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Abstract

We propose a new algorithm using topological map on binary data.

The usual Euclidean distance is replaced by binary distance measures,

which take into account possible asymmetries of binary data. The method

is illustrated on an example taken from literature. Finally an applica-

tion from chemistry is presented. We show the eÆciency of the proposed

method when applied to high-dimensinal binary data.

1 Introduction

The algorithm of topological maps proposed by Kohonen [5] is a self-organization

algorithm. The formalism of the dynamic clustering provides a general frame-

work which leads to the batch version of the Kohonen's map. In this paper we

present a new neuronal method of unsupervised clustering with self-organizing

map dedicated to binary data. This method proposes a clustering of the individ-

ual data set App = f(zi; pi); i = 1::Ig, where each individual zi = (z1
i
; z2

i
; :::; zd

i
)

is a binary vector of �d = f0; 1gd and has a corresponding weight pi. In our

approach the dimension d can be very large (for example about 1000). The

proposed learning algorithm is similar to the batch version of Kohonen, it uses

the Hamming distance in order to determine the topological order. Hierarchi-

cal Clustering (HC) reduces the number of classes suggested by the topological

map. We also use an appropriate index of similarity to carry out HC, the so

called Tanimoto index.

2 General information about a binary data

Very often binary vector is a coding of discrete features which have a �nite,

usually small, number of possible values. Some of these features, called ordinal

variables, have an implicit order, the others are just nominal variables. The

general coding used in order to obtain binary data are: (a)The additive binary

coding: this coding respect the order existing between modalities. (b) The

disjunctive complete coding. (see table 1).

Euclidean distance is not adapted to binary data, it is often much more

interesting to use an appropriate similarity index [6, 3]. In this paper we use

for the auto organization process two di�erent similarity index: the Hamming



Modalities Additive coding Disjunctive coding

1 1 0 0 1 0 0

2 1 1 0 0 1 0

3 1 1 1 0 0 1

Table 1: Coding of modalities

z2/z1 1 0

1 a b

0 c d

Table 2: Contingency

table

distance H and the index of Tanimoto T . The Hamming distance between

two vectors z1 and z2 is equal to: H(z1; z2) =
P

d

j=1 jz
j

1 � z
j

2j = b + c where b

and c are de�ned in table 2, it measures the number of mismatch between the

two vectors z1 and z2, (a represents the number of coincident occurrence of 1

between the two vectors z1 and z2). The index of Tanimoto which is de�ned

by T (z1; z2) =
a

a+b+c
represents the ratio of coincident occurrence of one to the

number informative components of z1 and z2.

A set of individuals App in �d can be caracterized by the central value,

called the median center de�ned by the Hamming distance. The median center

of binary vectors is itself a binary vector which has the same interpretation

as the individuals. By de�nition the median center of App is any point ! =

(!1; !2; :::; !d) included in �d minimizing the inertia of App:
P

I

i=1 piH(zi; !).

In this expression each component !j minimize
P

I

i=1 pijz
j

i
� !j j. When the

weights are set to 1 (pi = 1;8i) [7], !j can be easily computed, it is the value 0

or 1 most often chosen by the individuals on the variable j.

3 Binary Topological Map

Now we show how the use of the median can de�ne a model of self-organizing

map adapted to binary data. As for the traditional topological maps, we use a

network of two layers (the input layer and the topological grid with k cells) and a

neighbourhood function K(Æ(c; r)) with maximum value centred at the winning

unit c and becoming zero as the distance between c and neighbouring units r

increases. In the following we de�ne Æ(c; r) as the length of the shortest path

on the grid between the cells c and r and we take as neighbourhood function

the smooth function: K(x) =

�
1 if x � �(t)

0 else
where �(t) controls the width

of the neighbourhood with the time-decreasing function: �(t) = �0(
�0

�f
)

t
tf (�0 is

an initial width of the neighbourhood and �f is a �nal width of neighbourhoud

at the �nal iteration tf ). Other smooth functions as K(x) = exp(� x
2

�(t)2
) could

be considered later. Each cell c of the grid is represented by a binary vector

Wc of dimension d, W denotes the set of weights or referents associated to the

neurons and C the set of neurons of the grid. We present in the next section

the self-organizing process which uses a dedicated cost function.



3.1 Minimization of the cost function

The minimization process uses the general form of the cost function [1]. In the

following this function will be set to:

E(W) =
X

zi2App

X
r2C

K(Æ(c; r))H(zi;Wr) (1)

Where the summation is taken on the neurons of the grid C. As mentioned

in section 2, the cost function E(W) has to be adapted to binary data and the

traditional Euclidean distance has been exchanged for the Hamming distance. In

formula 1, c represents the neuron assigned to the example zi by the assignment

function �, �(zi) = argmincH(zi;Wc). We introduce now some extra notations

which allow to simplify formula 1:

� Pc = fzi;�(zi) = cg represents the set of individuals a�ected to a neuron

c and P� = fPc; c = 1::kg the associated partition of App.

� Vc = fr;K(Æ(c; r)) = 1g represents the set of neurons which constitute the

neighbourhood of c.

� Rc =
S
r2Vc

Pr represents the subset of App linked to cell c.

Using these notations the formula 1 becomes E(W) =
P

r2C

P
zi2Rr

H(zi;Wr).

