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Abstract

Non linear regression and non linear approximation are widely used for data

analysis. In many applications, the aim is to build a model linking observations

and parameters of a physical system. Two cases of increasing complexity have been

studied: the case of deterministic inputs and noisy output data and the case of noisy

input and output data. We present in this paper a general formulation of non linear

regression using multilayered Perceptrons. Regression algorithms are derived in the

three cases. In particular, a generalized learning rule is proposed to deal with noisy

input and output data. The algorithm enables not only to build an accurate model

but also to re�ne the learning data set. The algorithms are tested on two real-world

problem in Geophysics. The good results suggests that multilayered Perceptrons can

emmerged as an e�cient nonlinear regression model for a wide range of applications.

Non linear regression, Multi-layered Perceptrons, Back-propagation, Uncertainties.

1 Introduction

Non linear regression and non linear approximation are widely used for data analysis in

particular in Geophysical sciences as Meteorology and Oceanography. In many applica-

tions, the aim is to build a non linear model between two characteristic parameters x and

y of a physical system such as:

y = G(x) (1)

Generally, it is possible to collect observations to have a relevant statistical set of

couples (xobs;yobs). Both parameters are obtained by some experimental devices and are
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approximated measurements of actual values. It can be assumed that the observed data

(xobs, yobs) are a realization of random variables with probability density functions

p(x;y) = p(y=x)p(x) (2)

Denoting respectively by ytrue and xtrue the �true� �elds, it is generally assumed that

a particular observation is written as the sum of the actual value ytrue of y a�ected by a

noise �:

y
obs

= y
true

+ � (3)

In the same way, x can be described as the �true� parameters spoilt by an additive

noise �, such as:

x
obs

= x
true

+ � (4)

The central point of this study is to built a modelG (which is called the forward model

hereafter) which is optimal in the sense of a nonlinear least-square criterion and which

takes into account the uncertainties on the observations. This implies that the problem

to solve is to determineG such as:

y
true

= G(x
true

) (5)

This is a nonlinear regression problem which can be tackled by several techniques.The

Bayesian formalism allows a general formulation of the problem, taking into account most

of the di�erent uncertainties appearing during the regression process. By doing speci�c

hypothesis on the regression function, on the nature of the di�erent noises (� and �) and

on the accuracy of the estimator, it is possible to retrieve the classical regression methods

used in Statistics. They give rise to di�erent modelizations which include parametric and

non parametric models.

The hypothesis on the noise probability density functions are determinant. Most

of the time, it is supposed that these density functions are Gaussian. In such a case,

the maximum likelihood model provides simple expressions derived from the least mean

squares criterion. Many regression methods are based upon this approach. Their main

di�erence lies in the functions used during the regression process (linear, polynomial : : :

). The Neural approach by using Multi-layered Perceptrons (MLP) have proved to be

e�cient nonlinear approximators [4] [10] [19]. If many theoretical results on these models

are now available, there is still a need to formalize the neural approach and to show its

ability to systematically account for uncertainties. This is the basic motivation of this

paper.

In this work, we show how the Bayesian formalism with Gaussian assumptions leads to

di�erent neural models of increasing complexity. Di�erent cases are considered depending
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on whether the noise appears on data: only the output y can be noisy or both the input

x and the output y, we consider the general case where the output noise depends on

the input x. The paper introduces the di�erent neural models which allow to deal with

the di�erent cases together with their learning algorithms. As the handling is sometimes

di�cult, we detail the operational phases for each of them.

The simplest neural model corresponds to weighted least square regression minimiza-

tion and can be used when the input x is deterministic and there is no speci�c knowledge

about the density function of the output noise. Some fundamental results about this case

will be presented in section 2.

A more sophisticated model allows us to introduce di�erent hypothesis on the noise

data distributions. Section 3 presents the maximum likelihood formulation and shows

how such a modelization allows to estimate the output uncertainties (covariance matrix

of the noise) in case of non noisy input observations xobs and noisy ouput observations

y
obs.

The more general problem is to determine the regression function when dealing with

both noisy x and y data. As this case requires a more sophisticated neural model, the

models' behavior is presented in details using simulated data.This problem is presented

in Section 4 where a general methodology to use MLP regression is derived.

The application of non linear regression using MLPs is discussed in Section 5. The

main theoretical results and the e�ciency of the neural algorithms are illustrated in two

actual geophysical problems (the NSCAT scatterometer transfer function and the inversion

of Ocean color) .

2 Least Mean Square and MLP

In this section, we address the easiest problem which is to assume that the inputs x are

known without error (� = 0).

It is well-known that Multi-layered Perceptrons represent a family of functions from

R
p to Rq:

R
p
�! R

q

x 7�! y = F(W;x) (6)

where W is the matrix of weights, which allows the regression of a multi-dimensional

variable y with respect to a multi-dimensional variable x. The regression consists in

determining the weights W of the function F to estimate G. In the following sk will

denote the input of neuron k, fk its transfer function and ok its output. So we have:

ok = fk(sk) (7)

If every transfer function fk is continuous and derivable, the MLPs represent a family of

functions which is suited for non linear regression. Since the late 1980, several papers

described how they could be used [7] [8] [11] [18] [30]. The basic results of these works
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are that any multi-dimensional continuous function de�ned on a compact set can be

approximated by a MLP with (at least) one hidden layer and linear output neurons.

Learning generally consists in determining the weightsW by minimizing a cost function

i.e. a measure of the mismatch between target values and predicted values [4]. A simple

expression of this function is the generalized least square error function:

R(W) =

ZZ �
y� F(W;x)

�
T

M(x)

�
y � F(W;x)

�
p(x;y) dx dy (8)

Where M(x) is a symetric de�ne positive matrix.

Often the matrix M(x) is set to the inverse of the covariance matrix Cy(x) of the

conditional random variable Y=x. In general, the covariance matrix C�1
y

(x) is a function

of x, its diagonal coe�cients representing the variance of the noise components added to

x and the others terms their covariance. In appendix, it is shown that the minimization

of (8) provides a minimum of:

Z �
E(Y=x)� F(W;x)

�T
C

�1
y
(x)

�
E(Y=x)� F(W;x)

�
p(x)dx (9)

Where E(Y=x) is the conditional mean vector of the observation yobs.

In equation (9) it is shown that a good minimum of (8) gives a good approximate of:

E(Y=x) =

Z
yp(y=x) dy (10)

and that the outputs of the MLP are such that:

F(W;x) � E(Y=x) (11)

In some cases, when Cy(x) = Cyñ does not depend on x, it is possible to give some

information on the accuracy of the approximation. The cost function R(W) becomes:

R(W) =

qX
j=1

Z �
u
T

j
:E(Y=x)� u

T

j
:F(W;x)

�j

�2
p(x) dx+ constant (12)

where U = (u1;u2; : : : ;uq) is the orthonormal matrix of the eigenvectors of Cy and

�
2
j
the eigen value associated to uj . In this case too, equation (12) shows that the

MLP approximates the mean value of y conditionally to x and that the accuracy of

this approximation can be measured on the principal axes uj with variance �
2
j
. The

maximum of accuracy can be obtained on the axes where �2
j
are the smallest. However,

the theoretical cost function R given by of equation (12) is oftendi�cult to get. Rather, a

�nite set of independant observations D =

�
(x

obs

i
;y

obs

i
); i = 1 � � �N

obs
	
can be obtained.

Learning is done on this set by minimizing the empiric risk de�ned by:

Remp(W) =

N
obsX

i=1

Ri (13)
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where

Ri =

�
y
obs

i
� F(W;x

obs

i
)

�
T

C
�1
y

(x
obs

i
)

�
y
obs

i
� F(W;x

obs

i
)

�
(14)

which is a discrete approximation of the theoretical cost function R given by equation (9).

