
Enhancing sound description in VRML

Alexandre Topol, Florent Schaeffer

Centre d’Etudes et de Recherche en Informatique
Conservatoire National des Arts et Métiers

email: {topol, schaeffer}@cnam.fr

Abstract
Sounds in VRML are spatialized (i.e. located in space) but
no room effects can be described to make them more
realistic. In this paper we present a solution we have
implemented for extending the simple sound management
within a VRML browser. The first aspect is the description
of sound related materials in VRML format using new nodes
and fields. We describe the different elements we have
introduced for dealing with a 3D perceptual sound
simulator. Those adjunctions were made by looking at the
likeness and differences of the description and the
computation of 3D visual and 3D audio worlds. It appears
that only one type of sound source is needed as well as some
material properties for the polygons. These material
attributes for sounds are added in order to achieve some
simple occlusion effects. The second aspect is the
implementation of this audio-enhanced VRML browser. We
present the tool we have implemented to evaluate this work.

1 Introduction
Visual augmented reality has become since few years a

powerful way to enhance the comprehension of digitalized
moving pictures of the real world. Card, Robertson, and
York (1996) have shown that 3D graphical information can
be perceived by the human perceptual system rather than
being analyzed by the cognitive processor. We think that the
expressive power of an audio augmented reality can also
help users to perceive information instead of analysing it.
For example, it makes it possible to recreate sound effects at
the controller’s console in power plants. With this virtual
audio information, special agents called “golden ears” can
supervise and control the production process. The most
important thing is that they don’t have to go to an unsafe
area in order to listen for suspicious sounds.

As stated by Natkin (2000), an audio augmented reality
system can also be used to provide synthetic sounds in a real
space. In this particular case, users positions are given by
three coordinates provided by wearable devices (head
mounted for example). These coordinates are then used by a
software that is able to compute in real time the binaural
sounds to send to users. In such systems, different aspects
must be studied carefully :

- how to represent the virtual world,
- how to localize users,
- how to send the audio data,
- how to distribute the computation according to the

number of users and to the shape of the virtual world.
On the other hand, 3D sound spatializers can enhance

the comprehension of 3D animations (Herder 1997). The
standard audio equipment of today’s PC can produce
immersive sounds at a real time rate like graphics hardware
can accelerate the 3D pipeline that renders scenes. We
believe like Tsingos and Gascuel (1997) that sounds are
essential to enhance the visual experience and should fit
what is seen. However, most of the time, 3D toolkits and
file formats do not include an audio description part. When
they do, most of them use a poor and unusable set of
commands. 3D sounds need to be computed also in terms of
objects occlusion. Otherwise, sounds played within a 3D
visual environment could produce a negative effect.

In this paper, we present the solutions investigated to
solve both problems : for an audio enhancement of 3D
scenes and for a representation of a 3D audio world. Based
on the likeness of 3D visual and 3D audio synthesis, we
studied the use of the VRML syntax (VRML International
Standard 1997) to describe a more complete 3D audio
perceptual environment. In addition to the simple
description of 3D audio worlds, the sound management used
within a visual 3D real-time engine, also permits to create
more realistic scenes. This union of 3D visual rendering and
3D sound computation enables to describe complete virtual
reality worlds and browse through a richer online content
than with the standard VRML file format.

In the first section, we will present shortly the related
works that offer both visual and audio description. We will
also discuss about the position of our own study related to
those works and answer to the question : why didn’t we lean
on one of those previous work ? The current sound
possibilities included in the VRML97 standard and the X3D
draft will be examined in the second part. More specifically,
we will list what can be done and what can not. In the third
section, we will present our propositions of enhancement for
the VRML/X3D syntax. Before concluding, we will then
present the architecture of our 3D audio-enhanced VRML
browser in a fifth section.

2 Model and description choices
Sounds can be generated in different ways. For each of

these, parameters and algorithms differ. In this paper, we are
studying a possible description of 3D sounds. With an audio
scene specification, worlds could be more easily generated
and put online. Furthermore, a description of a scene can be
used by different browsers and can be reused as a prototype
in other scenes. However the description must be closely
related to the program that will parse the file and synthesize
what must be heard. Hence, all sound parameters used by
the sound generator must be included into the specification.

