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Abstract

We introduce graphs called hypochordal : for any path of length 2, there

exists a chord or another path of length 2 between its two endpoints. We

show that such graphs are 2-vertex-connected and moreover in the case of

an edge or a vertex deletion, the distance between any pair of nonadjacent

vertices remains unchanged.

We give properties of hypochordal graphs, then we study the class of

minimum hypochordal graphs and finally we give some complexity results

for classical combinatorial problems.
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1 Introduction

Reliability in networks is a large field of research due to both practical and/or
theoretical considerations (see for instance the books [9, 10]). In the literature,
the problems of link failures and of node failures are usually considerred sep-
arately; that is either the nodes [8] or the links are assumed to be perfectly
reliable. Here we want to construct networks where a link or a node can be
defective. In addition, for the sake of robustness we want to preserve the length
of shortest paths in the case of one failure. For this purpose, we introduce par-
ticular graphs called hypochordal : for any path of length 2, there exists a chord
or another path of length 2 between its two endpoints.

We will show that networks with hypochordal topology are robust and re-
liable regarding links as well as nodes since the distance between any pair of
nonadjacent nodes remains unchanged.

This paper is organized as follow: first we give the definition of hypochordal
graphs and their characterisation in terms of distance conservation. Then we
give a characterisation of minimum hypochordal graphs, which are those having
the minimum number of edges for a fixed order. A study of the complexity of
classical combinatorial problems comes next. We finish with a conclusion and
perspectives.

2 Definition and motivations

Here we only consider simple undirected graphs. Let G = (V, E) be such a
graph with n(G) = n = |V | vertices and m(G) = m = |E| edges. Except when
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mentioned, the graphs will be considered connected and n ≥ 3 (the connected
graphs with n ≤ 2 vertices being trivially hypochordal). The distance between
two vertices x and y is the minimum number of edges of a path [x, . . . , y] and
will be denoted by d(x, y). For x ∈ V , Nx

i = {y ∈ V, d(x, y) = i} is the set of
vertices of G at distance i from x. The set of neighbours of x is N(x) = Nx

1 .
We say that y is a twin of x if N(y) = N(x) (x and y are nonadjacent). We
denote by δ(x) the degree of the vertex x and by δ(G) the minimum degree of a
vertex of G. Pk (respectively Ck) is a path (respectively a cycle) of k vertices.

Let S and S′ be disjoint sets of vertices of G. We denote by S−S′ the relation
existing between the sets S and S′ if they satisfy ∀x ∈ S, ∀y ∈ S′, [x, y] ∈ E.
For all other definitions, refer to [1].

2.1 Definition and properties of hypochordal graphs

We now formalise the definition of hypochordal graphs.

Definition 1. A graph G = (V, E) is hypochordal if for every triple of vertices
u, v, y such that [u, y, v] is a P3, we have [u, v] ∈ E or there exists z 6= y such
that [u, z, v] is a P3.

Figure 1: Examples of connected hypochordal
graphs – C3 and the cube

Figure 2: A non perfect
hypochordal graph – the
5-wheel

We have the following equivalences.

Proposition 1. Let G = (V, E) be a connected graph. Then the following
definitions are equivalent:

1. G is hypochordal;

2. every P3 is included in a C3 or a C4;

3. ∀u, v ∈ V, u 6= v, |N(u) ∩ N(v)| = 1 ⇒ [u, v] ∈ E;

4. the distance between any pair of nonadjacent vertices is unchanged by the
deletion of any third vertex;

5. the distance between any pair of nonadjacent vertices is unchanged by the
deletion of any edge;

6. for any pair of nonadjacent vertices, there exist two vertex-disjoint shortest
paths between them.
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While the equivalences between 1, 2 and 3 are immediate, the equivalences
with 4, 5 and 6 need a little proof:

Proof. We show that 1 ⇒ 4 ⇒ 5 ⇒ 6 ⇒ 1.
(1 ⇒ 4) Let G be a hypochordal graph, u, v a pair of nonadjacent vertices

and y a third vertex, y 6= u, y 6= v. We denote by µ = [u = u0, u1, . . . , uk = v]
a shortest path between u and v.
If y 6∈ µ, then the distance between u and v is unchanged by the deletion of y.
If y = uj then [uj−1, uj = y, uj+1] is a P3, and [uj−1, uj+1] 6∈ E since µ is
a shortest path. So there exists z 6= y such that [uj−1, z, uj+1] is a P3 and
[u = u0, . . . , u′

j = z, . . . , uk = v] is another shortest path between u and v.
(4 ⇒ 5) Assume that the distance between any pair of nonadjacent vertices

is unchanged by the deletion of any third vertex and consider the deletion of
an edge [x, y] ∈ E. Since the distances greater than 2 are unchanged by the
deletion of y, these distances are unchanged by the deletion of [x, y].

(5 ⇒ 6) Let u and v be nonadjacent vertices linked by a shortest path
µ = [u = u0, u1, . . . , uk = v]. For any ui ∈ µ, (ui 6= u, v), ui−1 and ui+1 are at
distance two, otherwise µ is not minimal.
From 5, the deletion of [ui−1, ui] does not change the distance between ui−1

and ui+1 thus, there exists u′
i, (u

′
i 6= ui) such that [ui−1, u

′
i] and [u′

i, ui+1] be-
long to G. Then, there exist two vertex-disjoint shortest path between u and
v: µ1 = [u = u0, u1, u

′
2, . . . , u2i−1, u

′
2i, . . . , uk = v] and µ2 = [u = u0, u

′
1, u2,

. . . , u′
2i−1, u2i, . . . , uk = v].

u = u0

u1

u2

u3

v = uk

u′
1

u′
2

u′
3

(6 ⇒ 1) Let u and v be nonadjacent vertices such that [u, y, v] is a P3. Since
there exist two vertex-disjoint shortest paths between u and v, there exists z

such that [u, z, v] is a P3 and z 6= y. So G is hypochordal.

Remark 1. Let [u, v] ∈ E be an edge of G. Since G is connected and n ≥ 3,
[u, v] belongs to a P3. G being hypochordal, [u, v] belongs to a C3 or a C4. Hence,
the deletion of the edge [u, v] increases the distance between u and v by 1 or 2.

Hypochordal graphs must be studied in depth since they do not fit with
most of the “pleasant” properties such as perfectness or heredity. Hypochordal
graphs are not necessarily perfect, see Figure 2.

As defined in [2], a property Π is called hereditary if it is closed under taking
induced subgraphs. In other words, a graph property Π is hereditary if it is
closed under removal of vertices. It is clear that the hypochordal property is
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not hereditary. As an example, consider the 5-wheel of Figure 2, it has a C5 as
an induced subgraph, which is not hypochordal.

Following the definition given in [7], page 9, a property Π is monotone
if adding edges to a graph with property Π produces a graph satisfying Π.
Thus the hypochordal property is not monotone since the cube is no longer
hypochordal when adding a chord to a C4.

2.2 Relations with 2-vertex-connected and chordal graphs

Proposition 1.6 states that hypochordal graphs are the graphs where there exist
two vertex-disjoint shortest paths between any pair of nonadjacent vertices.
Hence, if G is hypochordal then G is 2-vertex-connected.

There is no inclusion relation between the classes of 2-vertex-connected
chordal graphs and hypochordal graphs. The graph of Figure 3 is a 2-vertex-
connected interval graph hence it is chordal; but is not hypochordal. Complete
graphs Kn are both chordal and hypochordal. Bipartite complete graphs Kn1,n2

for n1, n2 ≥ 2 and hypercubes are hypochordal and not chordal. Thus we are
interested in comparing hypochordal graphs to 2-vertex-connected graphs and
to 2-vertex-connected chordal graphs:

• Let G be a 2-vertex-connected graph, the deletion of a vertex (respectively
an edge) can increase the distance between the vertices by up to n − 4
(respectively n − 2). Just consider Cn, n ≥ 4.