When the regressor F(W;x) is an MLP, the accuracy of the approximation may be

a�ected for two reasons. On one hand, the model may be badly chosen (too few or

too many weights, inappropriate set of functions, inacurate values of the regularization

parameters ...). On the other hand, the observation set may be inconsistent with the true

distribution of the variable to regress. However, if these two constraints are overcome,

the general result of relation (11) holds. The minimum of (13) with repect to the weights

(W) is determined by using back-propagation-to-weights for which several algorithms

exist, as the steepest-gradient descent [21] [4] [10] [19] the conjugate-gradient descent and

(quasi)Newton methods [2].

The underlying idea of back-propagation with MLP is to reach the minimum of an

appropriate cost function Remp using a gradient procedure. This is done by computing:

� Phase 1: the partial derivatives with respect to the input of the neurons of the

output layer (denoted initial errors hereafter)

� Phase 2: in a recursive way, the partial derivatives with respect to the MLP's

parameters .

Phase 2 which is the recursive part of the algorithm depends only on the MLP's architec-

ture. The process is initialized during phase 1 which computes the initial errors. So the

minimization of two di�erent cost functions R which uses the same MLP's architecture

only di�ers on the initial values of the recursion.

Assuming that the output units are linear, for a given xobs
i

the initialization of the

(Phase 1) is given by :

@Ri

@S
= �2C

�1
y

�
x
obs

i

� �
y
obs

i
� F

�
W;x

obs

i

��
(15)

where S = (s1; : : : ; sq)
T denotes the vector whose components are the inputs of the neu-

rons of the last layer. As shown by equation (15), minimizing the cost function Ri(W) re-

quires the knowledge of the variance-covariance matrix Cy(x
obs

i
). If the covariance matrix

Cy(x
obs

i
) is known the learning back-propagation algorithm is no more than a stochastic

gradient algorithm which minimizes the weighted Least Mean Square expression.

When the output noise does not depend on x and is constant (Cy(x
obs

i
) = �

2
I), �2

is estimated at the end of the learning phase by Remp. For an output noise depending

on the inputs, this leads to errors when estimatingW, the same strengh are imposed to

each output range without paying any particular attention to its variability. The learning

algorithm tends to over�t the regions with high variability at the expense of regions

presenting small variability.
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3 Output noise determination

The main goal of this section is to introduce the Bayesian formalism and to address the

problem of determining the conditional probability density function of the output noise

p(y=x). This paper will be restricted to the case of Gaussian noises and to MLP regressors.

Other neural models dedicated to more general probability density function are available,

the most popular are the multi-expert models proposed by Jordan [13], Weigend [28] and

the mixture density networks proposed by Bishop [3] which allow to model more general

conditional probability density functions. Their major advantages appear when dealing

with multi-valued regression funtions. As these models can be used to resolve ambiguities,

they are good candidate for solving inverse problems [26] [16] [20]. However, the paper

focus on the direct problem where only single-valued function are considered and the more

di�cult problem of multi valued regression will not be addressed here.

3.1 The general Bayesian framework

In the following, we assume that there is no uncertainties on the input (� = 0). Then, for

each inputxi, we have:

x
obs

i
= x

true

i
. On the other hand, y is spoilt by an additive noise such as:

y
obs

i
= y

true

i
+ �i (16)

The true �eld of y, ytrue
i

, represents the mean of the conditional random variable

Y=x
obs

i
and our goal is to estimate the theoretical relation between xtrue

i
and ytrue

i
.

The bayesian paradigm [14] [24] aims to estimateW by maximizing the probability cor-

responding to most likely parameters conditionally to the observations. Using the Bayes

criterion, one have:

p(W=D) =
p(D=W)p(W)

p(D)
(17)

Under this assumption, maximizing Eq. (17) is equivalent to minimizing:

�2 ln

�
p(W=D)

�
= �2 ln

�
p(D=W)

�
� 2 ln

�
p(W)

�
+ constant (18)

The probability of data p(D) does not depend on W and can be removed from the

minimization process. In the case of independent observations, we can write:

ln

�
p(D=W)

�
=

N
obsX

i=1

ln

�
p

�
(x

obs

i
;y

obs

i
)=W

��
(19)

6



which yields:

ln

�
p(D=W)

�
=

N
obsX

i=1

ln

�
p(y

obs

i
=x

obs

i
;W)

�

+

N
obsX

i=1

ln

�
p(x

obs

i
=W)

�
(20)

The �rst term of the right hand side of Eq. (20) is the probability that yobs
i

comes

from x
obs

i
when generated by the neural model F(W; :). Assuming an acceptable model

we have:

E(Y=x
obs

i
) � F(W;x

obs

i
) (21)

Since xobs
i

are not spoiled by an additive noise, the second term in the right hand

side of equation (20) does not depend on W. The assumption of a Gaussian output

noise with zero mean and covariance matrix Cy(x) leads to the simpli�ed expression of

ln

�
p(y

obs

i
=x

obs

i
;W)

�
:

�2 ln

�
p(y

obs

i
=x

obs

i
;W)

�
=

�
yi � F(W;xi)

�T
Cy

�1
(xi)

�
yi � F(W;xi)

�
� ln

�
det

�
Cy

�1
(xi)

� �
+ q ln 2� (22)

Using the previous equations, one can de�ne the empirical risk:

Remp(W) = �2 ln

�
p(W=D)

�
=

NobsX
i=1

Ri � 2 ln p(W) + constant (23)

with

Ri(W) =

�
y
obs

i
� F(W;x

obs

i
)

�
T

C
�1
y

(x
obs

i
)

�
y
obs

i
�F(W;x

obs

i
)

�
� ln

�
det

�
C

�1
y

(x
obs

i
)

� �
(24)

The additional term ln p(W) which appears in the expression of Remp(W) (23) is a regu-

larization term. It corresponds to an additional constraint on the weight distribution. If

one assumes a Gaussian prior information onW, this term corresponds to a weight decay,

for uniformly distributedW it can be removed. The �rst term in the right-hand side of Ri

is the quadratic error de�ned in equation (14). Equation (24) appears as a generalization

of equation (14), the second term of the expression being introduced to take into account

the output noise. According to the case, this term can be known or not: If not, it has to

be considered and estimated during the minimization process.
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3.2 Determination of the covariance-matrix

3.2.1 General formulation

The resolution of the general regression problem is equivalent to the estimation of the

mean vectors y and the covariance matrix Cy(x). It leads to the determination of an

adequate MLP architecture together with the con�guration of weights which minimizes

equation (24) under the hypothesis of unknown covariance matrix.

Under the same hypothesis (a Gaussian output noise) a general framework for the

determination of the covariance-matrix using MLP has been proposed by Williams [29].

The learning algorithm consists in estimating the mean value E(Y=x
obs

i
) on one hand and

each coe�cient of C�1
y
(x

obs

i
) on the other hand which gives the parameters of the Gaussian

distribution p(Y=x). This type of algorithm was independently studied in [17] and [3], the

only di�erence being that these authors give the results for independent variables (zero

covariance coe�cients). To solve this problem, Williams estimates the coe�cients of the

Cholesky decomposition of the variance-covariance matrix:

C
�1
y

(x) = A
T
(x)A(x) where A(x) = [aij(x); i < j)] is an upper triangular matrix

with strictly positive coe�cients on the diagonal. Using these notations, equation (24)

becomes:

Ri(W) =

�
y
obs

i
� F(W;x

obs

i
)

�T
A

T
(x

obs

i
)A(x

obs

i
)

�
y
obs

i
� F(W;x

obs

i
)

�
� 2

qX
j=1

ln

�
ajj(x

obs

i
)

�
(25)

The architecture is designed with respect to the complexity of the problem : the size of

the input layer being the dimension of x.The adequate architecture of the MLP has an

output layer made of three di�erent sets of neurons.