Since this choice is made, we must first determine which
technique will be used to compute sounds in order to know
which parameters will be useful. In our particular case, the
main criteria when choosing the computational model is its
real time behaviour. We then evaluate the current known
sound file formats to see if they can fit our needs.

2.1 Sound Model
Computing binaural 3D sounds can be done by using

different techniques. Basically, two ways exist to render an
audio scene :

- with a physical model that computes sounds using the
scene’s geometry, material properties and physical
laws for reverberation (Savioja,et al.1997),

- with a perceptual model that relies on global
variables to achieve room effects (Jot 1997).

The first method is closer to what happens in the real
world model for noises propagation. Waves, reflection and
refraction properties of materials are used to compute
sounds. With this technique, sounds heard by an user will
depend on the volume definition of the scene and the energy
distribution within. Hence, since sounds are computed by
waves going from the audio source to the user’s ears after
some possible reflections, the virtual world must be closed
so that waves are not “lost in space”. However, physical
models require a heavy computation that can not be done in
real time. They can be compared to ray tracing techniques
and more precisely with radiosity that lies also on an energy
distribution algorithms. Some strategies can however be
implemented to speed up this model. By observing the
physical laws that rule the energy distribution, a static
physical model can be used. Simplified dependencies can be
established between the room’s energy and a direct sound,
first reflections and late reverberations. It allows to update
dynamically the energy parameters used in the reverberation
algorithm in accordance with the sources and the listener’s
positions. But this method is way to much complicated to
describe since it must use parameters to specify the room’s
energy distribution.

In the second method, the computation of sounds is
detached from the shape of the scenes. It is only related to
some global variables (like reverberation, dryness of the
air, …) that are given for the whole scene. These variables
are used to compute the early reflections and the late

reverberation that compose the room effects. This method
makes it possible to define sound properties for a virtual
world and obtain a result that could not be achieved in a
corresponding real place. For instance, the scene can be a
small rectangular room but the global flags given can
correspond to the acoustic of a cathedral. Some validation
experimentations made by Warusfel and Cruz-Barney
(1995) and also by Marin (1996) have compared real
reproduction with a simulated one. They show that it is
possible to have a reliable synthesis with these perceptual
parameters : localisation of the sound sources, reverberation
of the room, …

The sound enhancement we propose for VRML is based
on the second model. In a psycho-acoustic model, the room
geometry and the materials properties are not used to
compute sounds. But we also want to add some simple
attributes to the objects composing the virtual world. Those
properties are used to filter sounds in some particular cases.
However, our model can not be considered as a mix of the
physical one and the perceptual one since attributes are not
used as parameters for physical laws but only to compute
some filtering operations. The shape of rooms will also be
used in the same way to attach different room effects within
the same scene. We will show how this can be made and we
will also describe the different attributes added toMaterial
nodes and explain their utility.

To achieve a fast rendering (for visual and/or for audio
data), the calculation must be quick enough to meet the real
time requirements. Hence, a simple sound description and
computation model are important. The psycho-acoustical
model is used for that purpose : it is much quicker than the
physical one. Our hypothesis is that the human hearing can
tolerate unrealistic sound calculations as long as they can be
managed in real time. This fact is also widely known for
real time 3D rendering. Our goal is to respect the sounds
sample rates (users could not bare hearing those sounds
otherwise) but ease the calculations with a cheaper method.
Sounds will be fluid and realistic-like for users in a real time
context.

2.2 Description of sounds
Some file formats could be useful to describe a virtual

sound space with the functionalities like the ones given by
Natkin (2000). We have naturally studied those file formats
and consider the following important points in order to
determine if they can fit our needs :

- can a perceptual model be handled with the file
format ?

- is it used widely ? Considered as a standard ? Are
players freely available ?

- is it easy to describe contents with it ?

