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Abstract

We have computed two Geophysical Model Functions (one for the vertical and one for the

horizontal polarization) for the NSCAT scatterometer by using neural networks. These Neural

Network Geophysical Model Functions (NN-GMF) were estimated with NSCAT

scatterometer sigma-0 measurements collocated with ECMWF analyzed wind vectors during

the period 15 January 1997 to 15 April 1997.

We performed a Student t-test showing that the NN-GMFs estimate the NSCAT sigma-

0 with a confidence level of 95%. Analysis of the results shows that the mean NSCAT signal

depends on the incidence angle, on the wind speed and presents the classical bi-harmonic

modulation with respect to the wind azimuth. The NSCAT sigma-0 increases with respect to

the wind speed and presents a well marked change at around 7 m/s. The upwind-downwind

amplitude is higher for horizontal polarization signal than for vertical polarization indicating

that the use of horizontal polarization can give additional information for wind retrieval.

Comparison of the sigma-0 computed by the NN-GMFs against the NSCAT measured sigma-

0 show a quite low RMS except at low wind speeds.

We also computed two specific neural networks for estimating the variance associated

to these GMFs. The variances are analyzed with respect to geophysical parameters. This lead

us to compute the geophysical signal to noise ratio, i.e. Kp. The Kp values are quite high at

low wind speed and decreases at high wind speed. At constant wind speed, the highest Kp are

at cross-wind directions showing that the cross wind values are the most difficult to estimate.

These neural networks can be expressed as analytical functions and Fortran subroutines

can be provided.
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1. INTRODUCTION

NSCAT is a dual swath, Ku-band, scatterometer which was designed by NASA and

constructed under its supervision. The goal was to determine wind vectors over the ocean at

global scale with an optimum space and time coverage. NSCAT uses 6 antennae, three for

each swath (Fig. 1). The two mid antennae operate in a dual polarized mode (vertical and

horizontal modes) while the four others operate in a vertical polarized mode only. NSCAT

has been flying on the Japanese ADEOS satellite from August 1996 up to first July 1997 and

gave a very large and unique data set that allows us to determine wind vectors with global

coverage. NSCAT stopped functioning the 1st July 1997 due to a power failure of the

ADEOS satellite.

Most of the algorithms which have been proposed to compute the wind vectors from

scatterometer measurements are based on the inversion of a Geophysical Model Function

(GMF) which is a transfer function giving the scatterometer signal (sigma-0) with respect to

the wind vector. The determination of an accurate GMF is then of a fundamental interest.

Furthermore the GMFs give useful information on the physical behavior of the scatterometer.

In the present study we determine two GMFs for the NSCAT scatterometer by using

Neural Networks (NN-GMF hereinafter), one for vertical polarization denoted NN-GMF-V

and one for horizontal denoted NN-GMF-H. As shown in previous works (Woiceshyn et al ,

1986; Donelan and Pierson, 1987) these GMFs are expected to be different. The neural

networks are calibrated using the analyzed wind vectors of the ECMWF meteorological

model collocated with NSCAT scatterometer sigma-0 measurements.

Neural networks (NN hereinafter) are relevant statistical methods to extract information

from data when physical phenomena are very complicated and cannot be described in terms

of theoretically based analysis. NN provide empirical statistical models estimated from

observations in form of continuous functions. Furthermore these functions can be analyzed in

order to get information about the physical phenomena we study.
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The layout of this paper is articulated as follows : in Section 2 we present the geophysical

problem. In Section 3 we briefly introduce the NN methodology. The data set used for

calibration and validation is described in Section 4. The results are analyzed in Section 5. The

variance and the error bars of the NN-GMFs are presented in Section 6. A discussion and

conclusion make up Section 7.

2. THE GEOPHYSICAL PROBLEM

Scatterometers are active microwave radars which accurately measure the power of the

back scattered signal versus incident signal in order to calculate the normalized radar cross

section (sigma-0) of the ocean surface. To first order the sigma-0 depends on the sea

roughness which is related to the wind speed v, on the azimuth angle  (which is the

horizontal angle between the wind and the antenna beam of the radar) and the incidence angle

 (which is the angle between the radar beam and the vertical at the illuminated cell) (see

Figure 2). Other parameters such as the wave height, the wave direction [Donelan and

Pierson, 1987; Donelan, 1990; Donelan et al., 1993; Janssen and Woiceshyn, 1992; Nghiem

et al., 1993], rain and sea surface temperature [Donelan and Pierson, 1987; Kahma and

Donelan, 1993] are also thought to play some role. These parameters which are thought to act

at second order will not be taken into account in the determination of the present GMFs.

There are two different approaches to developing a GMF, the theoretical and the empirical

one. The theoretical approach deals with hydrodynamic description of the air/sea interface

which specifies the relation between wind and sea surface geometry and expresses the

electromagnetic back scattering from the rough air/sea interface [Plant, 1986; Donelan and

Pierson, 1987; Chen et al., 1992; Weissman et al., 1994]. This leads to very difficult physical

and mathematical descriptions since the physics of the above interactions is insufficiently

known to allow the construction of theoretically-based geophysical model functions. The

empirical approach has thus been widely used. The aim is to statistically reproduce the

relation between the sigma-0 measurements and the wind vectors. The methodology is based
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on collocations between NSCAT sigma-0 and wind measurements. The accuracy of the GMF

is then related to the number of such collocations and the quality of the collocated data set.

Since the GMF depends on three parameters which are the incidence angle, wind speed and

wind azimuth, an accurate GMF estimation requires a large number of data. Unfortunately the

number of collocations of sigma-0 with wind vector measurements obtained at sea with

anemometers fixed on buoys is rather small. An alternative is to use winds obtained from

Numerical Weather Prediction models (NWP) which yields a large number of synoptic winds.

