
Minimum d-blockers and d-transversals in graphs

M.-C. Costa ∗ D. de Werra † C. Picouleau ‡

January 22, 2010

Abstract

We consider a set V of elements and an optimization problem on V : the
search for a maximum (or minimum) cardinality subset of V verifying a given
property P. A d-transversal is a subset of V which intersects any optimum
solution in at least d elements while a d-blocker is a subset of V whose removal
deteriorates the value of an optimum solution by at least d. We present some
general characteristics of these problems, we review some situations which
have been studied (matchings, s − t paths and s − t cuts in graphs) and we
study d-transversals and d-blockers for new problems as stable sets or vertex
covers in bipartite graphs.

Keywords: transversal, blocker, cover, bipartite graph, matching, s− t path,
s− t cut, stable set, bilevel programming.

∗Ecole Nationale Supérieure des Techniques Avancées-Paristech and CEDRIC laboratory, Paris
(France). Email: marie-christine.costa@ensta.fr
‡Conservatoire National des Arts et Métiers, CEDRIC laboratory, Paris (France). Email:

christophe.picouleau@cnam.fr
†Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland). Email:

dominique.dewerra@epfl.ch

1

1 Introduction

In many instances occurring in practical situations or in a game theoretic context
one faces the problem of preventing some move of an opponent with a minimum
effort. Such problems have been studied from a theoretical point of view and, in
very special cases where a graph representation may be used, it leads to interesting
combinatorial problems (see for instance [16], [15]). The purpose of this paper is to
discuss some of these problems and to present a few variations with some remarks on
their complexity and on open questions which would lead to further developments.
In the next section we shall provide a rather general formulation of the concepts of
d-blockers and d-transversals with a brief review of earlier results in this direction. In
Section 3, we present a general formulation of both problems as bi-level optimization
programs. Then the following sections will be devoted to various special cases of
applications of these concepts: combinatorial optimization problems in matroids, s-t
paths and s-t cuts. In Section 7 we will consider the case of maximum stable sets in
split graphs and in bipartite graphs. Finally Section 8 will give concluding remarks
and suggestions for other research avenues.

2 Preliminaries

Let us give the general formulation of the various concepts which will be needed
in the sequel. We are given a finite ground set V = {v1, ..., vp} and a property P
defined on V . Let CV be the collection of all subsets C ⊆ V satisfying P .
A subset C ∈ CV will be called maximum if |C| = max {|C ′| : C ′ ∈ CV } ; we denote
this cardinality by ν(CV). C ∈ CV will be called minimum if |C| = min {|C ′| : C ′ ∈ CV };
we denote this cardinality by λ(CV).
A subset C ∈ CV will be called maximal (resp. minimal) if it is inclusionwise
maximal (resp. minimal) for property P .
Given a positive integer d ≤ ν(CV), a d-transversal is a subset T ⊆ V with |T ∩ C| ≥
d for any maximum C ∈ CV (or any minimum C ∈ CV with d ≤ λ(CV), depending
on the context). In the literature, a d-transversal is sometimes called a d-cover. If
one requires that |T ∩ C| = 1 for each maximum C ∈ CV , then T is sometimes called
a System of Distinct Representatives (or a transversal in [19] or [16]).
A companion concept is the d-blocker whose removal deteriorates the optimum size
of elements in CV by at least d. For subsets C of maximum size, the d-blocker is a
subset B ⊆ V such that for any C ∈ CV−B we have |C| ≤ ν(CV) − d. So, we have
ν(CV−B) ≤ ν(CV)−d. When we consider subsets C of minimum size, a d-blocker B is
such that λ(CV−B) ≥ λ(CV) + d. Notice that d-blockers are interesting for problems
with ground set V such that the removal of any subset A ⊆ V may deteriorate the
optimum size (or value) of the subsets C in CV−A.
One may also consider the search of a subset P ⊆ V such that for all maximum
(or minimum) C ∈ CV we have |C ∩ P | ≤ d. We call it a d-packer. In fact, P
is a maximum d-packer if and only if T = V − P is a minimum (ν(CV) − d)-
transversal (d = 0, ..., ν(CV) − 1): recall that if |C| = ν(CV), then |C ∩ P | ≤ d ⇔
|C ∩ (V − P)| ≥ ν(CV)− d⇔ |C ∩ T | ≥ ν(CV)− d; moreover, P is maximum if and
only if T = V − P is minimum. Note that, obviously, a maximum ν(CV)-packer P

2

would be equal to V and T = V − P would be a minimum 0-transversal equal to
∅. In the following, we will not consider d-packers anymore but only d-transversals
with d = 1, ..., ν(CV).
We shall denote by βd(G) (respectively τd(G)) the minimum cardinality of a d-
blocker (resp. d-transversal) in G.
The following statements can be found in [25] where they are formulated for the
special case in which CV is the collection of all matchings in a graph.

Fact 2.1 For any d ≥ 1, a d-blocker is a d-transversal.

