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Abstract: In this work we analyse the effect of missing data in hierarchical classification of variables according to
the following factors: amount of missing data, imputation techniques, similarity coefficient, and aggregation criterion.
We have used two methods of imputation,  a regression method using an ordinary-least squares method and an EM
algorithm. For  the similarity matrices we have used the basic affinity coefficient and the Pearson’s correlation
coefficient. As aggregation criteria we apply  average linkage, single linkage and complete linkage methods. To
compare the structure of the hierarchical classifications the Spearman’s coefficient between the associated
ultrametrics has been used. We present here simulation experiments in two multivariate normal cases.
Keywords: Missing Data, Hierarchical Cluster Analysis, Affinity Coefficient, Pearson’s Coefficient, Spearman’s
Coefficient, Ultrametric, OLS method, EM Algorithm.

1 Introduction
The missing data problem has been dealt in a large number of papers and books where several

methods to minimise missing data effect have been developed (Rubin(1974), Rubin(1987), Little and
Rubin(1987), Dempster, Laird and Rubin(1977), Orchard and Woodbury(1972), Beale and Little(1975)
among others).

When one wants to classify variables, for instance in marketing analysis and social sciences, one
frequently finds missing data. We are interested in analysing the effect of missing data in some particular
(originally complete) hierarchical classification structures of variables, as well the results of imputation
methods in those cases.

In the present work we consider hierarchical clustering models based on two similarity coefficients –
basic affinity (Matusita(1955),Bacelar-Nicolau(1988)) and Pearson’s correlation - and three classical
aggregation criteria. We use two types of imputation methods in simulation studies with different
percentage of missing data at random. The data are issued from multinormal populations (Saporta(1990)).

2 Hierarchical cluster analysis

In this work we are interested in the classification of variables. We use the following hierarchical
aggregation criteria as defined in Anderberg(1973):
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where A and B represent two clusters and c is a similarity coefficient between two variables (Xj , Xj’ are
( 1×n ) variables ) which can be one of the two following:
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as defined for instance in Bacelar-Nicolau(1988, 2000).

                                                                
* This work has been partially supported by the Franco-Portuguese Scientific Programme VECEMH (Embassy of
France and Portuguese Ministry of Science and Technology – ICCTI) and the Multivariate Data Analysis research
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In order to compare hierarchical classification models, we will use the Spearman’s coefficient
between the ultrametic matrices, based on pairs of observations with the usual correction for ties.

3 The missing data – MAR
The data are said that missing at random if its missingness does not depend of the values assumed on

the variables having missing values, but depends on the values observed in other completely observed
variables. The expression of the general notion of MAR can be then written
as: ( ) ( )obsXRobPrmisX,obsXRobPr = , where obsX represents the observed values of Xn×p, misX  the

missing values of Xn×p and [ ]ijRR =  is a missing data indicator, 
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4 The imputation methods
An ordinary least square regression method (OLS) is used: XY 21 ββ +=  is defined as usually,

21 ββ ,  are estimated over the observed values of the dependent variable, obs'XobsX 21 ββ +=  ( obsX ′  is
a “sample” of X corresponding to the observed values of X – obsX ) and then the missing values of X

( misX ) are imputed by the regression on misX ′  (those are observed values corresponding to the missing
dependent values of misX ) under the estimated model mis'XmisX 21 ββ += .

An EM algorithm has been used as follows:
At the E step of the algorithm (at the tth iteration),
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“The E step imputes the best linear predictors of the missing values, using current estimates of the
parameters available so that a suitable choice can be made. It also calculates the adjustments cjk to the
estimated covariance matrix needed to allow for imputation of missing values” Little and Rubin(1987)
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We consider the missing values only over a dependent variable.

5 Numerical Experiments
In order to study the performance of the affinity and the Pearson’s correlation coefficients as measures

of similarity between variables, in hierarchical classification and in presence of missing data, we use here
the three classical hierarchical clustering methods AL, SL and CL: in the cases of complete data; in MAR
case - 10%, 15% and 20% (over the total of the data – each 1000×5 matrix); and when the missing data
are filled-in using the two imputation methods as mentioned in 4..

One hundred samples have been generated of each type of simulated data set, from two normal
multivariate populations:

Case A: (( ))
111 ΣΣµµ ,~X ℵℵ  and Case B: (( ))

222 ΣΣµµ ,~X ℵℵ , such as X1  and X2 are 1000×5 matrices .

The values of the variance-covariance matrices have been chosen with the aim of obtaining specific
hierarchical structures as following:
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In order to have missing data at random MAR we have deleted (10%, 15% and 20%) values at random
from variables X1 and X2 .

In the following we present the results of the simulations, respectively in cases A and B, by increasing
order of the percentages of missing data (MD), according to the similarity coefficients, the agglomerative
methods and the imputation methods. In each case we compare the ultrametrics associated to the
originally complete data with the ultrametric matrices associated to the incomplete and the reconstructed
data respectively.

The comparison between  ultrametrics is obtained using a 5% Spearman’s bilateral test  (the critical
value is 6480,s'c = , see for instance Saporta (1990)).

In presence of MD, the classification is obtained by a pairwise method i.e. we have only considered
for the analysis the complete rows (by eliminating the rows with MD).