As shown by Liu and Pierson [1994] the use of NWP can introduce systematic biases in the

determination of the GMF owing to the discrepancies existing between NWP winds and

actual winds. The quality of most of NWP has dramatically improved during the past few

years reducing this potential error (Courtier et al, 1998; Andersson et al, 1998). Besides as

mentioned in Stoffelen (1998) NWP models provide a wind estimate at a scale of the order of

100 km which is comparable to the footprint of the scatterometer which is 50 km. These

winds are spatial averages contrary to measurements taken by anemometers fixed on buoys

which are very local and have provided good estimates of the ESA GMF (CMOD4) and

IFREMER GMF (Stoffelen and Anderson, 1998b; Rufenach, 1998).

We now present the NN-GMF-V and NN-GMF-H for the NSCAT scatterometer. We

follow the procedure described in Mejia et al. [1998] to compute the ERS1 scatterometer

GMF (NN-ERS1-GMF hereinafter).

3. DETERMINATION OF THE NSCAT NN-GMFs

Since the NSCAT and ERS1 scatterometers are quite similar, we determine the two

NSCAT GMFs using the same methodology as was chosen for determining the GMF of

ERS1 [Mejia et al., 1998]. Since we assumed that the scatterometer response is a continuous

function with respect to ,  and v, which is a weak constraint, the computed NN-GMFs can

be modeled by Multi-Layer Perceptrons (MLP hereinafter) whose inputs are the above

variables. Preliminary results using NSCAT data suggest that the architecture of the MLP
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used for NN-ERS1-GMF is adapted but can be somewhat improved by increasing the number

of the hidden layers of the NSCAT NN-GMFs. This is justified by the fact that the NSCAT

GMF is more complicated than this of ERS1/2 due to its higher RMS error (as it is shown

later) and needs more parameters (each weight of the MLP being considered as a parameter of

the GMF). Besides NSCAT is more sensitive to external parameters  (rain,.......) than ERS1

which is seen in the larger NSCAT Root Mean Square error (RMS, see Section 5). As in all

previous scatterometer GMF determinations (Long 1985, Bentamy et al. 1994, Stoffelen and

Anderson 1997a,b), the inputs are the wind speed, the wind azimuth and the incidence angle.

The architectures of NN-GMF-H and NN-GMF-V are very similar; they have an input layer

of 4 neurons corresponding to , sin , cos   and sin  , and an output layer of a unique linear

neuron which gives the estimate of the required sigma-0 measurement. Both NN have two

hidden layers but with different numbers of neurons on each layer as found by an optimal

determination of the architectures. For NN-GMF-V we used eight neurons on the first hidden

layer and six in the second, and for NN-GMF-H we used five neurons on the first hidden

layer and four in the second. These architectures are presented in Figure 3a and 3b. NN-

GMF-V and NN-GMF-H are made of 86 and 44 parameters respectively which have to be

estimated from the data. This estimation is made during an optimization phase by using a

training data set dedicated to each polarization and an appropriate cost function. As the cost

function plays an important role in the minimization, let us focus interest on it. If it is

assumed that:

1) For each observation i, the observed sigma-0 , i
0 , can be decomposed in the following

manner:

i
o = i

o* + ei  (1)

where i
o*  is the mean expected value with respect to the wind vector and ei is a gaussian

noise with zero mean and of variance Var(ei ). The variance Var(ei ) takes into account the

geophysical noise which depends on the wind vector, the incidence angle θ and the i
o* .



Mejia C , F. Badran, A. Bentamy, M. Crepon, S. Thiria, and N. Tran: Determination of the Geophysical Model Function of NSCAT and its
corresponding variance by the use of Neural Networks, J. Geophys. Res 104, 11539-11556, MAY 15, 1999 (NSCAT SPECIAL ISSUE

7/28

2) The observations of the learning set   (
r 
v i , i ) are chosen independently.

3) The NN-GMFs are well parameterized, i.e. there is no over-training and the neural

network output si  is such that that i
0* ≈ si  [Bishop, 1995]

It then becomes possible to estimate the a-posteriori probability P(D/W)  of the mean of the

observation set D constrained by the model which is represented by the weights Wij of the

neural network. The associated log likelihood equation is then:

L(W) = −Ln P D / W( )[ ] =
1

2

si − i
0( )2

Var ei( ) + Ln Var ei( ).2( )
 
 
 

 
 
 i

∑ (2)

Under the hypotheses 1, 2 and 3, it can be shown that maximizing P(D/W)  is equivalent

to minimizing the log likelihood equation (2).

Hypotheses 2 and 3 can always be verified. If hypothesis 1 is assumed, equation (2) is the

log likelihood and can be taken as a cost function in the computation of the weights of the

neural network. Equation (2) is minimized using the Wij (the weights of the neural network) as

control parameters [Bishop, 1995].

From a practical point of view, a crucial problem remains which is to correctly estimate

Var(ei ). Several approximators have been proposed. Among them we can mention the widely

used empirical relationship of the form Var(ei ) = (Kp  )2 where the signal to noise ratio (the

so-called Kp ) is a constant chosen to be equal to 0.1 [Stoffelen and Anderson, 1997b].

Besides more sophisticated expression have been proposed (Fisher, 1972, Chi et al, 1986,

Pierson, 1989) where the sigma-0 distribution is Gaussian with a mean equal to i
o*  and a

variance of the form:

Var( i
0) = i

0*( )2
+ i

0* + (3)

where the coefficients  and  are dependent on the radar design and the

measurement signal to noise ratio.
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The obtained performances of a MLP or any statistical estimator strongly depend on the

input parameters and their coding. In order to limit the strong non-linearity of the signal and

owing to the large dynamical range of the sigma-0 values which is of several orders of

magnitude, we decided to code the sigma-0 in dB as argued by Stoffelen and Anderson

[1997a]. Since we work in the dB space, the noise of sigma-0 expressed in dB is not any more

Gaussian [Stoffelen and Anderson 1997b; Rufenach, 1998] and equation (2) does not

represent the log likelihood function associated to P.