Proof: Assume that B is not a d-transversal: there is a maximum C in CV with
|C ∩B| < d, then |C ∩ (V −B)| ≥ ν(CV) − d + 1, so we cannot have ν(CV−B) ≤
ν(CV)− d and B is not a d-blocker. �

Fact 2.2 A set B ⊆ V is a 1-blocker if and only if it is a 1-transversal.

Proof: A 1-blocker is a 1-transversal from Fact 2.1. Let B be a 1-transversal. For
every maximum C in CV we have |C ∩B| ≥ 1 so |C ∩ (V −B)| ≤ ν(CV)− 1 and B
is a 1-blocker. �

The reader is referred to [3] for all graph theoretical terms not defined here.
It has been shown that finding a minimum d-transversal of all maximum matchings
in a bipartite graph is NP -hard for any fixed d ≥ 1 [25], while it can be found
in polynomial time in trees and grid graphs [18]. In [16], Lee reviews and gives
some new results for the minimum d-transversal problem in the case where CV is the
set of maximum cliques of a given graph G; a d-transversal is called there a d-fold
maximum clique transversal set. Polynomial algorithms are given to find τd(G) in
balanced, split, strongly chordal or triangle free graphs; it is shown that finding
τd(G) is NP -hard in (doubly-)chordal and in planar graphs.

3 Formulation as bi-level programming problems

We will start from the general formulation of a bilevel optimization problem given
in [9] for real variables x and y:

(BLPP)
Minx∈X,y F (x, y)

s.t. G(x, y) ≤ 0
Miny f(x, y)
s.t. g(x, y) ≤ 0

x ∈ <n y ∈ <m

Such models are closely related to game theory: the “leader” chooses a strategy in
a set X and the “follower” has an (opposite) strategy set y corresponding to each
x ∈ X.

3

We are going to show that the searches for a minimum d-blocker B and a minimum d-
transversal T can be formulated, in a natural way, as special binary bilevel programs.
Note that we present one of the possibly equivalent 0-1 formulations for each prob-
lem. Consider a maximisation problem defined by a ground set V = {v1, v2, ..., vn},
a property P and a colection CV , ν(G) being the cardinality of a maximum C in CV
(see Section 2). We denote by x the vector of variables “controlled” by the leader:
xi = 1 if vi ∈ B (resp. T), xi = 0 otherwise. We denote by y the vector of variables
controlled by the follower: yi = 1 if vi ∈ C; yi = 0 otherwise.
Let us consider first the d-blocker problem. The associated 0 − 1 program is the
following :

(BLBlock)

Minx
∑

i=1,...,n xi (1)

s.t.
∑

i=1,...,n yi ≤ ν(G)− d (1.1)

Maxy
∑

i=1,...,n yi (2)
s.t. yi ≤ 1− xi for all i = 1, ..., n (2.1)

C = {vi s.t. yi = 1} ∈ CV (2.2)
x ∈ {0, 1}n y ∈ {0, 1}n

The aim of the leader is to select a minimum set B of “elements” to delete (for
instance, edges for the matching problem or vertices for the stable set problem), i.e.
a minimum set of variables xi to fix to 1 (objective function (1)), in order to impose
a maximum value ν(G)− d to the best choice of the follower (constraint (1.1)). For
each vector x, the follower will choose a maximum set C in V − B verifying P ,
i.e. the maximum number of variables yi (objective function (2)) corresponding to
undeleted elements (constraints (2.1)) and verifying the constaints associated with
property P (constraints (2.2)). The constraints (2.2) are those corresponding to
the considered maximization problem: for instance, for the stable set problem in a
graph G = (X,E), yi + yj ≤ 1 for all (i, j) ∈ E.
Consider now the d-transversal problem. The associated 0 − 1 program is the fol-
lowing:

(BLTrans)

Minx
∑

i=1,...,n xi (3)

s.t.
∑

i=1,...,n xiyi ≥ d (3.1)

Miny
∑

i=1,...,n xiyi (4)
s.t.

∑
i yi = ν(G) (4.1)

C = {vi s.t. yi = 1} ∈ CV (4.2)
x ∈ {0, 1}n y ∈ {0, 1}n

4

The aim of the leader is to select a minimum set T of elements to control, i.e. a
minimum set of variables xi to fix to 1 (objective function (3)) in order to be sure to
control at least d elements among those selected by the follower (constraint (3.1)).
For each vector x, the follower will choose a set of ν(G) elements verifying P and
containing a minimum number of controlled elements, i.e. ν(G) variables yi to fix
to 1 (constraint (4.1)) such that P is verified (constraints (4.2)) and the number of
indices i verifying yi = xi = 1 is minimum (objective function (4)).

Note that our two bilevel programs are special cases where there is only one con-
straint (3.1) and (1.1), respectively, which consists in bounding the objective func-
tion (4) and (2), respectively.
One can easily verify that, for any value of d, a solution to (BLBlock) is a solu-
tion to (BLTrans) and that, for d = 1, a solution to (BLTrans) is a solution to
(BLBlock). That corresponds to Facts 2.1 and 2.2 of Section 2.