The minimization of this function, which leads to the topological order, is made

using dynamic clusters [2]. We develop an iterative batch algorithm ,named

BinBatch, operating in two steps: an assignment step which assigns each obser-

vation zi to one cell c using the assignment function, followed by an optimisation

step which computes for each cell c the median center of Rc. The minimization

of E(W) is run by iteratively performing the two steps until stabilization. At the

end of the minimization, the referents which have the same code as the individ-

uals (additive or disjunctive) can be decoded, allowing a symbolic interpretation

of the topological map.

3.2 Compression of the number of classes by hierarchical

clustering

At the end of the training, we choose to use a hierarchical clustering associated

with Tanimoto index de�ned in paragraph 2. The similarity between two subset

A and B of C ( RA = fzi; zi 2 Pc; c 2 Ag, RB = fzi; zi 2 Pc; c 2 Bg) is de�ned
as follows:

�(RA;RB) =
1

card(RA)card(RB)

X
za2RA

X
zb2RB

T (za; zb) (2)

This index allows to understand the order of the di�erent referents and to

appreciate the quality of the topological grid.



4 Example

4.1 Application of BinBatch algorithm on dog database

This example is taken from [8]. The data consist in characterization of 27 races

of dogs by the 7 following variables: Size(Small, Average, Big),Weight (Small,

Average, Big), Velocity (Small, Average, Big), Intelligence (Small, Average,

Big),A�ection (Afectionate,Non-A�ectionate),Aggressiveness(Agressive,Non-

Agressive), Function (Assistance, Hunting, Company).

0 SS,SW,SV,AF, 1 SS,SW,SV, 2 AS,AW,AV,AI,AF 3 AS,AW,AV, 4 AS,AW,AV,

NAG,CM AI,AF,AG,CM NAG,CM AI,AF,NAG,H BI,AF,NAG,H

Poodle, Chihuahua Bull Dog, Cocker Boxer, Collie Labrador Breton Spaniel

Pekinese, Dachshund Fox-Terrier Dalmatien

5 6 7 8 9 BS,AW,SI,NAF,

AG,H

Fox-Hound, Gascogne

10 BS,BW,SV,AI, 11 12 BS,AW,BV,BI, 13 14 SS,SW,SV,SI,

NAF,NAG,A AF,AG,A NAF,AG,H

Newfoundland Beauceron, Alsatian Basset

Doberman

15 BS,BW,SV,NAF, 16 17 18 BS,AW,BV, 19

AG,A NAF,NAG,H

Bull-Mastiff Greyhound

Saint Bernard Pointer, Setter

20 BS,BW,SV,SI, 21 BS,BW,BV,SI 22 23 BS,AW,AV,AI 24

NAF,AG,A NAF,AG,A NAF,NAG,H

Mastiff German Dog French Spaniel

Table 3: Learning done with BinBatch algorithm. Each cell of the table is a neuron

of the grid. The �rst two lines of a neuron c presents the number of this neuron and

the referent Wc given by BinBatch followed by the set Pc of individuals collected by

it.

Table 3 presents the grid obtained at the end of the BinBatch algorithm. We

see that the dogs with Small Size, Small Weight, Small Velocity, Afectionate

and Company belong to neighbouring neurons in the left corner of the map.

The only di�erence between the two neurons being that the dogs collected by

neuron 1 (Bulldog, Cocker, Fox-Terrier) are Aggressive compared to those of

neuron 0 (Poodle,Chihuahua, Pekinese, Dachshund) which are Not Agressive.

We can make the same analysis for the remaining clusters.

The same dog database was used with another method named Kohonen-

ACM (KACM) [4] which uses Euclidean distance to calculate the similarity

between the individuals. We compared the grid obtained by BinBatch with

the grid obtained using KACM. The clusters are similar but BinBatch provides

referents which have a symbolic interpretation. This characteristic is not always

veri�ed when using KACM method.



4.2 Application of hierarchical clustering (HC)

We carry out hierarchical clustering to the topological grid given by BinBatch,

using formula 2. Figure 1 presents the dendrogram corresponding to the HC.

Figure 1: Hierarchical clustering applied to the grid represented in table 3. Each leaf

of the tree represents a neuron of the grid which collects an individuals

We compare our results with the results provided by the multiple correspon-

dence analysis [8]. In this example, Tenenhaus uses MCA in order to explain the

link between the �rst six qualitative variables and the seventh variable. Clearly,

the three clusters obtained by HC if we cut o� a tree in level b (see �gure 1)

correspond to the three clusters given by MCA (see �gure 2 ). The results given

by MCA is one of the possible solution provided by HC and BinBatch.

Figure 2: Representation of three clusters (assistance, hunting, company)

4.3 Application of BinBatch on high-dimensional vectors:

an application in chemistry

BinBatch is well-suited in order deals with such dimension. Molecular databases

have to face the problem of high-dimensional features. A molecule belonging

to a molecular databases is coded by 988 binary data. We train BinBatch on

a databases with a grid of 7 x 13 neurons. For each neuron c we compute

the means Tanimoto index TPc from the subset Pc using this formula: TPc =
2
P

nc

i=1

P
nc

j=1
T (zi;zj)

nc(nc�1)
(nc is a number of molecules zi collected by neuron c). If the

value of Tanimoto is near 1 the molecules share the same chemical proprieties.

Figure 3 presents the means Tanimoto for each neurons. All the value of the

grid are near or greater than 0.85. So BinBatch provides homogeneous molecule

clusters.



Figure 3: The means of Tanimoto for each neuron

5 Conclusion

The results of BinBatch are very satisfactory and promising. We quickly ob-

tained a very good representation of the input data. This algorithm presents

advantage to have referents with the same coding as the initial data. The use

of the HC allows us to limit the number of cluster.
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