In the output layer, three di�erent sets of neurons (M, D, C) represent the di�erent values

to be estimated:

� M estimate the q distinct mean values E(Y=xobs
i

) using linear neurons.

� D stand for the q diagonal coe�cients aii(x) of A; as these q values are positive the

neurons of D use exponential transfert function in order to ensure positive values.

� C estimates the
q(q�1)

2
correlation coe�cients (akj(x); k < j) using linear neurons.

The output layer has thus
�
2q +

q(q�1)

2

�
neurons whose outputs are distributed in three

di�erent sets which are denoted by:

O
M

= fo
M

j
(W;x

obs
) ; j = 1 � � � qg

O
D
= f o

D

j
(W;x

obs
) ; j = 1 � � � qg

O
C
= f o

C

kj
(W;x

obs
) ; k<j; j= 1 � � � qg

For the inputs of the neurons of the output layer we use similar notations, replacing o by

s and O by S, for the three di�erent sets S = fS
M
; S

D
; S

C
g. As neurons of type M and
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C have linear transfer function and neurons of type D have exponential transfer function

we have:

� o
M

k
= s

M

k

� o
C

kj
= s

C

kj

� o
D

k
= e

s
D

k

To simplify the notations we denote by xobs the particular observation xobs
i

and R the

related cost function, omiting the index i.

For xobs we introduce the related vector of error:

� =

�
�
M

j

�
=

�
y
obs
�O

M
�
, j = 1 � � � q.

If we denote by eA =

�eakj� the estimated matrix (whose elements are the output of C

and D) equation (25) becomes:

R(W) = �
T eAT

(x
obs

)eA(x
obs

)�� 2

X
k2D

s
D

k
(26)

The learning algorithm which minimizes (26) proceeds by back-propagation. For each

output neuron, the back-propagation algorithm requires the computation of the initial

errors: @R

@S

@R

@S
M

= �2 eAT eA�
M (27)

@R

@s
C

kj

= 2�
M

j

� k�1X
l=1

o
C

ik
�
M

l
+ o

D

k
�
M

k

�
(28)

@R

@s
D

k

= 2o
D

k
�
M

k

� k�1X
j=1

o
C

kj
�
M

j
+ o

D

k
�
M

k

�
� 2 (29)

3.2.2 The algorithm

In the following we describe and comment the algorithm used in order to minimize equa-

tion (26). The algorithm proceeds in three phases, the phase 1 and 2 being run iteratively.

Then, phase 3 is completed.

� Phase 1 : the aim of this phase is to provide a good estimate of the mean value

E(Y=x
obs

) before going to phase 2 and 3. So this phase deals with neurons of type

M. During this phase, it is assumed that eA(x
obs

) does not depend on the weightsW.

According to that its coe�cients are left constant. Only the �rst term of equation

(25) is minimized. It corresponds to the quadratic error (14). The initial errors on

the q outputs of type M are initialized with equation (27) before running the back-

propagation procedure. The �rst time phase 1 is run it is assumed that fakj(xobs) = 0

for k < j and that fajj(xobs) = 1, Remp is just the classical square error. In further

iterations, the coe�cients of eA(x
obs

) are �xed at values computed from phase 2.
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� Phase 2 : In this phase, the outputs of the q neurons of type M are frozen assuming

that they do not depend on W. They are frozen at the values Fj(W
�

;x
obs

), where

W
� are the weights computed during phase 1. The remaining q(q+1)

2
outputs of type

C and D compute the corresponding coe�cient of eA(x
obs

). Their initial errors are

initialized with equation (28, 29) before running back-propagation. Therefore, this

phase aims to improve the accuracy of the coe�cient of matrix eA.
� Phase 3 : During phase 3, we minimize the error function (26). All network outputs

are variable and we initialize the back-propagation using equation (27) for output

neurons of type M, Equation (28) for output neurons of type C and equation (29)

for neurons of type D.

Learning gives an approximation of E(Y=xobs) with an accuracy which can be analysed

as in Appendix.

In the particular case where the noise components are independent, the matrix C�1
y

is

diagonal and the algorithm for noise determination is more simple. The matrix A is

diagonal with diagonal coe�cients ajj =
1
�j
, where �j is the standard deviation of the jth

component of the output noise. In this case the output layer has no neurons of type C.

The initialization of the backpropagation algorithm becomes:

for k 2 M :
@R

@s
M

k

= �2
�
M

k

(o
D

k
)
2

for k 2 D :
@Ri

@s
D

k

= 2

�
o
D

k

�2 �
�
M

k

�2
� 2

This case was handled by [17]

Di�erent architecture can be used for the required estimation which allows to introduce

some knowledge about the particular problem. For example, when the output noise �

depends on both the input x and the output y, it is more convenient to use two separate

MLPs. The �rst MLP estimates the mean and the second the covariance matrix. An

exemple of the method is presented in section (5). Other architectures have been proposed.

For example, [17] propose a single network with three types of weights:

� weights accounting for all outputs of the network ( both Fj(W;x
obs

i
) and �j(x

obs

i
) )

� weights accounting only for outputs Fj(W;x
obs

i
)

� weights accounting only for �j(x
obs

i
).

The �rst type of weights enable to correlate Fj(W;x
obs

i
) and �j(x

obs

i
), since, in prac-

tical, such a correlation exists. On the other hand, the two other types enables to give a

freedom degree to each output cells group.
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3.2.3 Validation procedures

In this section we propose some qualitative approach for validating the �rst and second

order moments given by the networks at the end of the learning processes. In the following

we assume that the number of observations is large enough and is representative of the

local dispersion of the data, without such assumption, estimating the covariance matrix

is not statisticaly signi�cant.

At the end of the learning procedure, an important task is to validate the accuracy of

the results given by the MLP. If the size of the learning data set is large enough, the use of

multivariate statistical tests can give some relevant informations about it. In particular,

they allow to check the accuracy of the MLP, that is its ability to predict the conditional

mean E(y=x) and the covariance matrix Cy(x).

This is done by:

� partitioning in small bins the inputs of the learning data set

fx
obs

i
; i = 1; : : : ; N

obs
g which corresponds to the projection of the learning set onto

the Rp space. The center of bin B is denoted xB.

� estimating the empirical mean y
B
and the empirical covariance matrix �B using

the sample fyobs
i
nx

obs

i
2 Bg of size NB.

� computing the MLP outputs at the center of the bin: �B = F(W;xB).

� if the covariance matrix has been estimated by the MLP, using its outputs for

determining the estimated covariance matrix �B at the center of the bin xB.

� performing test hypothesis.

Clearly the bin size is an important factor, according to the results concerning Kernel

regression technics [9]. One has to choose a good compromise between the bandwith of

the bin and the number of observations lying into the bin. In the following we assume

that each bin has enought data in order to estimate the mean and the covariance matrix:

estimating second order statistics requires more data than determining the mean. We use

multivariate statistical tests [1] to validate the network results.

The �rst problem is thus to test the hypothesis that F(W;xB) represents an estimate

of E(y=xB) at a con�dence level of �. This is done by performing a Hotelling's T 2 test with

a signi�cance level �. This test consists in computing: T 2
= N

B
�
yB��B

�
T

�
�1

B

�
yB��B

�
The critical value of T 2 can be determined by the relation: F =

NB�q

q(NB�1)
T
2 which is a Fisher

statistic with q and (NB � q) degrees of freedom and allows to test the null hypothesis

that �
B
is equal to the mean of the gaussian distribution

�
y
obs

i
nx

obs

i
2 B

	
. Such a test

gives an adequate way to appreciate the validy of the results provided that the size of the

learning data set is large enough. For MLP's with a single output (scalar regression), this

test is no more than the classical Student t-test.