Bilevel programs are generally NP -hard, even if both levels are linear programs (see
[9]). Now consider the cases where, for given values of x, the continuous relaxation
of the lower program (program (2, 2.1, 2.2) or (4, 4.1, 4.2)) always admits an inte-
gral optimal solution, particularly when the associated constraint matrix is totally
unimodular. This is the case, for instance, for stable set or matching in bipartite
graphs. Then, the lower program can be replaced by the complementary slackness
conditions of linear programming and the initial bilevel program becomes a 0 − 1
mathematical program which can be polynomially solved in some special cases by
using linear programming or with a specific algorithm as will be seen in Section 7.
In other cases, the bilevel programming approach would be useful for blockers and
transversals problems since many (approximation) methods have been proposed for
solving such problems (see [10] or [21]).

4 Matroids

Let now V be the ground set of a matroid M and CV the collection of independent
sets. The maximum independent sets are the bases of M ; their cardinality is r(M)
where r is the rank function of M (see [19]). In this context a d-transversal is a
subset T ⊆ V such that any basis C of M has at least d elements in T : |T ∩ C| ≥ d.
A d-blocker is a subset B such that any basis C ∈ V −B has |C| ≤ r(M)− d.

Proposition 4.1 For any d ≥ 1, a subset T ⊆ V in a matroid M constructed on
V is a d-transversal if and only if it is a d-blocker.

Proof: Let T ⊆ V and assume that T is not a d-transversal. There exists a basis
C of M such that |T ∩ C| < d. Let C ′ = C − T ; since C ′ ⊆ C and M is a matroid
then C ′ ∈ CV and we have |C ′| ≥ |C| − |T | > r(M)− d. Thus T is not a d-blocker.
Conversely, let T ⊆ V such that T is not a d-blocker. There exists C ∈ CV ,
C ⊆ V − T , such that |C| > r(M)− d. If |C| ≥ r(M) then C is a basis of M with
|C ∩ T | = 0 thus T is not a d-transversal. If |C| < r(M), M being a matroid, C
may be completed by r(M)− |C| elements in V to obtain a basis C ′ (C ′ ∈ CV and

5

|C ′| = r(M)). We have used r(M) − |C| < r(M) − (r(M) − d) = d elements of V
(possibly in T). Thus |C ′ ∩ T | < d and T is not a d-transversal. �

However, it is known that finding a minimum 1-transversal in a binary matroid
is NP-hard while it is polynomially solvable in regular matroids (see [19]). For
illustration purposes, let M be a graphical matroid; then V is the set of edges of a
graph G which we assume to be connected. There is a correspondence between bases
and spanning trees and finding a minimum 1-transversal is equivalent to determining
a minimum cut in G, which can be done in polynomial time (see for instance [12]
or chapter 16 in [19]); for fixed d > 1, there is a polynomial algorithm for finding a
minimum set T of edges which disconnect G into d+ 1 connected components; if d
is not fixed, the problem is NP-hard (see [14]).

5 Shortest s− t paths

A situation of interest is the search of minimum d-blockers and minimum d-transversals
of all shortest s− t paths in a directed graph G with a source s and a sink t. V is
the set of arcs in G, and a subset V verifies P if it forms an s − t path; CV is the
collection of all s− t paths.
A d-transversal is a subset T ⊆ V such that for every shortest s− t path C in G we
have |C ∩ T | ≥ d.

Then, after removal of all arcs not contained in any shortest s − t path, T is a
1-transversal if and only if T is an s− t cut. It is known that a minimum cardinality
s− t cut can be found in polynomial time (see [1]).
The case d > 1 has been studied in [15] where the following observation is stated:

Proposition 5.1 [15] Let G be a graph such that evrey arc belongs to at least one
shortest s − t path. T is an (inclusionwise) minimal d-transversal if and only if T
is a union of d disjoint minimal s− t cuts.

As a consequence, one has the following:

Proposition 5.2 ([15],[22])
A minimum d-transversal of all s− t paths in a directed graph can be constructed in
polynomial time.

For the construction, one may use for instance the algorithm in [22] to find d disjoint
s− t cuts C1, . . . , Cd such that |C1|+ · · ·+ |Cd| is minimum: it is based on a formula-
tion in terms of transshipment problem and it can be solved inO(mnlog(n2/m)log(n))
time where n (resp. m) is the number of vertices (resp. arcs).
In this context, a d-blocker is a subset B of arcs such that every s − t path in
G′ = (V,E−B) has length at least l∗(G) + d where l∗(G) is the length of a shortest
s− t path in G. Finding a minimum d-blocker in this case is known to be NP -hard
(see [15]).