Consequently in a first approach we determine the weighs of the NN-GMFs using a quadratic

cost function of the form:

C(W ) = si
d − i

d0( )2
i

∑ (4)

where sd
i
 represents the output computed by the MLP and i

d0  the desired output provided

by the corresponding data set expressed in dB, the summation being taken over the training

set. This cost function has been widely used in neural networks methodology ; it has been

shown (Richard and Lipman, 1991) that it gives the a-posteriori probability P(D/W)  of the

mean of the observation set. Besides, it is noticed that the cost function (4) would correspond

to the log likelihood criteria if the noise ei were Gaussian with a constant variance. The

quadratic cost function C(W) has been shown to be efficient in determining the ERS1 NN

GMF (Mejia et al, 1998). The efficiency of this simplified cost function can be improved by

using a specific data set for training as explained in the following section.

We will use the log likelihood approach in section 6 in order to determine Var(ei ) when

the sigma-0 are estimated in linear scale.

4. THE DATA SET

As already mentioned, the NN-GMFs were computed by using ECMWF analyzed wind
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vectors collocated with NSCAT recalibrated sigma-0 from December 1996 to May 1997 onto

the North Atlantic Ocean (latitude [60N, 20 N], longitude [100W, 5W]). We used the

observed sigma-0 provided by the six antennae for vertical polarization and for the two

antennae for the horizontal polarization. The ECMWF North Atlantic Ocean winds are

thought to be of good quality owing to the relatively large number of observations, which are

assimilated in the model. Since January 1996, the ECMWF model has also been assimilating

ERS1/2 scatterometer winds (Courtier et al, 1998; Andersson et al, 1998), which improves the

quality of the ECMWF wind product and reduces the wind error. This error which play a role

in the NSCAT GMF determination (Stoffelen and Anderson, 1997b) can be introduced in the

cost function by using the covariance matrix of the ECMWF model. But it is difficult to get a

simplified accurate estimate of this covariance matrix (Courtier et al, 1998). This error will

not be taken explicitly into account in the present simulation which can be justified by the

good quality of the ECMWF wind product during the period under study.

The ECMWF wind components are linearly interpolated to the sigma-0 measurement

locations. The collocation was processed by the CERSAT-IFREMER. As found in a

preliminary work [Mejia et al., 1997] the different antennas of the two swaths have the same

characteristics; we thus decided to compute a unique GMF for each polarization. The overall

data set used consists of 10 millions of collocations representing the four sigma-0s and their

related incidence angle. From this data set we randomly extracted 265000 collocated data

where we tried to equally represent all speeds and directions at each incidence angle in order

to get a statistically representative data set without bias. However the number of data with

wind speeds higher than 25 ms-1 is small, and wind speed values higher than 30 ms-1 are

absent. As the ECMWF winds are noisy at low speed and the corresponding NSCAT small

sigma-0 too, we decided to cut the different data set at 2ms -1. The valid range of wind speed is

thus [2 ms-1, 25 ms -1]. This set was used in order to make the calibration (training phase in NN

dialect). This equalized training data set partially compensates the use of the simplified cost

function (2). An independent test set of 1800000 collocated data was used for estimating the

performances of the NN-GMFs.
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5. ANALYSIS OF NN-GMF-V AND NN-GMF-H

We first tested the validity of the assumptions we made in section 3 in performing a test

hypothesis checking the ability of the NN-GMFs to estimate the conditional mean of the

sigma-0.

For each incidence angle, the ECMWF wind vectors collocated with the observed sigma-0

are partitioned in 37 × 7  bins of azimuth angle of 10 ° and wind speed of 3 ms-1 each. The

wind speed ranges between 3 and 24 ms-1. In each bin j, we assumed that the observed sigma-

0s (in linear scale) define a sample of a normal distribution N( , SD) where  is the mean and

SD the standard deviation (hypothesis 1 and equation 1 in section 3). This hypothesis is

reasonable as found on the sigma-0 histogram in each bin (not shown). For each sample we

computed the empirical mean ˆ 
j =

1

k
∑
i

i
0  and its empirical standard deviation S ˆ D  which is

of the form S ˆ D j
2 =

1

k −1
∑

i
i
0 − j( )2

 where k is the number of observed sigma-0 in the bin j.

For each bin j, we have computed the sigma-0 corresponding to the wind vector   
r 
v  at the

center of the bin by using the NN-GMF. Let us denote sj this value in linear scale. We tested

the hypothesis  that sj represents an estimate of j at a confidence level of 95%. In order to

check this, we performed  a Student t-test with a significance level α=5% (Kreyzig , 1979)

where j is approximated by ˆ 
j  . Figure 4 presents the results of the Student t-test for wind

speed between 3m/s and 24m/s at different incidence angles ; the white dots indicating the

sample (wind speed and wind direction) where the hypothesis is accepted. The results show

that the NN-GMFs estimate the mean value of the sigma-0 with a probability of 95% in most

cases.

We then performed several statistical tests in order to check the consistency of NN-GMFs.