In analysis of cases A and B, 1=sc , s'csc > , s'csc < mean that:
1=sc , the general “structure” of the two hierarchical classifications being compared is the same, that

is the two associated ultrametrics are “ordinal equivalent” (each pair of ranked trees give the same
“ordinal” structure).

s'csc >  the two hierarchical classification structures are not the same, but the two ultrametrics are
”significantly correlated” (at 5%).

s'csc <  the two hierarchical classification structures are “significantly different”

The percentages of cases 1=sc , s'csc >  and s'csc <  are also indicated in each cell of the tables.

Case A
All the simulated complete data reproduced the same general hierarchical structure (see dendrogram

above, Fig. 1) using both coefficients - Affinity and Pearson’s correlation – and the three hierarchical
methods, AL, SL and CL.

Next table describes the results obtained in presence of MD:
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Affinity coefficient  Pearson’s coefficient
MD AL SL CL AL SL CL
10% 100% 1=sc 99% 1=sc

1% s'csc > *

100% 1=sc 5% 1=sc

95% s'csc <

49% 1=sc

51% s'csc <

100% s'csc <

15% 100% 1=sc 96% 1=sc

4% s'csc > *

99% 1=sc

1% s'csc >

5% 1=sc

95% s'csc <
41% 1=sc
59% s'csc <

100% s'csc <

20% 100% 1=sc 87% 1=sc

13% scsc '> *

100% 1=sc 2% 1=sc

97% s'csc <

21% 1=sc

69% s'csc <

100% s'csc <

*with chain effect  Table 1.

After using both imputation methods, results are:
Affinity coefficient Pearson’s coefficient

ID** AL SL CL AL SL CL
10% 100% 1=sc 100% 1=sc 100% 1=sc 98% 1=sc

2% s'csc <

100% 1=sc 98% 1=sc

2% s'csc <

15% 100% 1=sc 100% 1=sc 100% 1=sc 94% 1=sc

5% s'csc >

1% s'csc <

96% 1=sc

4% s'csc >

95% 1=sc

4% s'csc >

1% s'csc <

20% 94% 1=sc

2% s'csc >

4% s'csc <

94% 1=sc

2% s'csc >

4% s'csc <

94% 1=sc

2% s'csc >

4% s'csc <

21% 1=sc

58% s'csc >

21% s'csc <

21% 1=sc

58% s'csc >

21% s'csc <

21% 1=sc

58% s'csc >

21% s'csc <

**imputed data Table 2

Case B
As in case A all the simulated complete data, using both coefficients and the three hierarchical

classification methods produced the same general hierarchical structure (see dendrogram above, Fig. 2).
Next table describes the results obtained in presence of MD.

Affinity coefficient Pearson’s coefficient
MD AL SL CL AL SL CL
10% 100% 1=sc 100% 1=sc 100% 1=sc 100% 1=sc 89% 1=sc

11% s'csc >

100% 1=sc

15% 100% 1=sc 100% 1=sc 100% 1=sc 100% 1=sc 50% 1=sc

50% s'csc >

100% 1=sc

20% 100% 1=sc 100% 1=sc 100% 1=sc 100% 1=sc 69% 1=sc

31% s'csc >

100% 1=sc

Table 3

Results after using the imputation methods are:
Ordinary least squares method

Affinity coefficient Pearson’s coefficient
ID AL SL CL AL SL CL
10% 100% 1=sc 69% 1=sc

31% s'csc >

100% 1=sc 99% 1=sc

1% s'csc >

92% 1=sc

8% s'csc >

99% 1=sc

1% s'csc >

15% 100% 1=sc 17% 1=sc

83% s'csc >

100% 1=sc 99% 1=sc

1% s'csc >

41% 1=sc

39% s'csc >

99% 1=sc

1% s'csc >

20% 79% 1=sc

21% s'csc >

3% 1=sc

97% s'csc >

99% 1=sc
17% 1=sc

12% 1=sc

88% s'csc >

3% 1=sc

97% s'csc >

12% 1=sc

88% s'csc >
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Table 4

EM method
Affinity coefficient Pearson’s coefficient

ID AL SL CL AL SL CL
10% 98% 1=sc

2% s'csc >

81% 1=sc

19% s'csc >

98% 1=sc

2% s'csc >

93% 1=sc

7% s'csc >

70% 1=sc

30% s'csc >

93% 1=sc

7% s'csc >

15% 58% 1=sc

42% s'csc >

14% 1=sc

86% s'csc >

95% 1=sc

5% s'csc >

91% 1=sc

9% s'csc >

49% 1=sc

51% s'csc >

94% 1=sc

6% s'csc >

20% 75% 1=sc

25% s'csc >

8% 1=sc

92% s'csc >

80% 1=sc

20% s'csc >

31% 1=sc

69% s'csc >

1% 1=sc

99% s'csc >

31% 1=sc

69% s'csc >

Table 5

6 Conclusions
In both studied cases A and B the affinity coefficient performs better than Pearson’s correlation

coefficient in presence of data missing at random.
Better results are obtained in presence of MD, than after the application of both imputation methods.
When using the imputation methods in case A both imputation methods gave the same results, and

also that the affinity coefficient performs better than the Pearson’s coefficient. In case B the results are
different when using the two imputation methods, and the least squares method performs better  for the
AL and CL models.

 In the “worst” situation of 20% of missing data and filled-in data, the affinity coefficient performs
always better than the Pearson’s coefficient.

The following developments of this work are related to other similarity coefficients and hierarchical
structures, namely concerning a probabilistic classification approach, and different types of missing data
and imputation methods.
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