6

6 Minimum s− t cuts

We are given a directed graph G with a source s and a sink t. An s− t cut is defined
by a subset A of vertices of G such that s ∈ A, t 6∈ A; it consists of all arcs (u, v)
with u ∈ A and v /∈ A. V will be the set of arcs of G and CV the collection of all
s− t cuts in G.
In this context a d-transversal is a subset T of arcs such that every minimum s− t
cut C has |C ∩ T | ≥ d. For finding a minimum d-transversal as far as we know, no
polynomial time algorithm is known but, provided the list of all minimum s− t cuts
is given, a linear programming model (with totally unimodular matrix) can be used
(see chapter 60 in [19]).
Let us now consider the problem of deteriorating the size of a minimum s − t cut.
Notice that here we do not have a problem where removal of a subset A ⊂ V
will deteriorate the optimum size of elements in CV−A (i.e., it will not increase the
minimum size of an s − t cut). This is why, instead of removing arcs, we will
consider an operation of insertion of new arcs in V , called duplication below, in
order to increase by d the minimum value λ(CV) of |C|, C ∈ CV : we call this set a
d-expander.
For minimum s− t cuts, the problem consists in finding a minimum subset of arcs
to be duplicated so that the value of a maximum s− t flow is increased by d. This
can be formalized as will be described now: for any arc e = (u, v) ∈ V we introduce
a twin arc e∗ = (u, v) ; a subset E = {e1, ..., ep} ⊆ V is duplicated if for every ei ∈ E
we introduce its twin e∗i : the set V is then replaced by V ∗E = V ∪

{
e∗1, ..., e

∗
p

}
.

A d-expander is a subset E = {e1, ..., ep} ⊆ V such that if E is duplicated then for
any C∗ ∈ CV ∗

E
we have |C∗| ≥ λ(CV) + d.

We can now formulate the problem as the construction of a flow (of fixed value)
with minimum cost in a capacited network (see [1]). We have to duplicate some
arcs in such a way that every s− t cut has now a capacity of at least the minimum
capacity of an s − t cut in the original network plus d. Such a set E of arcs to be
duplicated is obtained by constructing a minimum cost flow f of value ν(CV) + d in
a network obtained as follows: all arcs are duplicated (all have capacity 1); for each
arc e = (u, v) the cost is 0 and for each arc e∗ = (u, v) the cost is 1. The set E will
be the set of arcs e with flow f(e∗) = 1. Hence we have:

Proposition 6.1 A minimum d-expander E of the s−t cuts in a directed graph can
be constructed in polynomial time (with the complexity of a min cost flow procedure)

7 Stable sets

Here the ground set V is the set of vertices of a graph G = (V,E) and we intend to
study d-transversals and d-blockers of maximum stable sets inG. We denote byN(v)
the set of neighbors of a vertex v ∈ V . A subset S ⊆ V is stable (or independent) if
no two vertices in S are linked by an edge. The stability number α(G) (corresponding
to ν(G) in the general formulation of Section 2) is the cardinality of a maximum
stable set in G. CV will be the collection of all stable sets. A d-transversal is then a

7

subset T of vertices such that every maximum stable set S verifies |S ∩ T | ≥ d. A

d-blocker is a subset B of vertices such that in the (induced) subgraph Ĝ spanned

by V − B, the stability number has decreased by at least d: α(Ĝ) ≤ α(G) − d. In
addition µ(G) will be the maximum cardinality of a matching in G.
A vertex v is forced if every maximum stable set contains v. Following [5] we denote
the number of forced vertices in G by ξ(G). A vertex v is excluded if no maximum
stable set of G contains v. A vertex which is neither forced nor excluded is free. For
characterizing such vertices in an arbitrary graph, Boros et al. [5] give the following:

Fact 7.1 [5] A vertex v is excluded in G if and only if α(G−N(v)) ≤ α(G)− 1. A
vertex v is forced in G if and only if α(G− v) ≤ α(G)− 1.

Concerning the complexity of finding a minimum d-transversal of all maximum stable
sets the following is known: given any fixed k ≥ 1, determining if there are more
than k forced vertices is NP-complete (see[5]). So determining whether for a given
d ≥ 1 there exists a d-transversal T with |T | ≤ d is difficult (such a T exists if and
only if there are at least d vertices which are forced).
Notice that from [25], for any fixed d ≥ 1, finding minimum d-transversals and mini-
mum d-blockers of all maximum stable sets is NP -hard even if G is the line graph of
a bipartite graph. It follows from results in [16] that finding minimum d-transversals
is polynomial for split graphs, complements of balanced, of strongly chordal, or of
triangle free graphs; however finding τd(G) is NP−hard for complements of doubly
chordal or of planar graphs.

7.1 Split graphs

We shall examine here the case of split graphs G = (V,E); they are defined as
graphs in which the vertex set V can be partitionned into a clique K and a stable
set S (see [7]). Since the problem of d−transversals has been dealt with in [16], we
shall concentrate here on the problem of d−blockers.
We recall that for a split graph G = (V,E) where n = |V | and ω(G) is the maximum
cardinality of a clique we have n ≤ α(G) + ω(G) ≤ n + 1. We can assume w.l.o.g.
that the partition (K,S) is chosen such that |S| = α(G).

Lemma 7.1 For a split graph G = (V,E) we have d ≤ βd(G) ≤ d + 1, (1 ≤ d ≤
α(G)− 1).