When the covariance matrice C�1
y

(x) has been estimated by MLPs it is possible to use

classical multivariate tests as Hotelling's T 2 [1] which tests the hypothesis that the com-

puted covariance matrix is equal to the covariance matrix of the distribution. However,

this test presents some numerical drawbacks. A good compromise is to decorrelate the
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sample related to each bin B with respect to its empirical covariance matrix de�ning the

sample:
�
zi = �

�1=2

B

�
y
obs

i
� y

B
)ny

obs

i
2 B

	
. and to use the classical univariate �2 tests.

As z is assumed to be Gaussian with unit covariance matrix, one can perform the uni-

variate T 2 test on each sample made with one component of z. In this case one test the

hypothesis that the sample has unit variance.

4 The generalized regression problem

4.1 The general Bayesian framework

An important generalization of the regression problem is to take into account uncertainties

on both input x and output y. As in the previous section, the Bayesian formalism provides

a methodology to achieve the estimation of the maximum likelihood using assumptions

on the uncertainties distribution laws. A �rst formalisation of the problem was proposed

by Weigend and Zimmermann [27] In this section, it is assumed that both noises have

known densities:

x
obs

i
= x

true

i
+ �i (30)

y
obs

i
= y

true

i
+ �i (31)

where �i and �i are zero mean random variables with known covariance matrix Cx and

Cy(x).

The problem is to estimate the theoretical relation G : x
true

7�! y
true attainable by a

set D =

�
(x

obs

i
;y

obs

i
); i = 1 : : : N

obs
	
, using the available knowledge about noises. This

relation is modeled by a MLP denotedF(W; :), the parameters W being unknown. In

fact, to solve this problem, one have to estimate the set W together with the values

x
true. Estimating the ytrue is straightforward since, following the results previously given,

y
true is obtained by F(W;x

true
). If a �good� estimate xest

i
of xtrue

i
can be obtained, the

function F(W; :) is derived by learning the set of observations: D
0

=

�
(x

est

i
;y

obs

i
); i =

1 : : : N
obs
	
.This enables us to have a good estimate of the true observations ytrue. The

problem is therefore to have both good estimates for xest
i

and good values for the W

parameters.

The Bayesian approach consists, in this case, in maximizing:

p

�
W; fx

est

i
; i = 1 : : : N

obs
g=D

�
=
p

�
D=W; I

est
�
p

�
W; I

est
�

p(D)
(32)

where we have to estimateW and I
est

= fx
est

i
; i = 1 : : : N

obs
g.

12



Eq. (32) can be written:

ln

�
p

�
W; I

est
=D

��
=

N
obsX

i=1

ln

�
p

�
y
obs

i
=x

obs

i
;W; I

est
��

+

N
obsX

i=1

ln

�
p

�
x
obs

i
=W; I

est
��

+

N
obsX

i=1

ln

�
p

�
W; I

est
��
� ln

�
p(D)

�
(33)

This can be simpli�ed, noticing that:

p

�
y
obs

i
=x

obs

i
;W; fx

est

i
; i = 1 : : : N

obs
g

�
= p

�
y
obs

i
=x

obs

i
;W;x

est

i

�
p

�
x
obs

i
=W; fx

est

i
; i = 1 : : : N

obs
g

�
= p

�
x
obs

i
=x

est

i

�
p

�
W; I

est
�

= p

�
W=I

est
�
:p(I

est
)

We assume that ln

�
p

�
W=I

est
��

does not depends on xest and corresponds to the

regularization factor discussed in the previous section. As Iest is assumed to be uniformly

distibuted and ln

�
p(D)

�
is also a constant, maximizing Eq. (33) is equivalent to minimize:

�2 ln

�
p

�
W; I

est
=D

��
= �2

N
obsX

i=1

ln

�
p

�
y
obs

i
=x

obs

i
;W;x

est

i

��

�2

N
obsX

i=1

ln

�
p

�
x
obs

i
=x

est

i

��
+ constant (34)

The cost function takes the form of:

Remp(W;x
est
) =

N
obsX

i=1

Ri(W;x
est
)� 2 ln

�
p(W)

�
+ constant (35)

with

Ri

�
W;x

est

i

�
=

�
y
obs

i
� F(W;x

est

i
)

�T
C

�1
y

(x
est

i
)

�
y
obs

i
� F(W;x

est

i
)

�
+ ln

�
det

�
Cy(x

est

i
)

� �
+

�
x
obs

i
� x

est

i

�T
C

�1
x

�
x
obs

i
� x

est

i

�
(36)

As for the algorithm presented in section (3.2.2), this cost function is iterativelyminimized

by estimating successively the weights, computing the true observation ytrue
i

= F(W;x
est

i
)

and improving subsequently xest
i
.
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The optimization scheme can be done by a gradient back-propagationalgorithm using the

computation of the partial derivatives with respect toW and xest
i

of the cost function. The

third term of Eq. (36) does not depend onW, the computation of the partial derivatives

with respect to the weights corresponds to formula presented in section 3.2.1. The partial

derivatives of Ri with respect to the model parameters xest are computed as follows:

@R

@x

�
x
est

i
;W

�
= �2J

T
C

�1
y

�
x
est
��
y
obs

i
� F

�
W;x

est

i

��
�2C

�1
x

�
x
obs

i
x
est

i

�
(37)

where J =

�
Jkj =

@Fk

@xj

�
is the Jacobian matrix of F with respect to the model para-

meters xest.This formula is an approximation of the true value of @R

@x

�
x
est

i
;W

�
where the

partial derivatives of

@C
�1
y

@x

�
x
est

i
;W

�
and

@ln

�
det

�
Cy

�
x
est

i

��
@x

�
x
est

i
;W

�
are neglected. At this time, it is assumed that the coe�cients of the covariance matrix

Cy

�
x
est

i

�
are constant. The Jacobian J is computed by back-propagation to input [12].

Accounting for the input and output noises leads to a revised version of the Gradient

Back-Propagation Algorithm (GBP) which proceeds in two steps: the �rst one estimates

the weights and the second one estimates the values of xtrue.

4.2 The Generalized Back-Propagation (GBP)

In the following we describe the GBP algorithm, which has two di�erent phases. The

�rst phase aims to update the weights of the neural model. The second phase aims to

update Iest and to clean the learning set, giving rise to a new learning set Dcurrent. The

two phases are run iteratively, allowing to minimize Remp(W;x
est
). As the observations

have to be modi�ed with care, the learning gain used for updating the inputs has to be

signi�cantly smaller than the one used when learning the weights.

� Initialization phase : This phase gives the �rst Iest and the �rst learning set

Dcurrent:

For every i = 1; : : : ; N
obs, xest

i
is initialized to xobs

i
and

Dcurrent =

�
(x

obs

i
;y

obs

i
); i = 1 � � �N

obs
	

� Phase 1 : This phase computes the new weights W�, an estimate of the mean

E(Y=x) and if necessary an estimate of the covariancematrix giving the newC�1
y

(x)

(by applying the algorithm of section 3.2.2). It uses the learning setDcurrent available

at this iteration.

� Phase 2 : This phase computes the new I
est and Dcurrent.