MPEG4
In the second version of MPEG4, advanced Audio BIFS

(BInary Format for Scene description) can handle sound

spatialization. As described by Scheirer, Väänänen, and
Huopaniemi (1998), the physical and perceptual model
should be supported. The physical model is based on the
DIVA Project from Savioja,et al. (1996, 1997) from the
Helsinki University of Technology. The perceptual
approach is directly inspired by theSpatialisateurfrom Jot
and Warusfel (1995, 1997) from IRCAM and France
Telecom.

MPEG4 BIFS, including audio BIFS and advanced
audio BIFS, are audio-visual elements that are organized in
a scene graph equivalent to the one described in a VRML97
file. Each element is considered as a node with attributes
that are attached by fields. Visual and audio nodes are
organized in a graph hierarchy by using various grouping
nodes.

In MPEG4, an audio scene graph is attached to the main
scene graph by aSoundnode. Like in VRML, these nodes
are subject to transformations and define the source of the
sound. The main difference between MPEG4 and VRML is
the source description. In VRML, audio sources are simple
sounds positioned and oriented in space. In MPEG4, sound
sources are defined by a whole subgraph composed with
various filtering nodes, effects nodes or mixing nodes.
These nodes are able to transform the audio data extracted
and decoded from the multiplexed streams before attaching
it to a Soundnode. To make a comparison, VRML can be
seen like having the same capabilities than the Microsoft’s
DirectSound API. MPEG4, in relation to VRML, is more
like EAX (Creative’s Environmental Audio eXtension)
which relies on and extends DirectSound capabilities with
an advanced perceptual model.

In MPEG4, the advanced auralization process can be
defined with three new nodes :

- AcousticSceneis a grouping node to define common
properties for different objects,

- AcousticMaterialsenables to attach sound properties
like reflection to polygonal surfaces,

- DirectiveSound is used to define frequency-
dependent and directive sound sources.

The figure 1 shows the difference between the MPEG4
and the VRML scene graphs with sound definitions. One
can see that MPEG4 is more sophisticated and that it can
handle sound streams whereas VRML handles only sound
files.

These additions to the first MPEG4 standard seem to
meet our needs. However, MPEG4 is still under
development and it is quite hard to find some precise
technical information. Furthermore, MPEG4 version 2
resources are rare and only accessible by the members of the
expert group. Last but not least, for our purpose, it seems
that we do not need all the functionalities integrated in the
MPEG4 standard. Also, since it is the first step of our
project, we have to define quickly the representation format
of the data. We want our representation to be used in virtual
worlds and we think, as told previously, that only a simple
sound spatialization system is needed. Hence, we do not
need reflection capabilities that requires a heavy calculation
but instead some higher level material properties like the
porosity of a material, or its airlightness. We do however
need environment variables to define different room effects.

ShapeShape

Transform

Material Material

Box CylinderAppearance Appearance

TransformTransform

Image-
Texture

Image-
Texture

Sound ShapeShape

Transform

Material Material

Box CylinderAppearance Appearance

TransformTransform

Image-
Texture

Image-
Texture

Sound

AudioMix

AudioFX AudioSwitch

AudioSource AudioSource AudioSource

AudioBIFS Layer

BIFS Layer

AudioClip

Decode
Layer

Sound File

Sound Stream Sound Stream Sound Stream
Figure 1 : MPEG4 and VRML scene graphs with sound nodes

MPEG4 VRML

X3D
The Web3D Consortium (1999) is also working on the

inclusion of a better sound management in
VRML200x/X3D. This proposal proves that the current
VRML97 specification can not help to describe advanced
sound properties. However, the VRML200x/X3D
specification for sounds is only a rewriting of the VRML97
standard in XML syntax for the moment. It does not include
any new nodes to deal with sounds.

3 Sound management in VRML
Since nothing is really available yet for both previous

formats (no resources neither file format specifications), we
decided to use the VRML file format to describe sounds.
When this project involving Cecile Le Prado and Stéphane
Natkin (2000) started a year ago, the MPEG4 version 2 draft
with Advanced Audio BIFS was not public. But since it was
already a two year old project, we had the hope that it would
become an open standard pretty quickly. Now that one more
year has past, there is still no evident sign of its
transformation into a final specification. Hence, we have
studied an alternative solution based on the VRML syntax.
Still, we do believe that principles described in the
documents we have read are powerful. This is why the
extensions to VRML we propose are close to the one
described in MPEG4’s drafts.