Proof: Clearly βd(G) ≥ d; if we take for B a set of d+ 1 vertices in S, then V −B
can be covered by α(G)− d cliques (one of them being K and the other ones of the
form v ∪N(v) with v ∈ S −B). So α(G−B) ≤ α(G)− d and B is a blocker. �

Let us formalize now the associated decision problem SPLITBLOCK:
INPUT: A split graph G = (V,E) and a positive integer d ≤ |V |.
QUESTION: Does G have a d-blocker B with |B| = d ?

What is the complexity of SPLITBLOCK? In G there exists a set B ⊂ S of d
vertices which forms a d−blocker if and only if the vertices of V −B can be covered
by α(G) − d cliques. It is also equivalent to saying that the union of the α(G) − d

8

sets N(v), v ∈ S − B is K. If we consider the family N = (N(v)|v ∈ S) where
N(v) ⊆ K for each v, we have to solve the following set cover problem: Given a
ground set K, a positive integer α(G)− d and a collection N of subsets N(v) ⊆ K
does there exists a cover C ′ = (N(v)|v ∈ S − B) with |C ′| = |S − B| = α(G) − d,
i.e., such that

⋃
(N(v)|v ∈ S −B) = K.

We can now state:

Proposition 7.2 SPLITBLOCK is NP−complete even if |N(v)∩S| = 2 for each
vertex v ∈ K. Moreover for any fixed d ≥ 1, SPLITBLOCK can be polynomially
solved in O(nd+1).

Proof: SPLITBLOCK is in NP since in a split graph one can find a maximum
stable set in polynomial time.
Consider the Vertex Cover problem in a graph H = (X,A), which is NP−complete
(see [13]). We get a split graph G by setting S = X and K = A; (x, a) is an edge of
G if and only if x is an endpoint of a in H. Then |N(a)∩ S| = 2, ∀a ∈ K. Finding
a subset S −B in G with |S −B| = α(G)− d such that

⋃
(N(v)|v ∈ S −B) = K is

equivalent to finding in H a subset of vertices of cardinality α(G)− d which covers
the edges of A. This equivalence implies NP−completeness of SPLITBLOCK.
Finally when d is fixed, it suffices to enumerate all subsets B ⊂ V with d ≤ |B| ≤
d+ 1 according to Lemma 7.1. �

Since a split graph is perfect, we have:

Corollary 7.3 In perfect graphs the problem of finding a minimum d−blocker of
maximum stable sets is NP -hard.

Remark 7.1 If in a split graph G = (V,E) for every vertex v ∈ S we have |N(v)∩
K| ≤ 2, SPLITBLOCK is polynomially solvable since the corresponding set cover
problem is polynomial (see [13]).

Proposition 7.4 If G = (V,E) is a split graph with α(G) + ω(G) = n + 1, then a
minimum d−blocker B has cardinality d.

Proof: In such graphs there is a vertex v1 in S with N(v1) = K where (K,S)
is the partition of vertices chosen with |S| = α(G). From the above discussion we
construct B by chosing d vertices in S − {v1}. �

It follows that for threshold graphs (split graphs in which there is an order v1, . . . , vα(G)

of the vertices in S such that i < j implies N(i) ⊇ N(j) the same result holds since
v1 satisfies the condition of Proposition 7.4.

7.2 Bipartite graphs

Here we shall consider the class of bipartite graphs. Observe that matchings and
stable sets are closely related since the König’s theorem states that α(G) + µ(G) =
|V | (see [2]). Then we have the two following facts:

9

Fact 7.2 Let M be a maximum matching in a bipartite graph G. Any vertex un-
saturated by M is forced and there is exactly one endpoint of each edge of M in any
maximum stable set of G.

Proof: If M is a maximum matching, there are |V |−2µ(G) = α(G)−µ(G) vertices
which are unsaturated by M . Given any maximum stable set S, it contains at most
µ(G) vertices saturated by M and hence at least α(G)−µ(G) unsaturated vertices.
So all the α(G)− µ(G) unsaturated vertices are contained in any maximum S and
they are forced. Hence S must also contain one endvertex of each one of the µ(G)
edges of M . �

Fact 7.3 (see [2]) If G = (V,E) is a bipartite graph then the following are equiva-
lent:

• G has a perfect matching

• α(G) = µ(G) = |V | /2

• denoting by X and Y the partition of V , X and Y are two disjoint minimum
vertex covers which are also two disjoint maximum stable sets of size |V | /2.

In addition, we notice that the following proposition stated for trees in [20] can be
extended to bipartite graphs :

Proposition 7.5 Let G = (V,E) be a bipartite graph. G has a perfect matching if
and only if G has only free vertices.