• Let G be a 2-vertex-connected chordal graph, the deletion of any edge
of G increases by at most one the distance between any pair of vertices,
but the deletion of a vertex of G may increase the distance between two
vertices by an arbitrary long value. Consider the graph given in Figure 3,
the vertices u and v and the deletion of x.

x
u v

Figure 3: A 2-vertex-connected chordal graph
with arbitrary big distance increase

Thereby when interested in networks where a link (edge) or a node (vertex)
failure induces small changes in the distance between any pair of nodes, one
can consider hypochordal graphs topology. Moreover in the next section we will
show that hypochordal graphs can have a number of edges less than two times
the number of vertices.

3 Minimum hypochordal graph

Here we characterise the set of connected hypochordal graphs of order n with
a minimum number of edges. We call them minimum hypochordal graphs. We
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first introduce some graph partitions. Then we bound the number of edges of
such graphs. Finally we characterise the structure of minimum hypochordal
graphs.

3.1 Partitioning hypochordal graphs

Definition 2. A graph H = (B,F) is a partition of G if

• each vertex Bi of H is a subset of vertices of G, called a bag, Bi ⊂ V ;

• the bags realise a partition of V :
⋃

i Bi = V , Bi ∩ Bj = ∅, i 6= j;

• if two adjacent vertices of G are in two distinct bags A and B then A−B

in G, and the bags A and B are adjacent in H.

That is, to each edge [B1, B2] of H corresponds the complete bipartite sub-
graph of G induced by the vertices of B1 ∪ B2.

Note that G is a partition of G, thus a partition of G always exists. Note
also that there is no condition concerning the adjacency of the vertices inside a
bag. Hence the graph with a single vertex is a partition of any graph (H has a
single bag equal to V ).

Definition 3.

– a tree-partition T of G is a partition such that T is a tree;

– a stable-partition H of G is a partition such that every bag is a stable set;

– a 2-stable-partition H of G is a stable-partition such that every bag is of size
less than or equal to 2: ∀Bi ∈ B, |Bi| ≤ 2.

Proposition 2. If G has a partition H = (B,F) with |B| ≥ 2, H connected
and ∀Bi ∈ B, |Bi| ≥ 2, then G is hypochordal.

Proof. Let u, v be two distinct vertices of G. They can either be in the same
bag or not.

• Case u and v are in the same bag A: The partition being connected with
at least two bags, there exist a bag B adjacent to A. Hence A − B and
N(u) ∩ N(v) ⊇ B. Thus |N(u) ∩ N(v)| ≥ |B| ≥ 2.

• Case u and v are in distinct bags A and B: Suppose that |N(u)∩N(v)| = 1,
N(u) ∩ N(v) = {w}; w is either in the bag A (or symmetrically B) or in
a third bag C.

– Case w ∈ A: Since v and w are adjacent in G and belong to two
distinct bags A and B of H , we have A − B. Hence [u, v] ∈ E.

– Case w ∈ C: Using the same argument as above, we have A−C and
B−C. Thus N(u)∩N(v) ⊇ C and therefore |N(u)∩N(v)| ≥ |C| ≥ 2,
a contradiction.

Proposition 3. If G is 2-vertex-connected and has a tree-partition T = (B,F)
with |B| ≥ 3, then G is hypochordal.
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Proof. Let A ∈ B be a bag of T such that |N(A)| ≥ 2. The subgraph of G

induced by the vertices of V \A is disconnected. Since G is 2-vertex-connected,
|A| ≥ 2. Hence the bags of size 1 can only be leaves of T .

In the case where |B| = 3, with both leaves of size 1, we create another
tree-partition T ′ of G by aggregating the two bags of size 1 into a single bag of
size 2. Proposition 2 shows that G is hypochordal.

In any other case, we remove the bags of size 1 of T , the remaining graph is
called T ′. From Proposition 2, the subgraph G′ of G induced by the vertices of
the bags of T ′ is hypochordal. Let u, v be two vertices of G, with at least one
common neighbour w:

• Case u, v are vertices of G′: G′ being hypochordal, |N(u) ∩ N(v)| = 1
implies [u, v] ∈ E.

• Case u, v are both in bags of size 1: u and v are in bags that are leaves of
T so w belongs to a bag A which is not a leaf of T . N(u) = N(v) = A,
with |A| ≥ 2.