The parametersW are frozen and the xest
i

are adapted byminimizingRemp (35) with
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respect to Iest. The minimization is initialized using the current Iest, the minimum

is reached using a stochastic gradient :

x
est

i
= x

est

i
� "

@R

@x

�
x
est

i
;W

�
(38)

where the partial derivatives are estimated by formula (37). At the end of the

minimization process, the outliers can be removed from the current learning set

Dcurrent by applying the rejection test presented in subsection 4.3, which gives rise

to the new I
est and Dcurrent =

�
(x

obs

i
;y

obs

i
); i 2 J; J � [1 � � �N

obs
]

	
Phases 1, 2 are iterated

4.3 Rejection test

Under the Gaussian distribution hypothesis, the general Bayesian formulation presented in

section 4 allows to test the accuracy of the neural computation and to propose some reject

procedure in order to detect outliers. The test of rejection which checks the consistency

of the learning data set, is used at the end of phase 2 and provides the new Dcurrent used

in the next iteration of phase 1. The expression of the conditional joint distribution,

p

�
x
obs
;y

obs
=W;x

est
�
with respect to the input and output Gaussian distibutions gives:

p

�
x
obs
;y

obs
=W;x

est
�

= p

�
y
obs
=x

obs
;W;x

est
�
� p

�
x
obs
=x

est
�

= KxKy(x)e
�

1

2
Q (39)

where Kx and Ky(x) are normalization constants and Q is de�ned by:

Q =

�
y
obs

i
� F(W;x

est

i
)

�T
C

�1
y

(x
est

i
)

�
y
obs

i
� F(W;x

est

i
)

�
+

�
x
obs

i
� x

est

i

�
T

C
�1
x

�
x
obs

i
� x

est

i

�
(40)

A particular observation of the learning set (xobs
i
;y

obs

i
) is assumed to be a realization

of (p+q) Gaussian random variables with mean (x
est

i
; F(W; x

est

i
)) and covariance matrix�

C
�1
x
; C

�1
y
(x

est

i
;W)

�
. Under this assumption, the variable Q is a �

2 random variable

with (p+ q) degrees of freedom. The use of the �2 test allows to reject some observations

(x
obs

i
; y

obs

i
) as outliers with a desired con�dence level �. This procedure can be used

during the learning process to clean the data, improving in the same time the learning

accuracy. So, the joint utilization of the GBP algorithm and the preceeding rejection

procedure gives both the required regression function and a "clean" learning data set [27].

4.4 An experimental study of GBP

The interest of the GBP is proved by giving extended comparisons with the Standard

Back-Propagation Algorithm (SBP). We used here one dimensional simulated data set
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which enables to vary all the parameters of the experiments and to show the e�ect of

the di�erent phases when using GBP (phase 1, phase 2 and rejection on the learning

process). Moreover, we discuss some of the interesting characteristics of GBP : robustness,

regression with small sample, detection of outliers.

In the following, let us consider the following example where the function G is of the

form:

[ 0; � ] ! [�1; 1 ]

x 7! y =G(x) = 0:5

�
cos(x)� cos(4x)

�
(41)

We determine four distinct sets of independant observations uniformly sampling the in-

terval [ 0; � ], adding or not a normally distributed noise (A) to each input x and consid-

ering two distinct output noises. The input noise is derived from the normal distribu-

tion with zero mean and constant standard deviation 0.1. The �rst output noise (B) is

also normally distributed with zero mean and constant standard deviation 0.2, the sec-

ond one (C) is a normaly zero mean input dependant noise with non-constant variance:

�
2
y
(x) = 0:01 + 0:25 [1� sin(2:5x)]

2
. Mixing the di�erent input and output distributions

allows to de�ne four distinct observation sets:

1. D1 : no noise on x and noise B on y

2. D2 : noise A on x and noise B on y

3. D3 : no noise on x and noise C on y

4. D4 : noise A on x and noise C on y

We add to all these four data sets 3 outliers taken at random in order to investigate

the behavior of GBP when facing to erroneous data. These points whose y-coordinate

(y1 = �2, y2 = 1:5, y3 = �1:5) are choosen in order to keep the 3 choosen pairs far

from the di�erent learning data sets. They can be considered as outliers and have to be

removed during the rejection procedure (see 4.3 which presents some mechanism for the

detection of these outliers).

The four di�erent data distributions are presented in Figure (1).

All the experiments presented below use the same MLP with 2 hidden layers of 3 neurons

each and a linear output. All the computations use stochastic second order gradient in

order to minimize the required cost function. For each experiment, learning has been

run until convergence. All the comparisons are made in the same numerical conditions.

A regularization term depending on a parameter  and corresponding to a Gaussian

prior on the weights, is added to the neural cost functions involved in the comparison

:
P

i;j
w
2
ij
. This hyper-parameter , taken to  = 0:01 , has been optimized to allow the

best performances for each of the methods.

In the following, in order to interpret the di�erent results, we compute three distinct

indicators using the test set. For comparison purpose we introduce the three following

indices de�ned for a data set D =

�
(xi; yi); i = 1 : : : N

	
:
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1. The classical RMS giving the mean value of the discrepancy between the neural

value yNN
(x) and the data y:

RMS(D) =

sP
N

i=1

�
yi � y

NN(xi)

�2
N

2. The mean discrepancy between the theoretical function G (41), which has to be

retrieved, and the estimated neural function y
NN

(x). To achieve this,we compute

the RMS between the two functions:

Real-RMS(D) =

sP
N

i=1

�
G(xi)� y

NN(xi)

�2
N

3. The empirical standard deviation of the �nal set of xest given by GBP :

�(x
est
� x) =

sP
N

i=1

�
x
est

i
� xi

�2
N � 1

The learning data set changes with the di�erent experiments, but we compute the

generalization performances RMS from an independent test set(T1) of N = 300 samples

generated according to the distribution of the related learning set. The Real-RMS is

computed on a test set (T2) made of N = 300 x-values regularely spaced on [ 0; � ]. The

third indicator is computed from the related learning set.

Figure (2) presents the function provided by SBP and GBP when learning from 200 sam-

ples of D3. In this experiment we assume that C�1
y

(x) is known, possibly estimated by

applying the algorithm of section (3.2.2). As there is no noise on x and the output noise

is input dependent, only the initialization phase of GBP is run. Clearly, the knowledge

of the output variance used by GBP improve the retrieval of function G. The Real-RMS

error is 0:163 for SBP and 0:142 for GBP, the use of the output variance during the learn-

ing phase allows a better restitution of the theoretical function G.

The second experiment shows the e�ciency of GBP when dealing with known noisy

input data: the knowledge of the input noise always improves the estimation of G. In

these experiments, we use D2 which has been simulated with constant input and output

noises and we determine four learning sets of di�erent sizes (25, 50, 100, 200 patterns)

uniformly distributed in the range [ 0; � ]. The function G is estimated using SBP and

GBP for these four learning sets of increasing size. Table (1) gives the RMS and the

Real-RMS of the second experiment for both GBP and SBP with respect to the size of

the learning set. At this stage we do not make use of the rejection test.

The RMS value represents an estimate of the standard deviation of the noise (0.2)

added to the theoretical relationship G. The performances are strongly related to ratio

of outliers in the learning data set, as there are still 3 outliers the performances decrease
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withe the size of the learning data set. For a learning data set of size 25 the percentage

of outliers in the learning data set exeeds 10 percent and both algorithms SBP and GBP

are heavily perturbated. It is clear that the presence, in the learning set, of more than 5

percent of outliers heavily disturbs the behavior of the learning algorithm. Nevertheless

GBP always gives better results than SBP and the estimates of the output noise are never

far from the 0.2 theoretical value. As shown in the second raw of table (1) (RMS(D)),

the GBP algorithm, which uses the knowledge of the di�erent noises, clearly improves the

retrieval of the theoretical function when dealing with a large set (Nobs
> 50).