Proof: If G has a perfect matching, from Fact 7.3 there exist two disjoint maximum
stable sets and then all vertices are free.
From the proof of Fact 7.2 there are ξ(G) ≥ |V | − 2µ(G) forced vertices in any
maximum stable set. If all the vertices are free then ξ(G) = 0, i.e. µ(G) = |V | /2
and so G has a perfect matching. �

Let us now state the following:

Proposition 7.6 If G = (V,E) is a bipartite graph the vertex set can be partitioned
into three subsets F , H and V − F −H such that:

• F is the set of all forced vertices (belonging to any maximum stable set)
• H is the set of all excluded vertices (contained in no maximum stable set)
• The subgraph induced by V − F −H has a perfect matching

Proof: If G has a perfect matching, the proposition is obvious (F = H = ∅).
Assume now that G has no perfect matching. Let F be the set of all forced vertices
of G (F 6= ∅ from Fact 7.2) and let H be the set of all excluded vertices. Consider

now the subgraph Ĝ induced by V − F −H. A vertex adjacent to a forced vertex
is obviously excluded; so Ĝ has no vertex adjacent to a vertex in F . A maximum
stable set S∗ in G is the union of F with a stable set Ŝ in Ĝ: since Ĝ has no vertex
adjacent to a vertex in F , Ŝ could be any maximum stable set in Ĝ. Then, a forced

10

(resp. excluded) vertex in Ĝ would be a forced (resp. excluded) vertex in G: so such

a vertex cannot belong to Ĝ. Thus Ĝ has only free vertices, so from Proposition
7.5, Ĝ has a perfect matching. �

We now explain how to determine the excluded and the forced vertices in a bipartite
graph.

Proposition 7.7 The sets of excluded and of forced vertices in a bipartite graph
can be determined in O(|V | 52).

Proof:
We use the following procedure:

Input: G = (V,E): a bipartite graph;
Output: F and H: the sets of forced and of excluded vertices;
1. Construct a maximum matching M in G;
2. Label with f all the unsaturated vertices;
3. while it is possible do

3.1 label with h any vertex y such that [x, y] ∈ E and x is labelled with f ;
3.2 label with f any vertex x such that [x, y] ∈M and y is labelled with h;

end do
4. F= {vertices of G with label f};
H= {vertices of G with label h}.

Justification of the procedure:
If M is perfect, then F = H = ∅. So assume now that there is at least one
unsaturated vertex. From Fact 7.2, any unsaturated vertex is forced (step 2). Any
vertex adjacent to a forced vertex is excluded (step 3.1). In a bipartite graph, there
is exactly one endpoint of each edge of a maximum matching M in any maximum
stable set (Fact 7.2): if an endpoint of an edge in M is excluded then the other is
forced (step 3.2).
The vertices which are unlabelled at the end of loop 3 are all saturated (otherwise
they would be labelled with f), they are all matched (in M) to an unlabelled vertex
(otherwise they would be labelled at step 3.1 or 3.2) and they are not adjacent to
a vertex in F (otherwise they would be labelled with h at step 3.1). Thus, the

subgraph Ĝ induced by the unlabelled vertices has a perfect matching. Thus the
procedure produces a partition of V into sets F,H and V − F −H as required by
Proposition 7.6.

Complexity of the procedure:
We need to compute a maximum matching: in a bipartite graph, it can be done in
time O(|V | 52) (see [2]). Then at step 3, each edge is considered at most once. So the

whole procedure runs in time O(|V | 52). �

The previous proof shows that in bipartite graphs a vertex which is neither forced nor
adjacent to a forced vertex is free; thus any excluded vertex is adjacent to a forced
vertex. On the contrary, in an arbitrary graph, we may have excluded vertices which

11

are not adjacent to any forced vertex: take two triangles having a common vertex
v; v is excluded and all remaining vertices are free.
We can now state:

Proposition 7.8 In a bipartite graph G with ξ(G) forced vertices, the minimum
cardinality of a d-transversal of all maximum stable sets is

τd(G) =

{
d if d ≤ ξ(G)
2d− ξ(G) if ξ(G) < d ≤ α(G)

Moreover a minimum d-transversal can be constructed in time O(|V | 52).

Proof: We use the following procedure.

Input: G = (V,E): a bipartite graph; d: 1 ≤ d ≤ α(G)
Output: T ⊆ V : a minimum d-transversal

1. Determine the sets F of forced vertices and H of excluded vertices

2. If 1 ≤ d ≤ ξ(G): choose d vertices in F . This gives the required T

3. If d > ξ(G), let Ĝ be the subgraph of G induced by V − F −H.

4. Construct a perfect matching M̂ in Ĝ. Then set T = F ∪ T̂ where T̂ is the set of
endpoints of d− ξ(G) edges of M̂ .

Justification of the procedure:
Clearly, for d ≤ ξ(G), the set formed by d (forced) vertices in F is a minimum d-

transversal. Assume now that d > ξ(G). From Proposition 7.6, Ĝ admits a perfect

matching M̂ . Any maximum stable set S in G contains ξ(G) forced vertices and

exactly one endpoint of each edge in M̂ , i.e. µ(Ĝ) = α(G) − ξ(G) vertices in Ĝ.
So, the set T constructed by the procedure is a d-transversal. Furthermore, we have
two maximum stable sets in G: S1 = F ∪ X̂ and S2 = F ∪ Ŷ where X̂ and Ŷ are
the right and left sets of vertices of Ĝ. So a d-transversal must contain at least
ξ(G) + 2(d− ξ(G)) = 2d− ξ(G) vertices. Since |T | = 2d− ξ(G) then T is minimum.