Any other language for describing 3D audio-visual
scenes could have been appropriate. However, VRML is the
only well specified 3D descriptive language that is also a
wide spread standard. Hopefully, it is also the language we
have studied for several years on different projects including
studies on 3D interface for digital libraries (Cubaud and
Topol 2000) and a 3D workbench for XWindow
applications (Topol 2000). For these studies we have
implemented with the OpenGL API two crossed platform
VRML browsers at the Conservatoire National des Arts et
Métiers. The first one, written in C language, supplies tools
and is optimised to ease the fluid navigation within static
scenes. The second, in Java, deals more specifically with 3D
animations. In both browsers it is easy to add nodes and/or
fields to the VRML parser for our special needs.

3.1 What can be done with theSoundnode ?
The VRML specification defines three nodes (Sound,

AudioClipandMovieTexture) that are used to add sounds to
a 3D scene (see figure 1). TheSoundnode is used to attach
sounds to the scene. This node specifies the sounds
properties like its location, its orientation and two ellipsoids
that define the volume’s maximum intensity and decay
regions. Like the other nodes in VRML scenes,Soundnodes
are translated, oriented and scaled byTransformnodes. This
means that sound sources can be positioned and oriented
respectively with thelocation and direction field of the
Soundnode but can also be moved and rotated by ancestral

Transform nodes. Hence, it is possible to define some
animated sound sources.

The sound stream is provided by anAudioClip or a
MovieTexturenode attached to thesource field of the
Sourcenode. TheAudioClipnode specifies URLs where to
retrieve the sound file and some properties that tell how to
play it. The sound files can be either a PCM-encoded sound
file or a MIDI file. The same attributes are given for the
MovieTexturenode that makes it possible to play the sound
stream of a movie file.

In the current status of the VRML standard, a sound can
be spatialized and the user will hear it differently depending
the previously given four parameters. The viewpoint’s and
the sound’s orientations are used to compute the binaural
sound the user will hear. Hence, if the sound is on the left
side of the point of view, the user will hear it much louder in
the right ear. The two positions are also used to compute the
intensity of the sound. For each sound source, there can be
three cases depending on the user’s distance to the source :

- When the user is inside the maximum volume
ellipsoid, he hears the sound at his maximum
intensity.

- When the user is outside the inner ellipsoid but inside
the decay ellipsoid, the sound’s intensity is computed
by using a linear interpolation. The maximum
intensity will be played on the inner ellipsoid’s bound
and the sound will be muted on the bound given by
the outer ellipsoid. If the user is half way between
those two bounds, the sound’s intensity will be
decreased by half.

- When the user is out of the outer ellipsoid the sound
is not heard (hence, not played).

The figure 2 illustrates the different possibilities that can
be encountered when using the VRML sources descriptions
and depending on the user’s location. The heavy grey

S1

S2

S3

P1

P2

P3

S4

P4

Figure 2 : Sound sources example with VRML files

ellipsoids gives the positions where the user can hear the
corresponding sound source with its maximum intensity.
The light grey surface gives the region where the sound’s
intensity is proportionally reduced in accordance with the
user’s distance to the source. The next table gives for each
user’s position P1, P2, P3 and P4 what sound sources S1,
S2, S3 and S4 are heard and at approximately which ratio of
the full intensity.

User’s position Sound source audible
P1 S2 (100%)
P2 S3 (20%), S4(10%)
P3 –
P4 S1(20%)

One can see that the sound effects are very poor in the
VRML model. The first one, described previously, is a
volume filtering based on the user’s and the sources
positions and orientations. A second effect is achieved
automatically depending also on the user’s position and the
sound sources ellipsoids. When an user is in the boundaries
of several sound sources they are mixed so that he can hear
all of them. For instance, in position P2, the user will hear
20% of the sound attached to S3 and 10% of S4.