The last row of table (1) gives for GBP an estimate of �(xest � x
obs

) at the end of the

learning stage. It can be seen that a part of the noise introduced on the input data is

recovered, and that the di�erence between the theoretical noise of 0.1 and the estimated

noise slowly decreases with the size of the learning set. We determine the outliers using the

rejection procedure presented in section 4.3, at a con�dence level of 95%. Table (2) gives

the number of detected outliers with respect to the sample size. It can be mentionned

that the three actual ouliers are always detected. According to this test, we apply the

selection procedure and reject all the data detected as outliers from the learning data set.

Training is done again using the remaining data. The new performances are given in table

(2) and can be compared with those of table (1).

In the last experiment, we illustrate the behavior of GBP in case of an unknown, non

constant output noise. To achieve this, we compare the behavior of SBP and GBP on a

learning set of 200 samples extracted from D4. As the the accuracy on the measurements

is supposed to be unknown, the covariance matrix has been determined, during phase

1, using the algorithm of section 4.1. The estimated variances are used during phase 2

together with the knowledge of the input noise.The sucessive iterations allows the re�ne-

ment of the regression function. Table 3 gives the performances for SBP and compare

with those obtained at the end of the �rst iteration of phase 1 and at the end of the algo-

rithm for GBP. Figure(5) gives the two neural functions given by SBP and GBP, clearly,

the estimation of the output noise improves the retrieval of the real function (G).This

result will be con�rmed later on on the real-world application presented in section (5).

The use of the uncertainty on the observations acts as a smoothing factor and allows the

estimated function to be less corrupted by outliers.As a consequence, the performances

in interpolation but also in extrapolation are better.

5 Geophysical applications

In the following, we apply the neural network methodology presented above to actual

problems to show the e�ciency of the approach. We choose two di�erent problems which

come from operational Oceanography. In both of them, the problem is to approximate a

highly non linear relationship between noisy sets of observations.

The �rst illustration is taken from the NSCAT scatterrometer transfer function esti-

mation. It deals with a large amount of remote sensing data, o�ering a good opportunity
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to evaluate the maximum of accuracy which can be reached by neural regression and

covariance estimations. The second illustration is taken from the problem of ocean

color and deals with a small set of very noisy in situ data. It shows the e�ciency of

GBP to take into account the uncertainties related to the observations and its ability to

extrapolate the desired regression function.

5.1 The NSCAT scatterometer transfer function

5.1.1 The problem

NSCAT is a dual swath, Ku-band, scatterometer which was designed by NASA and

constructed under its supervision. Its goal was to determine the wind vector over the ocean

at global scale with an optimum space and time coverage. NSCAT uses 6 antennas, three

for each swath giving a very large and unique data set which is used to determine the wind

vector at the global scale. The twomid antennas operate in a dual polarized mode (vertical

and horizontal mode) while the four others operate in a vertical polarized mode only. Most

of the algorithms which have been proposed to compute the wind from scatterometer

measurements are based on the inversion of the Geophysical Model Function (GMF) [15].

The GMF is the transfer function of the scatterometer, it gives the scatterometer signal

(sig0) as a function of the wind vector and the incidence angle (which is the angle between

the radar beam and the vertical at the illuminated cell).Figure (6) presents three of the

six antanna and the di�erent variables:the wind speed (U), the azimuth angle (�) and the

incidence angle (�). In a �rst order approximation one can assume that the wind vector

and the incidence angle allows a determination of the scatterometer signal, so we assume

in the following that sig0(obs) = sig0 + �(�; U; �; sig0) where � is a zero mean gaussian

noise accounting for the hiden phenomena and the instrumental noise which is function

of the value of sig0

The determination of an accurate GMF and of the covariance-matrix are then of a

fundamental interest. Moreover, as the mid beam is dual polarized, the determination

and the interpretation of the wind vector and the incidence angle dependences can be

improved by the use of a multivariate regression. In the following, a large North Atlantic

data set of NSCAT's mid-beam antenna colocated with the European Center for Medium-

Range Weather Forecasts (ECMWF) wind �elds is used to determine a synthetic NSCAT

geophysical model function (GMF) providing the vertical (sigV V0 ) and horizontal (sigHH

0 )

polarized radar cross sections and the conditional covariance-matrix.

5.1.2 The method

The scatterometer signal is a function of the wind vector and the incidence angle, it

also depends on the amplitude of the signal itself. According to these considerations, we

apply the algorithm presented in (3.2.2) but trained two di�erent MLPs((F)1 and (F)2

as mentionned at the end of the section. We assume here that the wind vector is known

without errors and do not make use of RGB. The �rst one, F1, uses the classical quadratic

error cost function and gives an estimate of the conditional mean of the measurements:
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F1

�
(�; U; �);W

�
� E

�
(sig

V V

0 ; sig
HH

0 )= �; U; �

�
(42)

The second function F2

��
�; U; �

�
;

�
sig

V V

0 ; sig
HH

0

�
;W

�
which uses the values of sigV V0

and sig
HH

0 given by F1 minimizes the maximum likelihood and provides an estimate of

the conditional covariance matrix given the wind vector, the incidence angle and the

scatterometers signals. F2 allows to compute the variances of sigV V0 and sig
HH

0 together

with their covariance. The architecture of F1 has:

� an input layer with four neurons corresponding to the wind speed U , the incidence

angle �, cos� and cos(2�) in order to bene�t of the bi-harmonic variation with

respect to the azimuth angle,

� two hidden layers with ten neurons on each,

� and two linear neurons for the outputs which provide the estimates of the desired

measurements sigV V0 and sig
HH

0 .

The architecture of the F2 has:

� an input layerwith six neurons corresponding to U, �, cos�, cos(2�) and (sig
V V

0 ; sig
HH

0 )

� two hidden layers with 20 neurons on each

� and three neurons for the outputs which provide the three coe�cient of the Choleski

decomposition.

The parameters W of F1 and F2 are estimated by using SBP implemented with a

second order gradient descent algorithm. Their accuracy is related to the quality of

the learning data set. The global data set includes a large range of situations which

enables to take into account the e�ect of extra variables such as sea surface tempera-

ture or long wave modulation. The learning set has about 290,000 colocated vectors��
U; �; �

�
;

�
sig0

V V
; sig0

HH
��

extracted from the global data set where we tried to equally

represent all speeds and directions in order to get a statistically representative data set.

An independent test set of 220,000 colocated data extracted from the global data set and

covering the whole globe was used for estimating the performances of F1 and F2.

5.1.3 The results

To test the accuracy of F1 and F2, we apply the statistical tests presented in section (4.3).

The ECMWF wind vectors collocated with the observed
�
sig

V V

0 ; sig0
HH
�
are partitioned

in 11 � 36 � 8 bins of azimuth angle of 10o, wind speed of 2ms
�1 and incidence angle of

5
o each. The wind speed ranges between 2 and 24ms

�1 and the incidence angle from 15o

and 55o. We obtain for each bin an observed sample
�
sig

V V

0 ; sig0
HH
�
. According to the

assumption on the output noise, this sample can be considered as normally distributed.

We check on each bin the validity of the estimated means, variances and covariances using

the two tests presented in section (4.3) with a con�dence level of � = 5%. The hypothesis
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that the computed means are equal to the empirical ones is accepted for 100% of the bins,

the hypothesis on the covariance matrix is accepted 80% of the time.