Complexity of the procedure:
Step 1 requires time (O(|V | 52) (see Proposition 7.7) and it produces the graph Ĝ and

the matching M̂ used at step 4. Thus, the whole procedure runs in time (O(|V | 52).
�

Remark 7.2 In a bipartite graph with a perfect matching, d-transverals may not be
d-blockers : for the graph in Figure 1 the black vertices form a 2-transversal but it is
not a 2-blocker since the white vertices form a stable set S with |S| = 2 > α(G)−2 =
1.

Proposition 7.9 In a bipartite graph G, the minimum cardinality of a d-blocker is

βd(G) =

{
d if d ≤ |V | − 2µ(G)
2d− |V |+ 2µ(G) if |V | − 2µ(G) < d ≤ α(G)

.

Moreover a minimum d-blocker for the maximum stable set problem can be con-
structed in time O(|V | 52).

12

Figure 1: A 2-transversal which is not a 2-blocker

Proof: We use the following procedure.

Input: G = (V,E) bipartite; d: 1 ≤ d ≤ α(G)
Output: B ⊆ V a minimum d-blocker

1. Construct a maximum matching M ; |M | = µ(G)

2. Let F ∗ be the set of vertices not saturated by M (they are forced vertices); |F ∗| =
|V | − 2µ(G)

3. If 1 ≤ d ≤ |F ∗|: choose d vertices in F ∗. This gives the required B

4. If d > |F ∗|, set B = F ∗∪ B̂ where B̂ is the set of endpoints of d−|V |+ 2µ(G) edges
of M

Justification of the procedure:
If d ≤ |V |−2µ(G), the result is obvious: we have |V |−2µ(G) vertices not saturated
by a maximum matching which are forced vertices (see 7.2 and its proof): removing
d of them will reduce the size of a maximum stable set by d.
Assume now that |V | − 2µ(G) < d ≤ α(G), i.e. d = |V | − 2µ(G) + p (with 0 < p ≤
µ(G)). Let G be the subgraph induced by V −B. G admits a perfect matching with
µ(G) = µ(G) − p. Thus α(G) = µ(G) = µ(G) − p = µ(G) − (d − |V | + 2µ(G)) =
|V |−µ(G)−d = α(G)−d; so B is a d-blocker. Now, let us show that B is minimum.
We have |B| = 2d− |V |+ 2µ(G); if we removed a set B′ with |B′| < |B|, we would
have more than 2(|V | −µ(G)− d) = 2(α(G)− d) vertices in the remaining graph G′

(which is bipartite) and then α(G′) > α(G)− d, so B′ would not be a d-blocker.
The complexity of the procedure is the complexity of finding a maximum matching
in a bipartite graph (at step 1), i.e. O(|V | 52) (see [2]). �

7.3 Vertex covers in bipartite graphs

Here we intend to study d-transversals of minimum vertex covers in a bipartite graph
G = (V,E). A subset C ⊆ V is a covering set or a cover if every edge [x, y] ∈ E
has at least one endpoint in C, i. e. |{x, y} ∩ C| ≥ 1,∀[x, y] ∈ E. The covering
number β(G) (corresponding to λ(G) in the general formulation of Section 2) is the
cardinality of a minimum covering set in G. A d-transversal is then a subset T of
vertices such that every minimum covering set C verifies |C ∩ T | ≥ d.

13

A vertex v is forced if every minimum cover contains v. We denote the number
of forced vertices in G by ζ(G). A vertex v is excluded if no minimum cover of G
contains v. A vertex which is neither forced nor excluded is free.
We easily derive the following statement from Proposition 7.8:

Corollary 7.10 In a bipartite graph G with ζ(G) forced vertices, the minimum
cardinality of a d-transversal of all minimum covers is

τd(G) =

{
d if d ≤ ζ(G)
2d− ζ(G) if ζ(G) < d ≤ β(G)

Moreover a minimum d-transversal can be constructed in time O(|V | 52).

Proof: If S ⊂ V is a stable set then its complement C = V − S is a covering set.
So the complement of a maximum stable set is a minimum cover. From Proposition
7.6, F and H are the sets of excluded vertices and forced vertices, respectively,
for all covers. The sequel of the proof is an immediate adaptation of the proof of
Proposition 7.8 in which ξ(G) is replaced by ζ(G). �

8 Concluding remarks

For all problems discussed here the determination of the optimal elements of CV
was polynomial. It appears that the complexity of finding minimum d-transversals
and d-blockers and the complexity of finding an optimal element of CV are not
directly related. We have seen that in the case of line graphs of bipartite graphs the
first problem is NP−hard while the second one is polynomial. Conversely, there
are problems for which finding minimum d-transversals or d-blockers is polynomial
while finding an optimal element of CV is NP−hard; such a situation occurs for
instance when we want to find a d-transversal, d ≥ 1, in case where CV is the family
of all longest elementary s − t paths, s has degree one and s is an endpoint of an
induced path of length at least d. It could be interesting to examine other similar
situations, i.e., where finding an optimal element of CV is NP−hard.
In this paper, after having formalized the concepts of d-transversals and d-blockers
we have solved the case where CV is the collection of all maximum stable sets in
bipartite graphs. We have also solved the case of d-blockers in split graphs. It
would be interesting to examine the case of other classes of graphs for which the
complexity status is still open. One could consider other families CV which may lead
to interesting results and to further research directions, like the weighted cases of
the above problems.