• Case u is in a bag of size 1 and v belongs to G′: w can either be in the
same bag as v or in another bag of T .

– If v and w are in the same bag, since u and w are adjacent in G, we
have [u, v] ∈ E.

– If w is in a bag A and v in a bag B of T , then N(u)∩N(v) = N(u) = A

with |A| ≥ 2.

Definition 4. Let G = (V, E) be a graph, the graph 2G = (U, F ) is as follows:
U = V × {1, 2}; any vertex v of G has two corresponding vertices v1 and v2 in
2G; if [u, v] ∈ E then [ui, vj ] ∈ F, i, j ∈ {1, 2}.

See Figure 4 for an example.

7−→

Figure 4: A graph G and the corresponding graph 2G

Note that G is a 2-stable-partition of 2G.

Proposition 4. For any connected graph G with at least two vertices, the graph
2G is hypochordal.

Proof. G is a partition of 2G with at least two bags, each bag being of size 2.
We conclude using Proposition 2.
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Remark 2. From Proposition 4, we can deduce that for any k, there are
hypochordal graphs with diameter k and there also exist hypochordal graphs with
a girth of size k (consider 2Ck), thus hypochordal graphs cannot be characterised
by a finite set of forbidden induced subgraphs.

We define a transformation G 7→ 2̃G similar to Definition 4. In fact, it is the
same transformation except for pendant vertices which are not duplicated. See
Figure 5 for an example.

Definition 5. Let G = (V, E) be a graph. Let V1 ⊂ V be the set of vertices

of G with degree 1 and V2 = V \ V1. The graph 2̃G = (U, F ) is as follows:

U = V1 ∪ V2 × {1, 2}; any vertex u ∈ V1 corresponds to a vertex u1 of 2̃G; any

vertex v ∈ V2 has two corresponding vertices v1 and v2 in 2̃G; if [u, v] ∈ E then
[ui, vj ] ∈ F, i, j ∈ {1, 2}.

Note again that G is a 2-stable-partition of 2̃G

7−→

Figure 5: A graph G and the corresponding graph 2̃G

Proposition 5. For any connected graph G with at least three vertices, the
graph 2̃G is hypochordal.

Proof. Let G′ be the subgraph of G induced by the vertices with degree greater
than or equal to 2. Since n(G) ≥ 3 and G is connected, n(G′) ≥ 1.

If n(G′) = 1, then G is the star K1,n(G)−1. Thus 2̃G is the bipartite complete
graph K2,n(G)−1 which is hypochordal since n(G) − 1 ≥ 2.

If n(G′) ≥ 2, then, from Proposition 4, the induced subgraph 2G′ of 2̃G is
hypochordal. Using the same argument as in the proof of Proposition 3, we
show that 2̃G is hypochordal.

Proposition 6. A graph G with n ≥ 5 is a 2̃H if and only if δ(G) ≥ 2 and
G has a connected 2-stable-partition with at least one bag of size 2 and every
vertex with degree greater than or equal to 3 is in a bag of size 2.

Proof. (⇒) If G = 2̃H and n ≥ 5, then H is a connected 2-stable-partition of
G with at least 3 bags. Hence there is at least one bag of size 2. The vertices
of G in bags of size 1 have degree 2 in G.
(⇐) Let K be the 2-stable-partition of G satisfying the conditions of Proposi-
tion 6. Thus every pair of vertices in bags of size 2 have the same degree.
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Since vertices with degree greater than or equal to 3 are in a bag of size
2 and δ(G) ≥ 2, bags of size 1 can only contains vertices of G with degree 2.
The neighbours of any vertex x with degree 2 in G are the two vertices of a
bag of size 2: by contradiction, suppose that x has its two neighbours in two
different bags, necessarily these bags are of size 1 and the two neighbours of x

have degree 2. This argument implies that G has a connected component which
is a cycle. As G is connected, G is a cycle where every vertex is a bag of K

which is impossible since there is at least one bag of size 2 and n ≥ 5.
So any bag of size 1 in K has a single adjacent bag, which is necessarily of size 2.
We construct a new 2-stable-partition of G, K ′ such that if a vertex x of G with
degree 2 is in a bag A of size 2 of K, then in K ′, A is replaced with two bags of
size 1, each one containing a single vertex with degree 2. This way, every vertex
with degree 2 is in a bag of size 1 of K ′, every vertex with degree greater than or
equal to 3 is in a stable bag of size 2 of K ′. Since K ′ is a 2-stable-partition, the
two vertices of a same bag of size 2 have exactly the same neighbours. Hence
G = 2̃K ′.