3.2 What can not be done ?
The auditive result that can be obtained by using

ellipsoids to define the different sounds boundaries is far
from what can be heard with a real sound propagation
model. For example, in position P2 or P4 the user would
certainly hear both S1 and S2 sources in the real world.
Another problem is that occlusions are not described.
Without occlusions, an user would hear a sound with the
same intensity behind a wall or not if its distance to the
source is the same while still in the ellipsoid region.
Furthermore, depending on the ellipsoids of a given source,
an user could hear a sound behind two walls but not in a
direct path. For instance, in position P3 the user should hear
S3 but maybe not in position P2.

Sounds can stop propagating after a given distance but in
every direction, not only in a ellipsoidal region. This
ellipsoidal definition of sound’s boundaries is not a natural
way for specifying regions in which the sound can be heard.
It must be replaced by a more realistic and comprehensive
description. Sound cones would be much more helpful to
compute direct sounds but also the first reflections and the
reverberation. With cone-shaped sounds, an user in front of
a source without obstacles on the way would probably
always hear a sound.

Furthermore, it would be impossible to define ellipsoidal
boundaries of sound sources that would match exactly the
reverberation and occlusion effects expected. Hence, sounds
in VRML are spatialized but reverberations and occlusions
can not be implemented. Since in the architecture described
by Natkin (2000) we want different sound parameters for
each room, we need reverberation information to be

attached to a volume and occlusion attributes to polygonal
faces. Simple attributes could be added to the visual
attributes of theMaterial node in order to specify how
sounds are transmitted through the polygons.

What requires further integration in VRML is support
for further audio rendering features, such as the simulation
of reflected sounds and reverberations. In addition, it is
important to provide a means for obstacles to reduce or
otherwise interfere with the propagation of sound through
the VRML world when they are positioned between the
sound source and the observer's position.

4 Proposition of enhancement
For adding sound attributes into the VRML97 file

format, one must know how graphics data is specified. By
knowing the likeness of 3D audio and 3D graphics, we will
be able to add sound nodes and fields with the same
semantic than the graphics ones. What must be considered
carefully is :

- the types of sound sources needed,
- grouping nodes to affect rooms properties,
- the sound related attributes of polygons.

4.1 Sound sources
A comparative analysis between 3D visual and 3D audio

synthesis has been done by Natkin (1998). One of the main
differences is the type of sources for lights and sounds.
Light rays are much more directional than sound waves.
However, in virtual worlds, one can prefer some directional
sound sources to achieve some special unrealistic effects.
Where point, spot and directional sources are needed for
lights in order to achieve different visual effects, we only
need one type of sound sources. The sound definition in the
current VRML model is not efficient enough. The
attenuation of sounds is made arbitrarily by giving the
ellipsoidal regions. We prefer a cone definition that can be
used to simulate different “shapes” for a sound source, from
a realistic one (omnidirectional) to an unrealistic sound-laser
(unidirectional). Inner and outer cones will define three
zones where the angle-dependant gain will be computed
differently : constant in the inner cone and changes over the
transitional zone to the value specified outside the zone. The
overall attenuation will be computed with the distance of the
user relative to the sound source.

The corresponding node that we callSoundConein order
to keep a backward compatibility with the previousSound
node is defined in VRML syntax with the following fields.
The default values for the inner and outer cones is 360
degrees (i.e. omni directional sound source).presence,
warmthandbrilliance are some source perception variables
that are used by theSpatialisateur(Jot 1997).

SoundCone {
exposedField SFVec3f location 0 0 0
exposedField SFVec3f direction 0 0 1
exposedField SFFloat innerAngle 6.2832
exposedField SFFloat outerAngle 6.2832

exposedField SFFloat outerAngleGain 0.0
exposedField SFFloat presence 0.0
exposedField SFFloat warmth 0.0
exposedField SFFloat brilliance 0.0
exposedField SFNode source NULL
field SFBool spatialized TRUE

}

4.2 Grouping node
Two solutions can be considered for defining the room

effects. Late reverberations can be attached to a binding
node or to a grouping node. The first case would only
enable a single room effect for the whole VRML scene. This
would not be helpful to manage a scene like the one
described by Natkin (2000) where each room has different
sound properties. Even if a scene is composed from
different VRML files, each one having a different room
effects, only one binding node would be active. A grouping
node is much more powerful. Room effects will be defined
within a bounding box that includes all nodes attached to the
grouping node.

