game is often
considered from the graphic point of view, in particular the level of detail related to the number of polygons
generated for each frame) and a technical goal: the frame refreshment rate must be at least 30 frames/s. Several
console manufacturers require that any game edited on the console have frame rate up to 60 frames/s.

This problem must also be considered from a hardware point of view. Gamers PC may rely on a wide number of
processors, graphic accelerators, sound boards… A game designed for a PC must adapt its behavior, and in
particular the graphic quality to each configuration. Such a property of the game code is called scalability. On
the opposite in a console the hardware is fixed and less powerful than the one of expensive game oriented PC
configuration.

Platform Graphics Sound IA and other
PC (game configuration) 60 30 10
Console 75 15 10

Typical percentage of relative CPU consumption by functions in a game

Hence a game scheduler is generally defined to allow the time according to various level of importance: Graphic
is a periodic task with high bandwidth, sound is a periodic task of low bandwidth, other functions are considered
as asynchronous tasks with various priorities.

4 Sounds in Games

4.1 Game sound design

Sound Design for games follows generally the process described in the previous chapter. Principles of the sound
design are defined during the game design phase. Unfortunately the sound is generally integrated in the game at
the end of the realization, when the whole interactive graphic part is finished. Generally the sound designer has
to prepare his elements without being able to test them before this step of the process.

The main goal of sound in most games is to increase the feeling of immersion. Hence ambiance sound and music
are generally a main focus of this work. The diversification of foley effects is also important to avoid boring
feeling of repetition due to short loops of music. More and more often, spoken dialog between games characters
are used. There is a usual recording work, then voices have to be transformed according to ambiance and
acoustic considerations. There is a trend to use real time transformations in the two last cases, at least on PC
games. The most difficult work in the composition of music for games is the design of transitions. Music and
ambiance sound rely on small recorded or midi files loops. When the player moves from a scene to an other or
on interactive events, the sound must move from one set of loops to an other. There are no general rules to
design transition, but basic music modulation principles and the use of continuous parameter transformations
seems to be a good basis of thought [Harland00]. Many games use non-interactive animations, called
cinematics, to present the narrative aspects of the game. This part of the sound design is similar to the work done
in the classical audio visual field.

4.2 A short history of sound technology for games.

From a simple point of view, one can consider three ages of sound technology in games.

The first generation is related to games which support is ROM cartridge, like Nitendo NES or Gameboy games.
In this case the sound design is both constrained by the lack of storage and computing power. Sound dedicated
hardware is a rather poor midi FM synthesizer. The sound designer may use a small set of recorded sounds with
a low sampling rate and a poor quantification level. So most of the sound design is a composition playing with,

5

in the best case funny and generally irritating, sound and music loops stored in the cartridge as midi files and
played by the synthesizer.

The second generation corresponds to the status of games on consoles like PS1 and PS2, Sony Playstations. In
this case there is place available on the CD or DVD to store good quality recorded sounds, the console can offer
a wave table synthesizer and a rough 3D sound generator. The sound design is still limited by two main factors:
As it was pointed out in the previous section, there is a little percentage of the processing power which can be
used by sound real time effects, moreover the RAM allocated to samples is still limited. For example a PS2 can
deal with 48 channels of 16 bits audio at a sample rate of 48Khz and has access to 2MB of dedicated RAM.
Hence the composition is a mix of recorded music treated as a continuous stream in non interactive animations
or dialogues, recorded short loops used in the ambiance music, recorded or generated foley effects with a very
simple real time treatment. Games like Woody Woodpecker, Gran Turismo 3, Jack and Dexter, Silent Hill 2 give
interesting examples of several kinds of sound design in this context.

The next version of technology start to be used in games on the latest (2002) PC generation. In this cases, even if
the sound is still a long way from images, there is much more power left to sound synthesis and sound cards, like
Creative Soundblaster, includes efficient DSP processors and are able to perform in real time complex sound
effect as 3D localization and reverberation. Hence there is a trend to replace a part of recorded by real time
generated sounds and music. This will allow, for example, altering voices or foley effects according to the game
context. This evolution is still limited by compatibility goals (a game is designed for several platforms and not
only the most powerful PC), the lack of investment for sounds in game production, and the lack of interactive
composition tools and good game sound engines. This last point is discussed in the next section.
It is also interesting to point out that this evolution from recorded to generative built objects can also be observed
in the image synthesis field. The reader is invited to hear, for example, the sound of Rez, Black and White, Alien
vs. Predator games.