Lemma 1. Let H be a connected graph with n(H) ≥ 3, 2̃H satisfies m(2̃H) =

2 × n(2̃H) − 4 if and only if H is a tree.

Proof. Let n1 be the number of pendant vertices of H and n2 be the number
of vertices with degree greater than or equal to 2. 2̃H has n(2̃H) = n1 + 2n2

vertices. Now let us count the number of edges of 2̃H : any edge in H with an
endpoint with degree 1 corresponds to two edges of 2̃H , the other edges of H

correspond to four edges of 2̃H (see Figure 5), hence m(2̃H) = 2n1 +4(m(H)−
n1) = 4m(H) − 2n1 edges.

We have the following:

m(2̃H) = 2n(2̃H) − 4
⇔ 4m(H) − 2n1 = 2(n1 + 2n2) − 4
⇔ m(H) = n1 + n2 − 1
⇔ m(H) = n(H) − 1
⇔ H is a tree.

3.2 How many edges?

For n = 2 (respectively n = 3), there is a unique minimum connected hypo-
chordal graph which is K2 (respectively K3).
Now we consider n ≥ 4.

Lemma 2. Let G be a connected hypochordal graph and x be a vertex of G,
then ∀i ≥ 2 and ∀v ∈ Nx

i , |N(v) ∩ Nx
i−1| ≥ 2.

Proof. Let µ = [x = v0, . . . , vi−1, vi = v] be a shortest path from x to v. G
being hypochordal, d(x, v) = i in the subgraph G \ {vi−1}. So in G we have
|N(v) ∩ Nx

i−1| ≥ 2.

Lemma 3. Let G be a connected hypochordal graph with n ≥ 4, we have m ≥
2n − 4. Moreover if m = 2n − 4 then δ(G) ≤ 3.

Proof. Since G is hypochordal and n ≥ 4, we have δ(G) ≥ 2.
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• Case δ(G) = 2: let x be a vertex with minimum degree. From Lemma 2,
for each vertex v ∈ Nx

i , i ≥ 2 there are at least two edges [v, w1] and [v, w2]
with w1, w2 ∈ Nx

i−1. Moreover x has two neighbours in Nx
1 so we have

m ≥ 2 × | ∪i≥2 Nx
i | + |Nx

1 | = 2(n − 3) + 2 = 2n − 4.

• Case δ(G) = 3: when n = 4, G = K4 for which m = 6 > 2n − 4. We
consider n ≥ 5. Let x be a vertex with minimum degree and y a vertex
at maximum distance k from x. We use the same token as above plus the
fact that y has degree at least 3. So we have m ≥ 2 × (| ∪i≥2 Nx

i | − 1) +
|Nx

1 | + δ(G) = 2(n − 5) + 3 + 3 = 2n − 4.

• Case δ(G) ≥ 4: we have m = 1
2

∑
v∈V δ(v) ≥ 1

2

∑
v∈V δ(G) ≥ 2n > 2n−4.

It follows immediately that if m = 2n − 4, we have 2 ≤ δ(G) ≤ 3

Lemma 4. Let G be a connected hypochordal graph with m = 2n−4 and x be a
vertex of G with minimum degree δ(x) = 2: ∀i ≥ 2, ∀u ∈ Nx

i , |N(u)∩Nx
i−1| = 2

and ∀i ≥ 0, Nx
i is a stable set.

Proof. Let us consider the proof of Lemma 3. Since m = 2n − 4, every vertex
in Nx

i , i ≥ 2 has exactly two neighbours in Nx
i−1 and there is no edge [u, v] with

u, v ∈ Nx
i .