Table 1a,b  present the BIAS and the RMS (see Annex for definition) for NN-GMF-V and

NN-GMF-H with respect to the incidence angle. We have computed these statistic estimators

on the test set for the wind speed ranging from 2 ms -1 to 24 ms-1. Clearly these results show
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the consistency of the two NN-GMFs over the whole swath whatever the incidence angle. As

seen in Table 1, the BIAS is small (less than 0.3 dB) except at low wind speeds where it can

reach 1dB; the RMS. is of the order of 1 dB except at low wind speeds where it can reach up

to 5.6 dB. This phenomena can be seen in Figure 5 and Figure 6 where we present the

scatter-plots of the NN-GMF-V and NN-GMF-H computed sigma-0 against the observed

NSCAT sigma-0 at three different incidence angles (θ = 22.2°, 36.1°, 49.4°). These scatter-

plots are centered on the diagonal except at very low values of sigma-0 where we observe the

inability of the NN-GMFs to generate low sigma-0 values. An explanation could be the fact

that ECMWF winds are noisy at low wind speeds. Both training and test sets were cut at wind

speeds less than 2 ms-1. At 2 ms-1 the NN-GMFs still provide a good estimate of the sigma-0

which is a mean sigma-0 corresponding to a mean wind speed of 2 ms-1. Due to noise some

ECMWF 2 ms-1 wind speed correspond to actual wind speeds less than 2 ms-1. Their

corresponding sigma-0s are thus smaller than those given by the NN-GMFs at a wind speed

of 2 ms -1, explaining the apparent over estimation of NN-GMFs at small sigma-0 values in the

scatter plots. As evidenced in the contours, few measurements at low wind speed exhibit this

drawback when compared with the all the data involved in these comparisons. A method to

partially overcome this problem would be to build GMF forced by the wind components as

mentioned in Stoffelen and Anderson (1997b).

Let us now analyze the physical behavior of the two NN-GMFs. NN-GMF-V and NN-

GMF-H are presented in Figure 7 and Figure 8 respectively. These figures display the

variations of the two NN-GMFs with respect to the wind azimuth for different wind speeds

and at three different incidence angles (22.2°, 36.5°, 49.6°). The NN-GMFs exhibit the

classical bi-harmonic modulation with respect to the wind azimuth. As mentioned before this

modulation is not imposed a-priori by using a Fourier series decomposition, but result from

the neural estimation. At a given wind speed and incidence angle, these curves can be

approximated by a Fourier series decomposition of the form:

0 = A0 1+ A1 cos + A2 cos2[ ] (5)

where the coefficient A0 corresponds to the mean value of the sigma-0 with respect to the
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wind azimuth ,  A1 is related to the upwind/downwind modulation, A2 to the biharmonic

character of the GMF with respect to . The coefficients An (n = 0, 1, 2) are complex

functions with respect to the incidence angle, the wind speed and the polarization.

The up-wind and down wind of the NN-GMFs are at 0° and 180°as in (5) . The two

minima may slightly differ from 90° and 270° and may not be of the same value. This slight

difference is due to the fact that we do not impose the location of these minima a priori. A

similar behavior was found on ERS1 NN-GMF (Mejia  et al , 1998) and a sensitivity study on

model noise showed that the larger model error bars of the ERS1 NN-GMF were at cross

wind values. Thus we think that the slight variation in cross wind position is more related to

statistical estimation rather than a geophysical phenomena. A similar behavior was found in

Weisman et al (1994). Besides it should be noticed that the minimum of the Fourier

expansion of the form (5) are not exactly at. 90°and 270°. For example if A1/A2 = 0.2, the

two minimum are located at : 93° and 267°.

Figures 9a, b display the mean value (in dB) with respect to the wind speed (coefficient

A
0
(θ ,v) of the Fourier decomposition (5)) at different incidence angles for the NN-GMF-V

and NN-GMF-H respectively. Figures 10a, b display these mean values with respect to

incidence angle at different wind speeds. As expected, these curves which represent the graph

of A0 θ,v( ) with respect to v and θ  are smooth showing the ability of NN methodology to

estimate continuous functions from discrete (the incidence angles are quite discrete) and noisy

data sets. These mean values decrease with respect to the incidence angle. It is seen that the

dynamical range of the mean value of NN-GMF-H is larger than that of NN-GMF-V. For

both NN-GMFs the slope of the mean value with respect to the wind speed, which is quite

large at moderate wind speed (less than 7ms-1), reduces at higher wind speeds. This slope

change with the wind regime was found in Donelan and Pierson (1987) and observed by

Bliven et al., [1993] in wave tank experiments.

Figures 11a, b display the upwind minus downwind values (coefficient A1 θ,v( )) with

respect to the wind speed at different incidence angles for the NN-GMF-V and NN-GMF-H
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respectively. They are expressed in linear scale. The up-wind minus downwind values are

larger for NN-GMF-H than for NN-GMF-V, suggesting the horizontal polarization sigma-0 is

important in the wind retrieval procedure. At small incidence angles these values can be

negative which means that the down wind value can be larger than the up wind one.

Figures 12a, b display the upwind minus crosswind values (coefficient A2 θ,v( )) with

respect to the wind speed at different incidence angles for the NN-GMF-V and NN-GMF-H

respectively. These values are in linear scale. As they are quite large, the most probable wind

directions might be obtained quite easily in the wind retrieval procedure.

The coefficients A1 and A2 are shown in table 2 for different wind speeds and different

incidence angles. They are larger than those of ERS1 (Mejia et al, 1998) showing a benefit of

using the Ku band (NSCAT) rather than the C band (ERS1) for scatterometer.

Figure 13 displays a V-H-V NSCAT cone in a three-dimensional sigma-0 space

corresponding to the sigma-0 observed at the same wind cell by the three antennas for

incidence angles of 27°, 22° and 27° respectively.  In this figure, the mid antenna sigma-0

corresponds to the horizontal polarization sigma-0 in order to benefit of the large values of the

upwind minus downwind signal which enhances the separation of the two surfaces of the

cone. Note the strong non-linearity of the GMFs which is noticeable on the curvature of the

generatrix of the cone (a displacement along the generatrix corresponds to a change in the

wind speed) and to the variation of the position of the two surfaces with respect to each other

at different incidence angles. When compared to the ERS1 cone given in Mejia et al . [1998],

the NSCAT cone is flatter which is due to the arrangement of the NSCAT antennae which are

asymmetric (Fig. 1).