The physical behavior of F1 is presented in Figure (7). These �gures display the

variations of F1 for the two polarizations with respect to the wind azimuth for di�erent

wind speeds and at the incidence angle of 35�. For the two polarizations, F1 exhibits the

biharmonic dependence with respect to the azimuth and the upwind-downwind modula-

tion. The up-wind and down-wind maxima are at 0o and 180o and the two minima are

at 90
o and 270

o. These results corresponds to what is known about the physics of the

scatterometer measurement. The variances and the correlation of the two output noises

are computed according to the outputs of F2. They are shown in �gure (8) with respect

to the azimuth angle for the same wind speeds and incidence angle. Figure (9) gives the

correlations with respect to the incidence angle. The �nction F2 allows us to determine

the error bars. When compared to classical GMFs, the neural network GMF is of better

quality. Moreover for the �rst time we are able to estimate the variance and consequently

the errror bars of the GMF. These errors bars will be usefull to interpret the scatterometer

measurements and the accuracy of the wind vector retrieval procedure.

5.2 Ocean colour: Regression with noisy in-situ data

5.2.1 The problem

Quantitative assessment of oceanic primary production and its role in the global carbon

cycle is a critical environmental and scienti�c issue. Knowledge of primary production

is necessary to calculate new production, derive the e�ect of biological processes on the

partial pressure of carbon dioxide (CO2), and, therefore, better understand how phyto-

plankton carbon �xation a�ects the net CO2 �ux accross the air-sea interface. Primary

production depends on light availability and other environmental factors (temperature,

nutrients) and on the amount of phytoplankton present for photosynthesis. The amount

of phytoplankton and their optical properties (absorption, scattering) a�ect the spectral

di�use re�ectance of the ocean, de�ned as the ratio of upwelling to downwelling irradi-

ance at a given depth. Since phytoplankton pigments generally absorb more in the blue

than in the green, the greener the water, the more phytoplankton. Thus by measuring

ocean color, meaning the spectral re�ectance at zero depth, R(�), one can obtain esti-

mates of phytoplankton pigment concentration, one of the key variables a�ecting primary

production [5].

A variety of optical transfer functions (bio-optical models) have been proposed to

quantify the in�uence of chlorophyllous pigments on spectral re�ectance. The bio-optical

relationships are generally established by analyzing concomitant re�ectances and pigment

data. Empirical relationship exist which relate the spectral re�ectance at a given wawe-

lenght � with the absorbtion coe�cient a(�)

R(�) = C

b(�)

a(�)
(43)

Where a(�) is a non linear function of the pigment concentration, C and b(�) being

independant of it. An accurate determination of the non linear relation G giving the
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pigment concentration with respect to a(�) is thus of interest to retrieve R(�) and thus

ocean color.

The bio-optical data set we use here is taken o� shore the California coast and includes

the phytoplankton absorption in the blue part of the spectrum (443 nm), it is part of the

CALCOFI experiment [5]

5.2.2 Performances and comparisons

The global set of observations (the CALCOFI data) is made of 112 pairs of concomitant

absorbtion coe�cient a(�) and pigment concentration, see (Fig. (10)). According to the

experts 20% of the two signals of each pair are supposed to be noisy. Learning with GBP,

which takes into account the variability of both the input and the output noises could

improve the determination of G. As the data set of observations is small, we use of cross

validation technique: the algorithms are run using a learning set of 104 observations,

the performances being tested using the 8 remaining data (denoted by T ). The learning

procedures are repeated 14 times (112=8), Table (4) gives the averaged performances for

the 14 distinct learning procedures:

Relative-RMS=

s
1

8

X
T

�yobs � y
NN

y
obs

�2
As the desired relationship exhibit quite a linear trend in the log domain (see Figure

(11)), the physicists choose for the required model F, the linear regression estimated in the

log domain. This model gives a good results at low concentration, but fail to retrieve the

high concentrations. The log linear model does not reproduce the saturation phenomenon

and generally overestimate the observations. We compare the performances obtained by

the log linear model, GBP and SBP. The optimal MLP architecture used for SBP and

GBP has one input, one linear ouput and 2 hidden layers of 3 neurons each, we take as

smoothing parameter  = 0:01. Using GBP we detect 4 outliers which where removed

from the observation set, one of them the upper point in the right corner was removed

by the physicists as defective, performances are given in table (4) which presents the

average of the RMS and the Relative RMS during the 112=8 = 14 learning phases. Figure

(12) presents the functions given by SBP, GBP and the log linear function used by the

physicists. SBP and GBP retrieve the saturation phenomena, and GBP present a more

realistic behavior as the saturation gives smaller absorbtion coe�cients.

6 Conclusion

The general formulation of nonlinear least squares regression using multilayered Percep-

trons has been presented in this paper. The aim is to build a non linear model between a

set of data and a set of model parameter which represent a physical system. Two cases of

increasing complexity have been treated: the case of noisy output data and deterministic

input data and the case of noisy data and noisy model parameters. Multilayered Percep-

trons can be e�cient tools in all cases. In particular, a Generalized learning rule has been
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proposed to deal with noisy data and noisy model parameters. The main interest lies in

the fact that the algorithm allows to re�ne the learning set, which consitutes the basic

new results of the work reported here. More generally, this paper provides the basis of a

general MLP regression theory. The algorithms have been successfully tested on two real-

world problem in Geophysics. The good results suggests that multilayered Perceptrons

can emmerged as an e�cient nonlinear regression model for a wide range of applications.

Other examples using the same methology have proved their e�ciency to deal with non li

near inverse problems in Geophysics [25] [6] [16] [20]. Several other work are in progress.
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Let us consider the case of the regression of a multi-dimensional variable y with respect

to a multi-dimensional variable x. The general case in which the variance on y depends

on x values will be considered. This variance is given by a variance-covariance matrix

denoted Cy(x). Learning generally consists of minimizing a cost function de�ned on the

problem description set. This function is the generalized least square error function:

R(W) =

ZZ �
y �F(W;x)

�
T

C
�1
y

(x)

�
y� F(W;x)

�
p(x;y) dx dy (44)

which can also be written, using Bayes rule:

R(W) =

Z�Z �
y � F(W;x)

�
T

C
�1
y

(x)

�
y� F(W;x)

�
p(y=x) dy

�
p(x) dx (45)

Let us write R(W) in the form

R(W) =

Z
I(W)p(x) dx (46)

Elementary manipulations in the internal integral lead to:

I(W) =

Z �
y�E(Y=x) + E(Y=x)� F(W;x)

�T
C

�1
y

(x)�
y�E(Y=x) +E(Y=x)� F(W;x)

�
p(y=x) dy (47)

This can be written:

I(W) =

Z �
y �E(Y=x)

�T
C

�1
y

(x)

�
y �E(Y=x)

�
p(y=x) dy (48)

+ 2

�
E(Y=x) �F(W;x)

�
C

�1
y

(x)

Z �
y�E(Y=x)

�
p(y=x) dy

+

Z �
E(Y=x)� F(W;x)

�T
C

�1
y

(x)

�
E(Y=x) � F(W;x)

�
p(y=x) dy

The aim is to minimize R(W). As the �rst term in Eq. (48) does not depend on W

and the second term is zero, minimizing R(W) is equivalent to minimizing the third term

such as:

minW(R) = minW

�ZZ
Ap(y=x)p(x) dx dy

�

A =

�
E(Y=x)� F(W;x)

�T
C

�1
y
(x)

�
E(Y=x) � (F)(W;x)

�
(49)
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Since E(Y=x) does not depend on y, we have:

minW(R) = minW

�Z
Bp(x) dx

�
(50)

B =

�
E(Y=x) � F(W;x)

�
T

C
�1
y

(x)

�
E(Y=x) �F(W;x)

�
(51)

However, the theoretical cost function, as de�ned in Eq. (44), is often unavailable. Rather,

a �nite set of independant observations L =

�
(x

i
;y

i
); i = 1 : : : N

obs
	
can be obtained.

