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Abstract. We propose a new criteria to cluster the referent vectors

of the self-organizing map. This criteria contains two terms which take

into account two di�erent errors simultaneously: the square error of the

entire clustering and the topological structure given by the Self Organiz-

ing Map. A parameter T allows to control the corresponding inuence

of these two terms. The eÆciency of this criteria is illustrated on the

problem of top of the atmosphere spectra of satellite ocean color mea-

surements.

1 Introduction

The aim of Self-Organizing Map (SOM) is to provide a "re�ned" partition of the

data space using a huge number of neurons and to induce a topological order

between them. The main goal of this partition is to reduce the information pro-

vided by the data using a vector quantization method. For practical application,

one often looks for a limited number of signi�cant clusters on the data space.

Thus the problem is to reduce the number of clusters and to de�ne a new par-

tition of clusters from the initial SOM partition. This can be done by clustering

the referent vectors of SOM using a hierarchical clustering algorithm [7, 8, 2].

In the present paper, we look for a new dissimilarity measure which allows us

to take into account the two informations provided by SOM: the square error for

the entire clustering and the existing topological order on the map. An adequate

decomposition of the cost function which determines SOM suggests that some

new criteria will be able to do it.

2 A New Hierarchical Clustering criteria

2.1 SOM quantization

The standard Self Organizing Map (SOM) [4] consists of a discrete set C of neu-

rons called the map. This map has a discrete topology de�ned by an undirected
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graph; usually it is a regular grid in one or two dimensions. We denote N
neuron

the number of neurons in C. For each pair of neurons (c,r) on the map, the

distance Æ(c; r) is de�ned as the shortest path between c and r on the graph.

For each neuron c, this distance allows us to de�ne a neighborhood of order d:

V
c
(d) = fr 2 C=Æ(c; r) � dg. In the following, in order to control the neighbor-

hood order, we introduce a Kernel positive function K ( lim
jxj!1

K(x) = 0) and its

associated family K
T
parametrized by T :

K
T
(Æ) = [1=T ]K(Æ=T )

Let D be the data space (D � Rn) and A = fz
i
; i = 1; : : : ; Ng the training data

set (A � D). The standard SOM algorithm de�nes a mapping from C to D where

each neuron c is associated to its referent vector w
c
in D. The set of parameters

W = fw
c
; c 2 Cg, which fully determines the SOM, have to be estimated from

A. This is done iteratively by minimizing a cost function:

JT
som

(�;W) =
X
c2C

X
zi2A

K
T
(Æ(c; �T (z

i
))kz

i
�w

c
k
2

(1)

Where �T (z
i
) represents a particular neuron of C assigned to z

i
. This minimiza-

tion can be done using a "batch" version of the standard SOM algorithm ([5],

[6], [4], [1]). It can be expressed as a dynamic cluster method [3] operating in

two steps:

{ The assignment step assigns each observation z
i
to one neuron c of C

using the assignment function �T (relation 2). This step gives a partition

of the data space D in N
neuron

subsets, each observation z
i
being assigned

to its nearest neuron �T (zi) according to a weighted sum of the euclidian

distances:

�T (z) = argmin
r2C

X
c2C

K
T
(Æ(c; r)kz �w

c
k
2

(2)

{ The minimization step minimizes the cost function (relation 1) with re-

spect to the set of parameters W giving rise to the updated values of W :

wT

c
=

X
r2C

(K(Æ(c; r))
X
zi2Pr

z
i
)

X
r2C

K(Æ(c; r))n
r

where P
r
= fz

i
2 A=�T (z

i
) = rg (3)

For a given value of T , the batch algorithm minimizes (1) and leads to a local

minima of this cost function with respect to both �T andW . Using the batch ver-

sion iteratively, with decreasing values of T , provides the standard SOM model.