A global comprehension of the physics of the scatterometer can be viewed by drawing a

projection of the NSCAT cone like surface onto planes perpendicular to the generatix against

the data as done for ERS-1 by Stoffelen and Anderson (1997a). The problem is more

complicated than for ERS-1 since the NSCAT cone like surface is a surface in a four

dimensional space (the three vertical polarization sigma-0s and the horizontal one). In Fig 14
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we have drawn a simplified projection of the NSCAT cone in the V-V-H-V space against the

data corresponding to a wind speed of 8 ms-1 and incidence angles of 27°, 22°, 22° and 27. It

is seen that the NN-GMF cone correctly fits the data. Other plane sections have been drawn

showing similar results (not shown).

6. DETERMINATION OF THE SIGNAL ERROR BARS

The NN-GMFs have been determined under the assumption (see section 3) that each

observation 0
i is the sum of the true signal , j

o * , and a Gaussian noise, ei , with zero mean

and whose variance Var(ei ) is constant.

As shown in Section 5 the two NSCAT NN-GMFs accurately estimate the

corresponding j
o *. The second assumption (constant variance) is a rough approximation of

the reality. Besides the knowledge of Var(ei ) gives useful information on the response of the

scatterometer and the accuracy of the NN-GMFs. In the following we relax the above

assumption and estimate Var(ei ).

We assume that the variance of the observed sigma-0 is a function of the true sigma-0 ( j
o *),

of the wind vector   
r 
v  and of the incidence angle  . We estimate the conditional variance

Var(ei / v, i
0*

) by using two specific neural networks (denoted NN-VAR-H and NN-VAR-V)

which have similar architectures to these of the NN-GMFs. All the computations were done in

linear space. The inputs of the NN-VARs are , sin , cos  ,  sin  and siª , where v is the

wind speed and s iª the output of the dedicated NN-GMF which approximates j
o * (the NN-

GMFs). Both NN-VARs are fully connected MLPs with two hidden layers of 8 and 6

neurons. They have a single output with an exponential function giving Var(ei / v, i
0*

) . The

above computed variances are the sum of the variance var1 due to instrumental noise, the

variance var2 due to the model and the variance var3  due to geophysical phenomena (sea

state, rain, and temperature).
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NN-VAR-V and NN-VAR-H have been calibrated by using the calibration sets of the

NN-GMFs. But we now use the log likelihood cost function introduced in Section 3 (equation

2). We minimize (2) with respect to the weights of NN-VAR-H and NN-VAR-V, where the

control variables (the weights Wij of the MLPs) only affect the Var(ei / v, i
0*

) .

Using a similar methodology as described in Section 5, we perform a χ2-test on

Var(ei / v, i
0*

)  to check the accuracy and the consistency of the values obtained for

Var(ei / v, i
0*

) . Figure 15 displays the results for an incidence angle of 36.1°. It is seen that

the neural network methodology provides an estimate of the variance. When the test is

rejected we computed the ratio (rt ) of the empirical versus the NN-VAR standard deviation

which was always such that 0.5 < rt < 2.

In Figure 16 we plot (a) NN-VAR-V against NN-GMF-V and (b) NN-VAR-H against

NN-GMF-H at an incidence angle of 49°. We denote that the trend of the graphs of the NN-

VAR relationship are quadratic and of the form of equation (3). The coefficients α, β  and  γ

are dependent of the incidence angle. They are presented in table 3 at three different incidence

angles; they are in quite good agreement with those provided by previous authors (Pierson,

1997). As var1 of the order of 4% (Stoffelen and Anderson, 1997a) and var2 which can be

estimated using the techniques presented in Mejia et al (1998) is less than 10%, the variance

var3  is the most important one. Besides it is noticed that the wavy pattern of the curves is a

function of the wind azimuth and wind speed.

Figure 17 displays the signal to noise ratio (so called Kp) at three different incidence

angles with respect to the azimuth angle and at different wind speeds. The presented Kp are

mainly due to geophysical noise as discussed above. Clearly this ratio is a function of the

azimuth angle and the wind speed. The Kp values are quite high at low wind speed and

decrease at high wind speed. At constant wind speed, the highest Kp are at cross-wind

showing that the cross wind values are the most difficult to compute.

Figure 18  presents NN-GMF-V values for different wind speeds (white and black curves)
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with respect to the azimuth angle for two distinct wind speed ranges and at an incidence angle

of 36.1° against the NSCAT data set. In the same figure we plot bars corresponding to one

and two standard deviations for some wind speeds and azimuth angles, the standard deviation

being computed from NN-VAR results. It can be seen that the two NN-GMFs fit the data well

and that they provide the conditional mean of the measurement as predict by NN theory

[Thiria et al., 1993]. Moreover the estimation of the variance is quite realistic.

From the above results it is concluded that the NN-VARs give quite good estimates of the

variance of NN-GMFs. The variance depends on the incidence angle, the wind azimuth and

the wind speed. Previous estimations of the variance as those of the form described in

Section 3 (equation 3) seem a rough approximation of the reality. A more detail analysis of

the NSCAT variances will be given in a subsequent paper.

CONCLUSION

As shown in the statistical tests described above, the NSCAT GMFs estimated by using

neural networks can be considered as good models of the NSCAT GMFs. Their biases are

close to zero and their RMS are small except at low wind speeds. Due to the large temporal

and geographical ranges of the data set used for the calibration, they can be considered as

mean values corresponding to an average sea state and a mean sea surface temperature of

12°C.