VRML has different grouping nodes, each performing a
specific operation on the descendant nodes attached in their
childrenfield :

- Anchordefines the nodes that act as a link to another
web content,

- Billboard groups nodes that must be automatically
oriented toward the user’s viewpoint,

- Collision specifies the collision properties of its
children,

- Group contains children nodes without introducing
some specific operations,

- Inline reads its children nodes in an external url,
- LOD defines various level of detail for an object and

gives hints to the browser for choosing the
appropriate appearance,

- Switchtraverses zero or one of the nodes specified in
thechoicefield,

- Transformdefines a local coordinate system for its
children.

To be consistent with this approach (one grouping node
for one operation), we define a new grouping node for
attaching a room effect to its children. This node, named
RoomEffect, will define the perception flags to use while
within the bounding box. The other fields (besides the
children field and the bounding box definition) are the
global variables that we took from the spat (Jot and
Warusfel 1995). Together, they will help to compute the
room effects. The definition of this node in VRML syntax
will be :

RoomEffect {
eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField MFNode children []
exposedField SFBool doplerEffect TRUE
exposedField SFBool airArbsorbtion TRUE
exposedField SFFloat roomPrecence 0.0

exposedField SFFloat runningReverb 0.0
exposedField SFFloat envelope 0.0
exposedField SFFloat lateReverb 0.0
exposedField SFFloat heaviness 0.0
exposedField SFFloat liveness 0.0
field SFVec3f bboxCenter 0 0 0
field SFVec3f bboxSize -1 -1 -1

}

The bounding box could be computed automatically by
the browser to include all children attached to the node. But,
this could lead to a scene where bounding boxes could
overlap one another if children nodes are not well grouped.
To be conform to what is done with the other grouping
nodes in the VRML standard, we assume that bounding
boxes are given by the scene’s author. Like normals in a
IndexedFaceSet, bounding boxes could be computed
automatically if the author does not give them.

4.3 Material properties
Material attributes are only used to specify some simple

properties. Mainly, we define the attenuation of a sound’s
intensity when it encounters the face. But other filters could
also be described. For example, which frequencies of a
sound would pass through an object. Visual attributes of a
material are given for all visible sides. With
IndexedFaceSet, it is possible to define if both sides are
visible or if only one side (given by the normal) is visible.
However, when both sides must be drawn, the same visual
appearance is used. With the other drawing primitives (Box,
Cone, Cylinder and Sphere), both sides are always drawn
with the same appearance.

For sound attributes, we can not use the same principles
since we want different effects depending on the direction of
the sounds going through the polygons. This is why we
define pairs of the same sound attributes : one for outside-
inside direction and one for the opposite one. With
IndexedFaceSetgeometries, the outside region will be the
one pointed by the normals. If only one side of the
IndexedFaceSetmust be drawn, the sounds will only be
filtered when coming from one side. All computations to
determine which 3D primitives intersect the direct sound
trajectory are the one used in ray tracing. As it can be seen
in the next code sample, a new fieldsoundFilteringwithin
the Shapenode is used to attach theSoundFilteringnode
that gives the sound properties for the shape. The fields
frontIntensity and backIntensityare used to specify the
amount of the direct sound’s volume that is filtered by the
polygons of the shape in both directions. These fields
operate in the same way for sounds than thetransparency
field in the Material node for shading. A little part of the
VRML augmented code that describes the scene in figure 3
is given next :
[...]
SoundCone {

location 0 –10 0

spatialization

room effects

binaural sound

Figure 4 : Binaural sound production

direct sound modified
direct sound

sound source
attributes

intersection
algorithm

sound
so

urce
1

direct sound modified
direct sound

sound source
attributes

intersection
algorithm

sound
so

urce
2

direct sound modified
direct sound

sound source
attributes

intersection
algorithm

sound
so

urce
n

m
ixin

g

… …

direction 0 0 –1
source AudioClip { url “bipbip.wav” }

}
RoomEffect { # first room

bboxCenter 0 –8 0
bboxSize 3 3 2
children [

Shape { # first wall
geometry IndexedFaceSet { [...] }
appearance Appearance { [...] }
soundFiltering SoundFiltering {

frontIntensity 0.5
backIntensity 0.8

}
}
Shape { # second wall

geometry IndexedFaceSet { [...] }
appearance Appearance { [...] }
soundFiltering SoundFiltering {

frontIntensity 0.5
backIntensity 0.8

}
}
[...]