4.3 Example of tools

In this section we present briefly three tools mainly designed for the sound design of games, which represents the
evolution of this technology.

OpenAL (Open Audio Library) [OpenAL 01] is a standard API for sound programmers. It was mainly defined to
offer a portable alternative to the sound part of Microsoft DirectX API (DirectSound). OpenAL principles where
derived from existing API and the widely used OpenGL graphic API. OpenAL has been implemented on all
major home computer operating systems, and several studio has an OpenAl implementation for consoles.
OpenAL allows to describe the main sound aspects of a virtual 3D scene (sound sources characteristics, room
acoustic, listener positions) and to program the evolutions of these elements in the coding of a game. It includes
calls to sound effects to alter in real time audio streams. It contains also the functions to handle audio sample and
play them. Up to now it does not include synthesis function (like DirectMusic). OpenAL is a significant example
of the need for portable libraries in the game audio field.

EAX is a technology developed by Creative Labs [Jot 01]. It is first a set of sound 3D and spatialization
functions (low level audio rendering API), which includes OpenAL. It is also an authoring tool (EAGLE) for the
design of a game acoustic. The sound designer starts to work with the geometric description of a game level. It
can be a 3D scene scheme generated by a software modeler (Discreet 3ds max for example). The sound designer
uses a graphic interface to describe the acoustic of each room and occlusion between rooms. This description
generates a binary description, which can be included in the game program. The game programmer can then
access to this data structure through a library. It passes, as parameters, the current positions of sound sources and
the listener. It gets, as output parameter, the EAX functions and parameters that have to be called to get the best
3D sound positioning and acoustic.

DirectMusic Producer [Hays 98] is a tool for interactive composition designed by Microsoft. It relies on the
DirectMusic API, which is the musical component of Direct X. DirectMusic includes general MIDI and more
general functions oriented on generative music composition. It supports the DLS (DownLowdable Sound
standard) for wavetable synthesis. DirectMusic producer is a graphical interface, which allows to define complex
composition styles, which evolve according to real time events. A style is composed by three kinds of elements:
Bands, Motifs and Patterns. The pattern editor is the key of the interface and is also a limited MIDI sequencer. A
pattern includes all the elements of a music style (mainly harmony principles) according to score and MIDI
parameters. The composer is able to derive, from a given pattern, a set of variations, which can be used randomly

6

or according to events handling. A pattern is applied to a counterpoint element called the Motif. Many Motifs
can also be derived for a given one by simple transformations. The combining of a Pattern and a Motif leads to a
score. The Band specification is the interface to specify a set of possible orchestrations. Then Direct Music
Producer allows you to bind combinatorial choices between these three elements to game events. Although
Producer is based on a classical compositions scheme, it can be used in many other ways to define almost any
kind of interactive sound generation. The main criticism made to DirecMusic Producer (apart from being a
Microsoft standard), is its complexity.

5 Conclusion

In the last section we have presented some advanced tools for the sound design in the computer game field. In
most of the game studios, in the best case, these tools are under investigation. Most of the sound for games, even
for PC, are still developed using very limited sound API. Even in DirectMusic Producer, there is no facility to
edit graphical patches like in Max MSP or JMax for example. Game sound engines are far from the real time
sound tools used in other field of interactive composition (such as IRCAM FTS for example) [Dechelle 98].
Moreover, sound effects used in games are still rather limited to the standard MIDI. There are some technical
reasons for such lacks, in particular the hardware limitations of sound boards and processing power available.
But it will probably quickly evolve in the next years, and we think that it is important for the game community to
look at what has been done in other fields. In the opposite, the game industry has already realized powerful and
very cheap tools and sound restitution environment. We think also that composers, sound artist and even
audiovisual sound designers can take advantage of all these developments. For example, we are working on the
implementation of the sound installation presented in [Natkin01] (a virtual reality sound system based on mobile
computers), using the EAX technology on laptop computers.