In order to limit the strong non-linearity of the signal and owing to the large dynamical range

of the sigma-0 values which is of several orders of magnitude, we decided to code them in dB

as argued by Stoffelen and Anderson [1997a, b]. In the dB space the noise is not any more

Gaussian (Stoffelen and Anderson, 1997a, b, Rufenach, 1998). This coding strongly limits the

choice of potential cost functions used in the minimization phase since the log likelihood

function (2) does not satisfy the statistical criteria in the dB space for estimating the a-

posteriori probability P  of the mean of the sigma-0 set constrained by the model (W  and the
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noise variance Var(ei )). We thus chose a quadratic cost function of the form (5) which gives

a correct estimation of the mean when dealing with neural networks (Bishop, 1995). In fact

we have to face a dilemma: either to deal with a MLE estimation in the linear space or to

work in the dB space for reducing the complexity of the problem and minimize a simple

quadratic cost function. We choose the second solution from a practical point of view (the

data are given in dB) and because we do not have a satisfactory representation of the variance

of the noise.

The determination of the NN-GMFs is statistical and no a-priori hypotheses were done on

their behavior. The biharmonic dependence with respect to the azimuth and the upwind-

downwind modulation are retrieved by the two NN-GMFs. The up-wind and down wind

maxima are at 0° and 180°. The two minima may differ from 90° and 270° and may not be of

the same value. This slight difference is due to the fact that we do not impose the location of

these minima a-priori and is embedded in the error bars of the function, as shown in Section

6. A sensitivity study on the error model similar to this done with ERS1 scatterometer data

(Mejia et al, 1998) also shows some dispersion in the cross wind values. Thus we think that

the slight variation in cross wind values is more related to statistical estimation rather than a

geophysical phenomenon.

As the dynamical range of the NN-GMF-H is larger than this of NN-GMF-V, the use of

two polarizations brings useful information which should improve the wind retrieval as

already shown by the very good quality of the NSCAT winds retrieved by JPL NSCAT team.

Since these NN-GMFs are good estimators of NSCAT-GMFs and differentiable functions of

the variables ( ,   and ,) they might be used with efficiency in the wind retrieval algorithms

which are based on the inversion of the GMFs.

Due to the flexibility of neural networks we were able to compute the variance of the two

GMFs. In particular this leads us to compute the signal to noise ratio (so called Kp) which is a

function of the incidence angle, the azimuth angle and the wind speed. The Kp values are
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quite high at low wind speed and decrease at high wind speed. At a constant wind speed, the

highest Kp are at cross-wind showing that the cross wind values are the most difficult to

compute in agreement with the fact that the cross wind minimum are not exactly at 90° and

270°. Previous estimations of the variance as those of the form described in section 3

(equation 3) seem a rough approximation of the reality. This endorse our choice of not using

the log likelihood equation as a cost function.

Comparison of the present NN-GMFs with respect to data and to other GMFs are

presented in a companion paper (Bentamy et al, this issue). Effects of secondary phenomena

such as the long wave height and direction, and the sea surface temperature have been

neglected. Investigation of the effect of these parameters on GMF will be performed in a

subsequent work.

The two NN-GMFs and the two NN-VARs can be expressed as Fortran subroutines and

disseminated to potential users.
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 ANNEX 1

The bias is defined as:

BIAS =
σNN −GMF −σ ERS −1( )∑

N

and the RMS:

RMS =
σNN − GMF −σ ERS−1( )2∑

N

where: σNN − GMF is the sigma-0 computed by the GMF,

ERS −1 is the sigma-0 observed by NSCAT,

N is the number of collocated pairs.
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TABLES

WVC 11  VERTICAL POLARIZATION
-  mean incidence angle of 22.6º  -

Speed Interval N bias RMS
min

(m/s)
max

(m/s)
(dB) (dB)

2 4 21748 0.154 4.857
4 6 37874 0.271 1.999
6 8 40078 0.029 1.006
8 10 24745 -0.032 0.857

10 12 9172 -0.019 0.827
12 14 2594 0.112 0.806
14 16 1179 0.122 0.857
16 18 359 0.116 0.669
18 20 91 0.233 0.426
20 22 0 ----- -----
22 24 36 -0.133 0.639

WVC 07 VERTICAL POLARIZATION
-  mean incidence angle of 36.9º  -

Speed Interval N bias RMS
min

(m/s)
max

(m/s)
(dB) (dB)

2 4 7131 0.043 5.117
4 6 11501 0.012 3.246
6 8 12691 0.098 2.017
8 10 8610 -0.003 1.562

10 12 2711 -0.210 1.377
12 14 951 -0.082 1.352
14 16 246 0.436 1.416
16 18 87 0.510 0.794
18 20 60 0.254 0.875
20 22 16 0.385 0.647
22 24 32 0.281 0.392

WVC 02 VERTICAL POLARIZATION
-  mean incidence angle of 49.7º  -

Speed Interval N bias RMS
min

(m/s)
max

(m/s)
(dB) (dB)

2 4 20502 -0.016 5.639
4 6 33026 0.479 3.659
6 8 36815 0.558 2.511
8 10 23776 0.425 1.806

10 12 7985 0.095 1.580
12 14 2845 0.228 1.147
14 16 839 0.336 1.086
16 18 345 0.771 1.283
18 20 173 0.712 0.946
20 22 79 0.460 0.645
22 24 48 0.381 0.599

Table 1a : Bias and RMS of NN-GMF-V at three different incidence angles with
respect to the wind speed. N represents the number of data used in each wind
speed interval for calibrating NN-GMF-V.
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WVC 11  HORIZONTAL POLARIZATION
-  mean incidence angle of 22.6º  -

Speed Interval N bias RMS
min

(m/s)
max

(m/s)
(dB) (dB)