]
}
RoomEffect { # second room

bboxCenter 0 –4 0
bboxSize 3 5 2
children [

[...]
]

}

The figure 3 shows what can be obtained with these
attributes. Each wall decreases the intensity of the emitted
sound source S4. The light-grey zones give the positions
where the sound is not filtered by walls. The middle grey
gives the places where the sound is heard after one wall
filtering. The heavy grey shows positions where the sound is
filtered by two walls. The white zones are the zones where
the sound is filtered by 3 or more walls. The corresponding
VRML description of the scene with our adjunctions is also
given in the figure 3.

5 Implementing a prototype
For implementing the principles described above, we

have used one of the two VRML browsers we have
developed. In the chosen one, implemented in C language,
the VRML expressions are described with Lex and the
grammar is described with Yacc. Adding nodes and
attributes to the original grammar is quite easy. All
recognized VRML nodes are then translated in OpenGL
commands and rendered to show the visual result.

For sounds, we have used an API called OpenAL where
AL stands for Audio Library. The commands are close to
the ones used with the Graphic Library OpenGL. OpenAL
supports sources positioning, reverberation, decay and
doppler effects. OpenAL commands are not affected by the
OpenGL transformations. Sounds location and orientation
as well as the listener ones will have to be computed in the
global coordinate system. For the listener’s position this is
not really difficult since in the VRML file (with the
ViewPointnode for instance) the observer is located relative
to the global coordinate system. The problem comes from
the sources position. In VRML files,Soundnodes and our
added SoundConenode can be affected by previous
Transform nodes. Hence, the location and orientation of

Figure 3 : Example of material absorption

1

2

3

S4

4

sound sources are given in a local coordinate system. But
we use the current transform matrix in a sound node to
translate coordinates from the local system to the global
one.

Occlusion effects are computed with a raytracing-like
algorithm. All polygons intersecting the ray going from the
source’s position to the viewpoint’s position are used to
filter the direct sound. This computation has to be done
whenever the sound sources, objects or the viewpoint are
moved. Since at least a normal is given for each polygon, it
is easy, by comparing the normal and the “sound ray”, to
choose from thefrontIntensityand thebackIntensityfields
which one to use.

The production of binaural sounds is described in the
figure 4. Room effects are limited with OpenAL for the
moment. For a better “rendering” of sounds, we should use
the Spatialisateur. With our second VRML browser written
in Java, it should be possible to use the Spat module from
the JMax software also written in Java (JMax). We will
investigate this solution in a future work.

6 Conclusion – Future work
We have added some new nodes to the VRML syntax in

order to describe all the perceptual spatialization process.
Until now, sound sources were located and played in 3D but
room effects were not described in VRML files. In
adjunctions to this perceptual method we have added some
shape properties for sound filtering. These simple sound
behaviours, even if they are far from being realistic, work
well for filtering direct sounds. Since the room effects are
computed with these direct sounds, our simple model can
add some realism to scenes.

Our extended VRML language can be used in the two
different ways we were aiming. First, for a purely aural
navigation, it can be useful to simulate in real time what
users can hear. The routing of events from a Java script to
the sound attributes can achieve some interesting effects like
travelling automatically in an audio world or sharing
moving audio resources with others. This “rendering” of 3D
audio will be very useful for audio augmented reality system
and particularly in art installations. The second aspect is for
a mixed audio and visual worlds. 3D sounds within 3D
scenes are interesting for games but also video and audio
conferencing and power plant maintenance. In every
applications where sounds must be located relatively to
objects in a scene, the easy description will be helpful.