Lemma 5. Let G be a connected hypochordal graph with m = 2n−4 and x be a
vertex of G with minimum degree δ(x) = 3, let k be the maximum distance from a
vertex to x: ∀ 2 ≤ i ≤ k−1, ∀u ∈ Nx

i , |N(u)∩Nx
i−1| = 2 and ∀ 0 ≤ i ≤ k−1, Nx

i

is a stable set. Moreover |Nx
k | ≤ 2.

Proof. Let us consider the proof of Lemma 3. K4 does not satisfies m = 2n− 4,
so n ≥ 5. For each vertex v ∈ Nx

i , 2 ≤ i < k, there are exactly two edges [v, w1]
and [v, w2] with w1, w2 ∈ Nx

i−1 and there is no edge [u, v] with u, v ∈ Nx
i .

If |Nx
k | ≥ 3, using the counting argument of Lemma 3, then m ≥ 2 × | ∪i≥2

Nx
i |+ |Nx

1 |+
1
2 |N

x
k | = 2(n− 4)+3+ 1

2 |N
x
k | > 2n− 4. Hence m = 2n− 4 implies

that |Nx
k | ≤ 2.

We use these lemmata to prove the following.

Theorem 1. A minimum connected hypochordal graph G with n ≥ 4 is such
that m = 2n−4, G is bipartite and δ(G) = 2 or 3. Moreover there exists a unique
minimum hypochordal graph with δ(G) = 3 which is the cube. Furthermore there
exists an infinite family of minimum hypochordal graphs with δ(G) = 2.

Proof.

• Case δ(G) = 2: if G = K2,n−2 we have m = 2n− 4 and G is hypochordal.
For m = 2n − 4, any hypochordal graph is necessarily bipartite because
we have seen in the proof of Lemma 4 that every edge [u, v] of G is such
that u (or v) ∈ Nx

i and v (or u) ∈ Nx
i−1, i ≥ 1.

• Case δ(G) = 3: the cube satisfies m = 2n − 4 and is hypochordal.
Let x be a vertex with minimum degree and k be the maximum distance
from a vertex to x.

First we show that k ≥ 3. From Lemma 5 we know that |Nx
k | ≤ 2.

If |Nx
k | = 1, let Nx

k = {y}, then k = 2 is impossible: N(x) = N(y) = Nx
1
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and Nx
1 is a stable set so the vertices of Nx

1 would have degree 2.
If |Nx

k | = 2, let Nx
k = {y, z}. Necessarily [y, z] ∈ E: by contradiction,

assume that [y, z] 6∈ E, since δ(G) = 3, both y and z have at least three
neighbours in Nx

k−1. Hence using the same arguments as in the proof of

Lemma 3, we have m ≥ 2|∪k−1
i=2 Nx

i |+|N(x)|+2δ(G) = 2(n−6)+9 = 2n−3.
So [y, z] is the unique edge with its two endpoints in the same Nx

i , i ≥ 1.
Let v be a neighbour of y in Nx

k−1, the existence of the P3[z, y, v] implies
the existence of the edge [v, z]: Thus N(y)∩Nx

k−1 = N(z)∩Nx
k−1. We have

N(y) ∩ Nx
k−1 = Nx

k−1 : by contradiction, assume there exists u ∈ Nx
k−1 \

N(y), N(u) ⊂ Nx
k−2, then from Lemma 5, |N(u)| = 2 whereas δ(G) = 3.

Hence we have |Nx
k−1| = 2. k = 2 is impossible since Nx

k−1 = Nx
1 and

|Nx
1 | = 3.