Learning is done on this set by minimizing the empirical risk de�ned by:

Remp(W) =

N
obsX

i=1

�
y
i
�F(W;x

i
)

�
T

C
�1
y

(x
i
)

�
y
i
�F(W;x

i
)

�
(52)

which is a discrete approximation of the theoretical cost function R. Eq. (50) shows that,

for a given value of x, the minimum value of R is obtained when the network achieves

an approximation of the mean �eld of variable y. The accuracy of the approximation

(regression) depends on the value of R. In particular, the accuracy of the approximation

may be a�ected for two reasons. On one hand, the architecture may not be well-chosen

(too few or too many weights, inappropriate set of functions, : : : ). On the other hand, the

observation set may not be consistent enough with the true �eld of the variable to regress.

However, if these two constraints are kept, it can be admitted that, for any (x;Cy(x))

value, the output of the network is such as:

F(W;x) � E(Y=x) (53)

the accuracy can be computed on each principal axes of the covariance matrix C�1
y
, as

demonstrated in appendix.

In the previous computation, it is shown that the output of a MLP approximates the mean

value of y conditionally to x. The purpose of this annex is to show that the accuracy of

this approximation can be obtained by the principal axes of the covariance matrix.

Let us re-write the generalized least-square functions in the form:

R(W) =

ZZ �
y� F(W;x)

�T
M

�1
�
y � F(W;x)

�
p(x;y) dx dy (54)

where M is symmetrical positive de�nite matrix.

Let U = (u1;u2; : : : ;uq) the orthonormal matrix of the eigenvectors and �
2
j
the eigen

value associated to uj. We can write that:

M
�1

= UD
�1
U

T where D
�1

=

264
1

�
2

1

0

. . .

0
1
�2
q

375 (55)
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The cost function can be written as:

R(W) =

ZZ �
U

T
y �U

T
F(W;x)

�
T

D
�1
�
U

T
y �U

T
F(W;x)

�
p(x;y) dx dy (56)

or, in the discrete form:

R(W) =

qX
j=1

ZZ �
uj:y� uj:F(W;x)

�j

�2
p(x;y) dx dy (57)

Denoting Y = U
T
y = (Y1; � � � ; Yp), it yields:

R(W) =

qX
j=1

ZZ �
Yj � uj:F(W;x)

�j

�2
p(x;UY) dx dY (58)

From computations described in subsection 2.2 (Eq. (47)�Eq. (50)), we obtain:

R(W) =

qX
j=1

Z �
E(Yj=x)� uj :F(W;x)

�j

�2
p(x) dx+ constant (59)

or, equivalently:

R(W) =

qX
j=1

Z �
uj:

�
E(Y=x) � F(W;x)

�
�j

�2
p(x) dx+ constant (60)

Eq. (60) shows that the MLP approximates the mean value of y conditionally to x and

that the accuracy of this approximation can be measured by the principal axes uj and

variance �2
j
.
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Table 1: Performances reached on the test set of N = 300 samples using SBP and GBP,

each row presents a di�erent indicator (RMS, Real-RMS and �(x
est
� x

obs
)) . Learning

has been done using four distinct learning sets taken at random from D2, the four learning

sets di�er by their size Nobs
= 25; 50; 100; 200

SBP SBP SBP SBP GBP GBP GBP GBP

N
obs 25 50 100 200 25 50 100 200

RMS 0.706 0.384 0.307 0.269 0.736 0.286 0.292 0.252

Real-RMS 0.613 0.343 0.191 0.137 0.668 0.145 0.150 0.102

�(x
est
� x

obs
) - - - - 0.124 0.136 0.115 0.089

1 Tables
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Table 2: Performances reached byGBP on the test set of N = 300 samples after retraining.

At the end of the experiment reported in table 1, outliers where detected using the �2

test with a con�dence level of 95%. The second row gives the number of detected outliers

which ever contains the 3 ones added to each learning set.
GBP GBP GBP GBP

N
obs 25 50 100 200

N
outliers 2 3 6 9

RMS 0.414 0.266 0.258 0.242

Real-RMS 0.376 0.139 0.085 0.063

�(x
est
� x

obs
) 0.079 0.079 0.074 0.067

30



Table 3: Performances of GBP on the test set of N = 300 samples when dealing with a

non constant unknown output noise. The learning set is made of 200 samples of D4 GBP

has been used after the estimation during phase 1 of Cy(x) using the algorithm of section

(3.2.2)

SBP GBP(phase1) GBP

RMS 0.607 0.638 0.612

Réelle-RMS 0.229 0.254 0.169
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Table 4: Performances of the MLP trained with GBP and the log-linear model. Learning

is made using the 112 observations of concomitant absorbtion coe�cient and pigment

concentration. The RMS and the relative-RMS are the average of the 14 performances

obtained on the test sets during the 14 distinct learning. During the cross validation, on

average we detected 4.7 outliers.

Log-linear. SBP GBP

N
obs 112 112 112

RMS (�10
�2) 1.16 1.30 1.23

Relative RMS 21.53 % 25.71 % 21.20 %
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Figure 1: Presentation of the four distinct distributions D1,D2,D3,D4.
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Figure 2: MLP Models obtained after learning with SBP (bold dashed line) and GBP

(Light dashed line),plain bold line represent the theoretical relationship to be retrieved .

The learning set is made of 200 samples of D3 (deterministic x and noisy y). SBP and

GBP only di�er by the cost function they use, Least square for SBP and weighted least

square for GBP
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Figure 3: MLP Models obtained after learning with SBP (bold dashed line) and GBP

(Light dashed line), plain bold line represent the theoretical relationship to be retrieved.

The learning set is made of 200 samples of D2 (noisy x and noisy y).
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Figure 4: MLP Models obtained after learning with SBP (bold dashed line) and GBP

(Light dashed line), plain bold line represent the theoretical relationship to be retrieved.

The learning set is made of 200 samples of D4 (noisy x and noisy y). The known output

noise is input dependant �2
y
(x) = 0:01 + 0:25 [1 � sin(2:5x)]

2
.
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Figure 5: MLP Models obtained after learning with SBP (bold dashed line) and GBP

(Light dashed line), plain bold line represent the theoretical relationship to be retrieved.

The learning set is made of 200 samples of D4 (noisy x and noisy y), the output noise is

input dependant: �2
y
(x) = 0:01 + 0:25 [1� sin(2:5x)]

2
. As the noise is now supposed to

be unknown, GBP has been used after the estimation, during phase 1, of Cy(x) using the

algorithm of section (3.2.2).
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Figure 7: Variations of F1 for the two polarizations with respect to the wind azimuth

angle for di�erent wind speeds and at the incidence angle of 35 degrees.
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Figure 8: The variances and the correlation of the two output noises with respect to the

wind azimuth angle for di�erent wind speeds and at the incidence angle of 35 degrees.
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and at the wind azimuth angle of 180 degrees.
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Figure 10: Global set of CALCOFI data in linear scale: 112 pairs of concomitant ab-

sorbtion coe�cient a(�) and pigment concentration. For each pair 20% of the signals are

supposed to be noise.
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Figure 11: Global set of CALCOFI data in Log-Log coodinates: 112 pairs of concomitant

absorbtion coe�cient a(�) and pigment concentration.
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Figure 12: MLP Models obtained after learning with SBP (bold dashed line) and GBP

(Light dashed line), plain bold line represent the log linear model.The learning set is made

of the 112 observations of the CALCOFI data
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