The nature of the SOM model reached at the end of the algorithm, the quality

of the clustering (or quantization) and those of the topological order induced by

the graph depend on the �rst value of T (Tmax), its �nal value (Tmin) and the

number of iterations (N
iter

) of the batch algorithm.
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Formula (3) shows that SOM uses the neighborhood system, whose size is con-

trolled by T , in order to introduce the topological order. When the value of T

is large, an observation z
i
will modify a large number of referent vectors w

c
,

in opposite to small values of T allowing few changes. At the end of the learn-

ing algorithm (when Tmin is reached), two neighbor neurons on the map have

close referent vectors in the euclidian space (Rn). In that sense, the map pro-

vides a topological order; the clustering associated to this topological order is

de�ned in (2) by taking T = Tmin. If Tmin is such that the neighborhood of

a neuron is reduced to itself for any distance d (V
c
(d) = fcg) the cost func-

tion JT
min

som
minimized at the end of the learning phase is the k-means distortion

function. So, the successive iterations allow to reach a k-means solution which

takes into account the topological constraint. In this case equation (3) shows

that, for each neuron c, the referent vectors w
c
is just the mean vector g

c
of

P
c
= fz

i
2 A=�T

min

(z
i
) = cg, in the following we denote by n

c
the cardinality

of P
c
.

2.2 A topological hierarchical clustering

Rewriting JT
som

gives : JT
som

=
X
c

X
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Since usually at the end of the learning phase, w
c
is no more that the mean

vector of P
c
(see section 2.1), we can decompose JT

som
using the square error of

each individual cluster (or neuron): I
c
=
P

zi2Pc
kz

i
�w

c
k2 (I

c
= 0 for P

c
= ;),

and (4) gives
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The �rst term of the decomposition of JT
som

takes into account the topological

order, the second term corresponds to a weighted square error for the entire

clustering and is similar to Ward criteria, which minimizes the intra-class inertia.
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The hierarchical clustering, presented in this paper and denoted HC
som

,

proceeds by successive aggregations of neurons reducing by one, at each time,

the cardinality of the preceding partition. At each iteration a new partition is

de�ned. We denote by P
K
, such a partition made of K clusters, each cluster

being denoted by an index c. The partition P
K
= fP

c
=c 2 C

K
g is such that the

set of index C
K

has a graph structure which induce a discrete topology between

the di�erent clusters. For every c in C
K
, the cluster P

c
is represented by its mean

vector g
c
, its cardinality n

c
and its square error I

c
. We use JT

som
as a measure

of the "quality" of the partition P
K
. Using C

K
, the dedicated measure becomes

a sum of two terms:

J
T

hc =

"
1

2

X
c

X
r 6=c

KT (Æ(c; r))(nc + nr) � kgr � gck
2

#
+

"X
c

 X
r

KT (Æ(c; r))

!
Ic

#
(6)

Where c and r belong to C
K

and Æ(c; r) represents the distance on the graph

C
K

which will be de�ned below, as in (5) the �rst term of (6) (a) involves the

topological order of the graph C
K

and the second term (b) is similar to Ward

criteria.

The initial partition P
K0

is given by the SOM map at the end of the learning

algorithm. The graph C
K0

is the sub-graph of the map, where all the neurons

such that n
c
= 0 are removed. The initial distance Æ(c; r) on C

K0
is de�ned as

in section 2.1 by the length of the shortest path on the map. In general, the

hierarchical clustering reduce P
K
to P

K�1 aggregating two vertices of CK which

allows us to determine the graph C
K�1 of P

K�1. If we denoted by fc1; c2g the

new index which aggregate c1 and c2 and Pfc1;c2g its related cluster, Pfc1;c2g is

represented by its mean and its cardinality on the map :

gfc1;c2g =
(nc1�gc1 )+(nc2�gc2 )

nc1
+nc2

,

nfc1;c2g = n
c1
+ n

c2

and its individual square error

Ifc1;c2g = n
c1
� kg

c1
� gfc1;c2gk

2 + n
c2
� kg

c2
� gfc1;c2gk

2 + I
c1

+ I
c2
.

The new distances Æ on the graph C
K�1 is de�ned by:

Æ(c; fc1; c2g) = minfÆ(c; c1); Æ(c; c2)g.

HC
som

is looking for the best aggregation; as we compute the criteria JT
hc

, among

all the possible pairs of C
K

and the possible resulting partitions, we select the

pair for which the value of JT
hc

is minimal. This pair gives rise to the new partition

P
K�1 = fP

c
=c 2 C

K�1g. Doing so, the parameter T de�nes a family of criteria

whose characteristics are related to its value. Taking T small (as T = T
min

),

cancels the �rst term (a) of (6); in this case HC
som

is the Ward criteria. Using

a large value of T (as T = T
max

), cancels the term (b); the method classify

using only the topological order given by SOM. In this later case, HC
som

be-

comes similar to the single link criteria. The intermediate values of T represent
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a compromise between these two alternatives. The `best' value of T has to be

speci�ed, as any hyper-parameter.