Hence k ≥ 3. Let v1, v2, v3 ∈ Nx
1 be the three neighbours of x. Since G is

hypochordal and Nx
1 is a stable set, v2 and v3 must have a common neigh-

bour w1 ∈ Nx
2 . From Lemma 5, N(w1) ∩ Nx

1 = {v2, v3}. By symmetry,
there exists a vertex w2 6= w1 such that N(w2)∩Nx

1 = {v1, v3} ; and there
exists another vertex w3 6= w1, w3 6= w2 such that N(w3)∩Nx

1 = {v1, v2}.
Hence Nx

2 = {w1, w2, w3}

x

v1 v2 v3

w3 w2 w1

s1 s2

Nx
1

Nx
2

Nx
3

Suppose that |Nx
3 | ≥ 2: since |Nx

2 | = 3, δ(G) = 3 and from Lemma 5,
∀s ∈ Nx

3 , |N(s) ∩ Nx
2 | = 2, there exists a pair s1, s2 ∈ Nx

3 such that
N(s1) ∩ Nx

2 = {w2, w3} and N(s2) ∩ Nx
2 = {w1, w2}. Now the vertices

v1 and s2 have a unique common neighbour w2, which is a contradiction
since G is hypochordal.

Hence |Nx
3 | = 1. Since hypochordal graphs have no separating vertex,

k = 3 and G is the cube.

3.3 Shape of minimum hypochordal graphs

Theorem 1 states that the sole minimum hypochordal graph with δ(G) = 3 is
the cube and there are no minimum hypochordal graphs for δ(G) ≥ 4. Hence
in this section, we consider minimum hypochordal graphs with δ(G) = 2 (there
exists an infinite number of such graphs). We recall that these graphs satisfy
m = 2n − 4, they are bipartite, the sets Nx

i are stable and any vertex v at
distance i from x has exactly two neighbours at distance (i − 1) from x.
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Lemma 6. Let G be a minimum connected hypochordal graph with n ≥ 4 and
δ(G) = 2, and x be a vertex with minimum degree. Let u and v be two vertices
in Nx

i , i ≥ 2. If N(u) ∩ N(v) ∩ Nx
i+1 6= ∅ then |N(u) ∩ N(v) ∩ Nx

i−1| = 2.

Proof. By Lemma 4, we know that both u and v have two neighbours in Nx
i−1.

Let w ∈ Nx
i+1 be a common neighbour of u and v. Suppose that u has a

neighbour a in Nx
i−1 which is not a neighbour of v.

a b

u v

w Nx
i+1

Nx
i−1

Nx
i

w has exactly two neighbours in Nx
i which are u and v. [a, u, w] is a P3 but

neither [a, w] nor [a, v] are edges of G. This contradicts the fact that G is
hypochordal.

Lemma 7. Let G be a minimum connected hypochordal graph with δ(G) = 2
and n ≥ 5. For every vertex y such that δ(y) ≥ 3, y has a twin vertex z.
Furthermore z is unique.

Proof. Let x and y be two vertices such that δ(x) = 2 and δ(y) ≥ 3. Thus
y ∈ Nx

i , i ≥ 1.
If y ∈ Nx

1 , let Nx
1 = {y, z}. We show that z is the twin of y. From

Lemma 4, [y, z] 6∈ E and every vertex w ∈ Nx
2 has two neighbours in Nx

1 which
are necessarily y and z. So N(y) = N(z) = {x} ∪ Nx

2 and z is the unique twin
of y.

We consider now y ∈ Nx
i , i ≥ 2. From Lemma 4, |N(y) ∩ Nx

i−1| = 2; let a

and b be the two neighbours of y in Nx
i−1. Since δ(y) ≥ 3, y has a neighbour

w ∈ Nx
i+1. Now |N(w) ∩ Nx

i | = 2; let z be such that in N(w) ∩ Nx
i = {y, z}.

We show that N(z) = N(y). G being minimum hypochordal, we know that
N(y) ⊂ Nx

i−1 ∩ Nx
i+1. Since N(y) ∩ N(z) ∩ Nx

i+1 6= ∅, Lemma 4 and Lemma 6
ensure that N(y) ∩ Nx

i−1 = N(z) ∩ Nx
i−1 = {a, b}. Suppose there exists u ∈

Nx
i+1 ∩ N(y) \ N(z). Let v 6= z be such that N(u) ∩ Nx

i = {y, v}. If δ(u) = 2
or δ(w) = 2, N(u) ∩ N(w) = {y}; since [u, w] 6∈ E and [v, w] 6∈ E, this is
impossible. Hence δ(u) ≥ 3 and δ(w) ≥ 3.
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a b