2 4 15085 -0.097 5.074
4 6 25412 0.234 2.223
6 8 26094 0.160 1.164
8 10 18555 0.125 0.933

10 12 6152 -0.007 0.836
12 14 2092 0.060 0.777
14 16 812 0.029 0.870
16 18 290 0.077 0.647
18 20 81 0.147 0.418
20 22 18 0.306 0.512
22 24 12 -0.134 0.297

WVC 07  HORIZONTAL POLARIZATION
-  mean incidence angle of 36.8º  -

Speed Interval N bias RMS
min

(m/s)
max

(m/s)
(dB) (dB)

2 4 15128 -0.498 5.613
4 6 24145 -0.054 3.392
6 8 26220 0.226 2.047
8 10 19186 0.194 1.622

10 12 6046 0.032 1.531
12 14 2355 -0.016 1.360
14 16 729 0.096 1.351
16 18 162 0.523 0.941
18 20 113 0.311 0.737
20 22 20 0.112 0.610
22 24 32 -0.119 0.392

WVC 02  HORIZONTAL POLARIZATION
-  mean incidence angle of 50.1º  -

Speed Interval N bias RMS
min

(m/s)
max

(m/s)
(dB) (dB)

2 4 15270 0.049 5.568
4 6 23745 0.023 4.359
6 8 27630 0.215 2.821
8 10 18462 0.100 2.150

10 12 6607 -0.073 2.293
12 14 2322 -0.016 2.193
14 16 973 -0.066 1.641
16 18 397 0.689 1.573
18 20 81 0.538 1.509
20 22 0 ------ -----
22 24 0 ------ -----

Table 1b : Bias and RMS of NN-GMF-H at three different incidence angles with
respect to the wind speed. N represents the number of data used in each wind
speed interval for calibrating NN-GMF-H.
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A1  VERTICAL POLARIZATION
vitesse Inc.20º Inc.25º Inc.30º Inc.35º Inc.40º Inc.45º Inc.50º

4 -0.0040 0.0729 0.1618 0.2187 0.2363 0.2271 0.2041
6 0.0057 0.0970 0.1858 0.2426 0.2650 0.2632 0.2475
8 -0.0168 0.0632 0.1327 0.1776 0.1983 0.2008 0.1914

10 -0.0337 0.0284 0.0774 0.1108 0.1297 0.1360 0.1325
12 -0.0427 0.0025 0.0351 0.0599 0.0784 0.0891 0.0919
14 -0.0464 -0.0152 0.0052 0.0242 0.0433 0.0590 0.0687
16 -0.0471 -0.0267 -0.0150 -0.0001 0.0202 0.0410 0.0578
18 -0.0461 -0.0338 -0.0280 -0.0159 0.0054 0.0308 0.0544
20 -0.0440 -0.0380 -0.0359 -0.0257 -0.0037 0.0252 0.0547
22 -0.0411 -0.0400 -0.0400 -0.0309 -0.0089 0.0222 0.0561
24 -0.0374 -0.0401 -0.0412 -0.0327 -0.0112 0.0206 0.0569

A2  VERTICAL POLARIZATION
Vitesse

(m/s)
Inc.20º Inc.25º Inc.30º Inc.35º Inc.40º Inc.45º Inc.50º

4 0.1320 0.1746 0.2529 0.3181 0.3570 0.3769 0.3865
6 0.1655 0.2309 0.3180 0.3835 0.4215 0.4411 0.4504
8 0.1910 0.2612 0.3393 0.3951 0.4276 0.4451 0.4538

10 0.2204 0.2831 0.3452 0.3885 0.4147 0.4296 0.4377
12 0.2511 0.3007 0.3452 0.3763 0.3963 0.4088 0.4164
14 0.2793 0.3147 0.3429 0.3627 0.3769 0.3873 0.3945
16 0.3025 0.3252 0.3394 0.3490 0.3576 0.3659 0.3729
18 0.3192 0.3316 0.3346 0.3352 0.3384 0.3443 0.3509
20 0.3288 0.3333 0.3278 0.3210 0.3190 0.3221 0.3280
22 0.3310 0.3297 0.3184 0.3058 0.2989 0.2990 0.3035
24 0.3263 0.3208 0.3059 0.2894 0.2784 0.2751 0.2777

Table 2a . A1 and A2 coefficients of the Fourier series expansion of the NN-GMF-V
as a function of the wind speed at different incidence angles.
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A1  HORIZONTAL POLARIZATION
vitesse Inc.20º Inc.25º Inc.30º Inc.35º Inc.40º Inc.45º Inc.50º

4 0.0054 0.0799 0.1609 0.2385 0.3048 0.3577 0.4002
6 -0.0030 0.0841 0.1791 0.2731 0.3573 0.4259 0.4775
8 0.0117 0.1040 0.1982 0.2864 0.3627 0.4245 0.4720

10 0.0152 0.1082 0.1994 0.2804 0.3462 0.3962 0.4323
12 0.0046 0.0938 0.1802 0.2552 0.3141 0.3563 0.3842
14 -0.0131 0.0694 0.1496 0.2193 0.2737 0.3119 0.3360
16 -0.0327 0.0427 0.1166 0.1816 0.2328 0.2691 0.2919
18 -0.0506 0.0185 0.0871 0.1484 0.1975 0.2329 0.2555
20 -0.0645 0.0001 0.0650 0.1238 0.1718 0.2070 0.2300
22 -0.0730 -0.0110 0.0520 0.1097 0.1574 0.1928 0.2164
24 -0.0756 -0.0145 0.0482 0.1061 0.1542 0.1904 0.2147

A2  HORIZONTAL POLARIZATION
vitesse Inc.20º Inc.25º Inc.30º Inc.35º Inc.40º Inc.45º Inc.50º