In the following, we show the behavior of HC
som

when applied to a real

application.

3 Classi�cation of ocean color remote sensing

measurements

Satellite ocean color sensors which are now operational or under preparation,

measure ocean reectance, allowing us to a quantitative assessment of geophys-

ical parameters (e.g., chlorophyll concentration).

The major problem for ocean color remote sensing processing is that inter-

actions of the solar light with aerosols in the atmosphere and water constituents

are responsible for the observed spectrum of Top Of the Atmosphere (TOA)

reectances for a cloud-free pixel. The critical issue is thus to remove the aerosol

contribution to the measured signals in order to retrieve the actual spectrum

of marine reectance which is directly related to the chlorophyl and water con-

stituent content. Ocean color is determined by the interactions of the solar light

with substances or particles present in the water, and provides useful indications

on the composition of water.

In the following we used the SeaWiFS data products. The SeaWiFS1 on

board the SeaStar satellite is a color-sensitive optical sensor used to observe

color variations of the ocean. It contains 8 spectral bands in the visible and near-

infrared wavelengths 2. SeaWiFS ocean color data is available in several di�erent

types. We used level 1 GAC data : it consists of raw radiances measured at the

top of the atmosphere.

We studied the region shown in �gure 1(a). It represents the Atlantic sea in

the west north African coast. The image (536 ? 199 = 106664 pixels) was taken

on January 1999. We removed the land pixels and some other erroneous pixels

detected by the SeaWiFS product (the black region in �gure 1(b)), and used our

method to classify the remaining pixels (the white region in �gure 1(b)).

First, we trained a two-dimensional map of size 10�10 with SOM algorithm.

Then, we usedHC
som

to cluster the 100 referent vectors given by SOM and select

the partition with 3 clusters. The experiment was repeated, varying the value of

the parameter T . In �gure 2, we show the three areas obtained using HCT

som
for

T = 0:0001 (which correspond to the Ward criteria), T = 0:1, T = 0:3, T = 0:5,

and T = 2. For technical reasons, we used three colors to show these partitions

(white color, grey color, and black color). Thus one of the three partitions will

have the same color than the removed region. Hereafter, by black region we

means the black region without the removed pixels. First it is clear that the 5

di�erent classi�cations proposed when using 5 di�erent values of T correspond

to di�erent partitions which give rise to di�erent possible interpretations. The

1 SeaWiFS Project Home Page http://seawifs.gsfc.nasa.gov/SEAWIFS.html
2 412nm, 443nm, 490nm, 510nm, 555nm, 670nm, 765nm and 865nm
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Fig. 1. (a) the studied region. (b) removed pixels according to the classi�cation pro-

posed by SeaWiFS (the black region) and the region to be classi�ed using HCsom (the

white region) (c) The three classes given by an expert on the studied region without

removed pixels.
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Fig. 2. The three classes obtained using HCsom for di�erent value of T
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expert gives a physical meaning to each classi�cation. For T = 0:0001, the thick

clouds became visible bringing together the black and white aereas. For T = 0:1

and T = 0:3 the black and white aereas represent thick clouds and desertic

aerosols. For T = 0:5 the black and white areas represent thick clouds, desertic

aerosols, and case 2 waters. The expert noticed that desertic aerosols have similar

spectrum than case 2 waters. He provides a labeled map where he labeled pixel

by pixel the image using physical models of aerosols. The labeled image is shown

in �gure 1(c). The three proposed classes are: the grey area representing the sea

under a clear sky, the case 2 waters (white areas), and the cloud pixels (black

areas). Clearly T=0.5 provides a classi�cation similar to the one given by the

expert. As case 2 waters and desertic aerosols have similar signature, HC
som

put them into the same class. So the expert choose the case where T = 0:5 as

being the most signi�cant classi�cation.

4 Conclusion

In this paper, we introduce a family of new criteria to perform hierarchical

clustering. This family presents the new properties to mix two di�erent criteria:

the square error of the entire clustering and a graph approach which allows

us to take into account the structure of the data set. This approach greatly

takes advantage of the neural approach, the Self organizing Map provided an

ordered codebook of the initial data and suggest a particular criteria in order to

cluster this codebook. Some experiments on the problem of satellite ocean color

classi�cation shows that this hierarchical clustering can be useful for identifying

di�erent coherent regions.
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