Acknowledgements: This research was carried out when M.-C. Costa and Ch.
Picouleau were visiting EPFL and when D. de Werra was visiting CNAM in 2009
and 2010. The support of both institutions is gratefully acknowledged. We also
would like to thank A. Sebö for fruitful discussions during the elaboration of the
paper. Furthermore, D. de Werra expresses his gratitude to Dr B. Pelet who provided
the necessary logistics.

14

References

[1] R.K. Ahuja, T. L. Magnanti, J.B. Orlin, Networks flows: Theory, Algorithm,
and Applications, Prentice Hall (1993).

[2] A.J. Asratian, T.M.J. Denley , R. Häggkvist Bipartite graphs and their appli-
cations, Cambridge University Press, (Cambridge, 1998).

[3] C. Berge, Graphes, Gauthier-Villars, (Paris, 1983).

[4] F. Bonomo, G. Durán (2004), Computational complexity of classical problems
for hereditary classes of graphs, Pesquisa Operacional 24, 413-434 or Electronic
Notes in Discrete Mathematics 18, 41-46.

[5] E. Boros, M.C. Golumbic, V.E. Levit (2002), On the number of vertices belong-
ing to all maximum stable sets of a graph, Discrete Applied Mathematics 124
(1), 17-25.

[6] E. Boros, K. Elbassioni, V. Gurvich (2006), Transversal Hypergraphs to Perfect
Matchings in Bipartite Graphs: Characterization and Generation Algorithms,
Journal of Graph Theory 53 (3), 209-232.

[7] A. Branstädt, J. P. Spinrad, V. B. Le, Graph classes : A survey, SIAM Mono-
graphs on Discrete Math. and Appl. (1999).

[8] P. Burzyn, F. Bonomo, G. Durán (2006), NP-completeness results for edge
modification problems, Discrete Applied Mathematics 154(13), 1824-1844.

[9] B. Colson, P. Marcotte, G. Savard (2007), An overview of bilevel optimization,
Annals of Oper. Research, 153, pp. 235-256.

[10] S. Dempe, Foundations of bilevel programming, Kluwer Academic Publishers
(2002).

[11] P. Erdos, T. Gallai, Z. Tuzc (1992), Covering the cliques of a graph with vertices,
Discrete Mathematics 108, 279-289.

[12] A. Frank (1994), On the edge connectivity algorithm of Nagamochi and Ibaraki,
Unpublished report.

[13] M.R. Garey and D.S. Johnson, Computers and intractability, a guide to the
theory of NP-completeness, Freeman (New York, 1979).

[14] O. Goldschmidt and D.S. Hochbaum (1994), A polynomial algorithm for the
k-cut problem for fixed k, Mathematics of Operations Research 19, 24-37.

[15] L. Khachiyan, E. Boros, K. Borys, K. Elbassioni, V. Gurvich, G. Rudolf, J.
Zhav (2008), On short paths interdiction problems: total and node-wise limited
interdiction, Theory of Computing Systems 43, 204-233.

[16] C.-M. Lee (2009), Variations of maximum-clique transversal sets on graphs,
Annals of Oper. Research, to appear.

15

[17] J.M. Lewis, M. Yannakakis (1980), The node-deletion problem for hereditary
properties is NP-complete, Journal of Computer and System Sciences 20, 219-
230.

[18] B. Ries, C. Bentz, C. Picouleau, D. de Werra, M.-C. Costa, R. Zenklusen
(2010), Blockers and Transversals in some subclasses of bipartite graphs: when
caterpillars are dancing on a grid, Discrete Mathematics, 310(1), 132-146.

[19] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer,
(New York, 2003).

[20] P.J. Slater (1978), A constructive characterization of trees with at least k dis-
joint maximum matchings, J. Combinatorial Theory Ser. B 25, 326-338.

[21] L.N. Vicente, G. Savard, J.J. Judice (1996), The discrete linear bilevel program-
ming problem, J. of Optimization Theory and Applications, 89, 597-614.

[22] D. Wagner (1990), Disjoint st-cuts in a network, Networks 20, 361-371.

[23] M. Yannakakis (1981), Edge-deletion problems, SIAM Journal of Computing 10
(2), 297-309.

[24] M. Yannakakis (1981), Node-deletion problems on bipartite graphs, SIAM Jour-
nal of Computing 10 (2), 310-327.

[25] R. Zenklusen, B. Ries, C. Picouleau, D. de Werra, M.-C. Costa, C. Bentz (2009),
Blockers and Transversals, Discrete Mathematics, 309(13), 4306-4314.

[26] J. Zito (1991), The structure and maximum number of maximum independent
sets in trees, J. Graph Theory, 15, 207-221.

16