4 0.0461 0.1271 0.1838 0.2157 0.2279 0.2271 0.2199
6 0.1448 0.2156 0.2650 0.2930 0.3044 0.3053 0.3008
8 0.2276 0.2920 0.3370 0.3607 0.3669 0.3619 0.3511

10 0.2763 0.3357 0.3782 0.4010 0.4061 0.3987 0.3841
12 0.2967 0.3512 0.3917 0.4145 0.4206 0.4138 0.3990
14 0.2993 0.3495 0.3878 0.4107 0.4182 0.4132 0.3998
16 0.2922 0.3387 0.3751 0.3977 0.4065 0.4034 0.3921
18 0.2803 0.3238 0.3586 0.3811 0.3908 0.3895 0.3801
20 0.2664 0.3077 0.3412 0.3637 0.3743 0.3746 0.3671
22 0.2523 0.2918 0.3245 0.3471 0.3588 0.3605 0.3546
24 0.2386 0.2769 0.3092 0.3322 0.3448 0.3479 0.3437

Table.2b . A1 and A2 coefficients of the Fourier series expansion of the NN-GMF-H
as a function of the wind speed at different incidence angles.
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Fit of the Variance by a second order Polynome

WVC Mean
Incidence

angle

11 22.19° 3.863e-03 1.944e-04 1.449e-02
07 36.31° 2.536e-02 3.918e-03 1.200e-04
02 49.63° 2.523e-02 2.075e-03 1.241e-05

Table 3 : Coefficients α, β, γ,  given by a least square fit of the variance
NN-VAR-V by a second order Polynome corresponding to equation 3
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FIGURES

Fig. 1 : NSCAT antenna illumination pattern and the two swaths.
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Fig. 2 : Definition of geophysical parameters: θ the incidence, χ the azimuth angle.
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Fig. 3 : Architecture of the neural networks : (a) NN-GMF-H, (b) NN-GMF-V.
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Fig. 4 : Student Test for the NN-GMF-V at an incidence angle of 36° with respect to the wind
azimuth and for different wind speeds. When the pixels are white, the test is satisfied with a
confidence level of 95% (at a significance level of 5%).
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Fig. 5 : Scatter plots of NN-GMF-V versus the NSCAT sigma-0 at three incidence angles : (a)
θ=22°; (b) θ=36°; (c) θ=49°5. The darker the area, the denser the data number. The scale is
given in thousands of points.
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Fig. 6 : Scatter plots of NN-GMF-H versus the NSCAT sigma-0 at three incidence angles. (a)
θ=22°; (b) θ=36°; (c) θ=49°5. The darker the area, the denser the data number. The scale is
given in thousands of points.
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Fig. 7 : Sigma-0 (in dB.) of the NN-GMF-H function with respect to the azimuth angle at
different wind speeds at three incidence angles. (a) θ=22°; (b) θ=36°; (c) θ=49°5.
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Fig. 8 : Sigma-0 (in dB.) of the NN-GMF-V function with respect to the azimuth angle at
different wind speeds at three incidence angles. (a) θ=22°; (b) θ=36°; (c) θ=49°5..
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Fig. 9 : Mean values (A0 Fourier coefficient) of (a) NN-GMF-V and (b) NN-GMF-H versus
the wind velocity at different incidence angles. These values are given in dB.
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Fig. 10 : Mean values (A0 Fourier coefficient) of (a) NN-GMF-V and (b) NN-GMF-H versus
the incidence angle at different wind velocity. These values are given in dB.
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Fig. 11 : Up-wind minus down-wind values (A1 Fourier coefficient) of (a) NN-GMF-V and
(b) NN-GMF-H versus wind velocity at different incidence angles. All these values are given
in linear scale.
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Fig. 12 : Up-wind minus cross wind values (A2 Fourier coefficient) of (a) NN-GMF-V and (b)
NN-GMF-H versus wind velocity at different incidence angles. All these values are given in
linear scale.
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Fig. 13 : Three-dimensional view of a NN-GMF surface corresponding to wind vector
solution in the sigma-0 space (σ1, σ2, σ3), where σ1 and σ3 correspond to the vertical

polarization at an incidence angle of 27° (fore and aft beams respectively) and  σ2   to the
horizontal polarization at an incidence angle of 22° (mid beam).
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Fig 14 : Simplified projection of the NSCAT cone in the V.V.H. V space against the data
corresponding to a wind speed of 8 ms -1 and incidence angles of 27°, 22°, 22° and 27°. The
darker the shade, the denser the measurements. The scale is given in thousands of points.
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Fig. 15: Chi-2 Test for the NN-GMF-V at an incidence angle of 36° with respect to the wind
azimuth and for different wind speeds. When the pixels are white, the test is satisfied with a
confidence level of 95% (at a significance level of 5%).
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Fig. 16: (a) NN-VAR-V against NN-GMF-V, (b) NN-VAR-H against NN-GMF-H with
respect to the wind speed at an incidence of 49°. The trend of the graph (heavy black line) of
the NN-VAR relationship is quadratic and of the form of equation (3). The curly pattern of
the curve (light line) is a function of the wind azimuth for different speed.
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Fig 17 : Signal to noise ratio (so called Kp) corresponding to NN-GMF-V at three different
incidence angles (22°, 36°, 49°) with respect to the azimuth angle and at different wind
speeds.
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Fig 18 :NN-GMF-V values for different wind speeds (white and black curve) with respect to
the azimuth angle for wind speed ranges of 12ms-1 ± 1ms-1 and 14ms-1 ± 2ms-1 at an incidence
angle of 36.1° against the NSCAT data. In the same figure we plot bars corresponding to one
and two standard deviation for some azimuth angles, the standard deviation being derived
from NN-VAR results. The darker the shade, the denser the measurements. The scale is given
in thousands of points.