In a multi-user context, aural interactions between
participants could be added too. Since VRML does not
make it possible to specify these kinds of interactions, this
must be done with Java scripts. The principle for attaching
sounds to users is the same than for attaching a visual
appearance. Like in network games, each user has to tell the
others where he is and how he looks and sounds like. When
connecting to a shared world, the user’s avatar described
with the VRML syntax is sent to a server managing the

scene. A first Java script must handle this initialisation
process. Each user must also send its position and
orientation in the scene and its new appearance (if it has
changed). This can be done each time the user moves. For
rendering the scene including other users avatars, a request
asking the other users information is made periodically to
the server. This operation is done by a second Java script
that retrieves these information and modifies the VRML
scene graph in accordance to what the server has sent back.
This modified scene graph will be rendered visually and
aurally to reflect the other users moves.

We shall now work on adding some sound behaviours to
objects. In this paper we explained how objects could be
used to modify the sounds perceived. We also believe that it
is interesting to study how sounds can modify objects
attributes. Like sounds can turn on lights in the real world,
they could be also used in virtual worlds to activate some
events to start some animations.

Note for readers : the implementation of the principles
described in this paper is accessible on our web site at
the following URL :
http://cedric.cnam.fr/~topol/icmc2001

References
Card S., Robertson G., York W., The WebBook and the Web

Forager : An Information Workspace for the World-Wide-
Web. inProc. of ACM CHI'96. Vancouver, April 13-18, 1996.

Cubaud P., Topol A., A VRML-based user interface for an online
digitalized antiquarian collection. Proc. ofWeb3D’2001,
Paderborn, Germany, Feb. 2001.

Herder J., Tools and Widgets for Spatial Sound Authoring, Proc.
Of Compugraphic’97,Vilamoura, Portugal, December 1997.

Huopaniemi J., Savioja L. and Takala T., DIVA virtual audio
reality system, Proc. of ICAD’96, Palo Alto, California, Nov.
1996.

JMax, http://www.ircam.fr/equipes/temps-reel/jmax/
Jot J.-M., Warusfel O., Spat~ : A spatial processor for musicians

and sound engineers.Proc. Int. Conf. on Acoustics and
Musical Research. Ferrara, 1995.

Jot J.-M., Efficient models for reverberation and distance rendering
in computer music and virtual audio reality, Proc. of ICMC’97,
September 1997.

Marin M., Etude de la localisation en prise et restitution pour la
téléconférence de qualité, PhD Thesis, University of Mine, Le
Mans, October 1996.

Natkin S., Objects in a Virtual Space: a Comparative Analysis
between Image and Sound Spatial Representation and
Synthesis.Proc. of 5th Brazilian Symposium on Computer
Music,Belo Horizonte, Brasil, August 1998.

Natkin S., Mapping a Virtual Sound Space into a Real Visual
Space,Proc. of ICMC2000, Berlin, September 2000.

Savioja , L., Huopaniemi, J., Lokki, T., and Väänänen, R., Virtual
environment simulation - Advances in the DIVA project.Proc.
Of ICAD'97, Palo Alto, California, USA, Nov. 3-5, 1997.

Scheirer E. D., Väänänen R., Huopaniemi J., AudioBIFS: The
MPEG-4 Standard for Effects Processing,Proc. of DAFX ’98,
Barcelona, Nov. 1998.

Topol A., Immersion of XWindow Applications into a 3D
Workbench. Proc. of ACM CHI’2000, The Hague,
Netherlands, April 2000.

Tsingos N., Gascuel J.-D., Soundtracks for Computer Animation :
Sound Rendering in Dynamic Environments with Occlusions.
Graphics Interface ‘97, Kelowna, May 21-23, 1997.

Virtual Reality Modeling Language - International Standard
ISO/IEC 14772-1:1997.
http://www.web3d.org/Specifications/VRML97/

Warusfel O., Cruz-Barney F., Validation of a computer simulation
environment for room acoustics prediction,Proc. of the 15th

International Conference on Acoustics, Trondheim, 1995.
Web 3D Consortium, http://www.web3d.org, 1999.