The design process in games leads to an interesting point of view for interactive composition. DirectMusic
Producer relies on very classical musical schemes. In the opposite, one may think to start from the object
oriented approach of game design to define a paradigm for interactive composition. Instead of harmony and
counterpoint schemes, sound objects defined as audio sources or reflectors with interactive behaviors and
environmental characteristics can be the starting point of a composition. The next step of composition is the
equivalent of the level design. Sound objects are located in a 3D universe (real or virtual). The freedom left to
the listener in his navigation through the space determines the openness of the compositions. This point of view
is not quite new: electro acoustic music have taken, a long time ago, the sounds object point of view and the
composition for sounds installations [LePrado 02] is often related to this process. But the game design paradigm
includes in a structured way these schemes and allows controlling the interactivity effect. It may lead to new
authoring tool for interactive composition.

Acknowledgments

We would like to thanks Jean Marc Jot for his comments on the last version of this paper

6 References

[Dechelle 98] Dechelle, Francois, Riccardo Borghesi, Maurizio De Cecco, Enzo Maggi, Butch Rovan et Norbert
Schnell, "jMax: a new JAVA-based editing and control system for real-time musical applications", ICMC:
International Computer Music Conference, Octobre 1998.

[Gal 02] V. Gal, C. Le Prado, S. Natkin, L. Vega, Processus et outils utilisés pour la conception et la réalisation
des jeux vidéo, Rapport CEDRIC, A paraître, juin 2002

[Harland 00] "Composing for interactive Music", Gamasutra, Feb 2000,
http://www.gamasutra.com/feature/20000217/hartland_01.htm

[Hays 98] T. Hays, "DirectMusic for The Masses", Gamasutra, Nov 1998, Vol2, N44,
http://www.gamasutra.com/feature/sound_and_music/

[Jot 95]Jot, Jean-Marc et Olivier Warusfel, "Spat~ : A Spatial Processor for Musicians and Sound Engineers",
CIARM: International Conference on Acoustics and Musical Research, Mai 1995.

7

[Jot 01]J.-M. Jot. "Perceptual and Statistical Models for Virtual Audio Environments". Proc ACM workshop on
Acoustic Rendering for Virtual Environments, Salt Lake City, May 2001.

[Le Prado 02] "Sound Installation and spatialization" To appear in Women in Art and Technology, MIT Press
2002

[Merland 01] J.B. Merland. "Le son dans les jeux vidéo", document Cryo et cours CNAM,
htpp://deptinfo.cnam.fr/Enseignment/DESSJEUX/

[Microsoft 02] "DirectMusic", Microsoft Documentation, http://msdn.microsoft.com/library/

[Natkin 01] S. Natkin, A. Topol, F. Schaeffer, Functional Specification of a Distributed and Mobile Architecture
for Virtual Sound Space Systems, ICMC 2001, La Habana, Sept 2001

[OpenAL 01] OpenAL Specification and Reference, Loki Software,
http://www.openal.org/snapshots/openal/docs/

[Rollins 00] A. Rollins, D. Morris, "Game Architecture and Design", Coriolis Ed, 2000

[Weske 00] J. Weske, "Digital Sound and Music in computer games",
http://tu-chemnitz.de/phil/hypertext/gamesound/

Games

Rayman, Ubisoft, 1995 (PS1)

Gifts, Cryo 2000 (PS1)

Woody Woodpecker, Cryo, 2001 (PS2)

Silent Hill 2, Komany 2001 (PS2)

Gran Turismo 3, Sony, Polyphony Digitals, 2001(PS2)

Jack and Dexter, Sony, Naughty Dog, 2001 (PS2)

Metal Gear Solid 2, Komany, 2002 (PS2)

Rez, UGA, 2001 (PS2)

Black and White, Electronic Arts, Lionhead Studio, 2001 (PC)

Alien vs Predators, Fox Interactive, Sierra, 2002 (PC)