y z

wu

v

t

Nx
i−1

Nx
i

Nx
i+2

Nx
i+1

Since [u, w] 6∈ E and N(u) ∩ N(w) 6= ∅, we have |N(u) ∩ N(w)| ≥ 2; so there
exists t ∈ N(u) ∩ N(w) ∩ Nx

i+2; from Lemma 4 we have N(t) ∩ Nx
i+1 = {u, w},

thus N(z) ∩ N(t) = {w}, a contradiction since [z, t] 6∈ E.
Now we show that y has exactly one twin z. By contradiction, suppose y

has two twins z and z′. So N(y) = N(z) = N(z′) and δ(y) = δ(z) = δ(z′) ≥ 3.
Then there exists t ∈ N(y) ∩ Nx

i+1 but |N(t) ∩ Nx
i | ≥ 3, which contradicts

Lemma 4.

Theorem 2. G is a minimum connected hypochordal graph with n ≥ 4 and
δ(G) = 2 if and only if G = 2̃T for an appropriate tree T with n(T ) ≥ 3.

T 7−→ 2̃T

Figure 6: A tree T and the corresponding graph 2̃T

Proof. (⇒)

• Case n = 4: The only minimum hypochordal graph G is C4 and G = 2̃P3;

• Case n ≥ 5: Due to Lemma 7, every vertex y with δ(y) ≥ 3 has a unique
twin vertex z. We make H a 2-stable-partition of G as follows: each vertex
w, δ(w) = 2 forms a bag; each vertex y, δ(y) ≥ 3 with its twin z form a

bag. Given the characterisation of Proposition 6, G = 2̃H . Moreover G

satisfies m = 2n − 4 which means from Lemma 1 that H is a tree.
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(⇐) From Proposition 5, 2̃T is hypochordal and from Lemma 1, m(2̃T ) =

2n(2̃T ) − 4. Hence 2̃T is a minimum hypochordal graph.

Theorem 3. A graph G with n ≥ 5 and δ(G) = 2 is a minimum hypochordal
graph if and only if G is 2-vertex-connected and there exists a 2-tree-stable-
partition T of G.

Proof.
(⇒) If G is a minimum hypochordal graph, G is 2-vertex-connected and from

Theorem 2, G = 2̃T where T is a tree. Hence, T is a 2-tree-stable-partition of
G.
(⇐) Let G be a graph having T as a 2-tree-stable-partition. Since n(G) ≥ 5, a
2-tree-stable-partition of G has at least three bags; then due to Proposition 3,
G is hypochordal. Hence m(G) ≥ 2n(G) − 4.

We still need to show that because G has a 2-tree-stable-partition T , m(G) ≤
2n(G) − 4:

n1(T ) will denote the number of bags of size 1. T being a tree, its number
of edges is m(T ) = n(T ) − 1; let us denote by m1(T ) the number of edges of T

which are incident to bags of size 1. We observe that every internal bag of T

has size 2 since G is 2-vertex-connected, so m1(T ) = n1(T ).
We have n(G) = n1(T ) + 2 × (n(T ) − n1(T )) = 2n(T ) − n1(T ) and m(G) =
2m1(T )+4[(n(T )−1)−m1(T )] = 2(2n(T )−m1(T ))−4. Since m1(T ) = n1(T ),
m(G) = 2n(G) − 4.

This characterisation of minimum hypochordal graphs implies that classical
combinatorial problems are polynomial in this class: minimum hypochordal
graphs are bipartite, hence they are 2-colorable, their maximum clique has size
two and the problem of maximum stable set is polynomial; they do not have
a hamiltonian cycle, except the cube and 2̃Pk, ∀k ≥ 3. In the next section, we
consider the same combinatorial problems in the case of (general) hypochordal
graphs.

4 Classical combinatorial problems

Since hypochordal graphs are not necessarily perfect and the hypochordal prop-
erty is neither hereditary nor monotone, there is very few hope that NP-
complete problems would become polynomial in hypochordal graphs. This is
confirmed by the following results.

4.1 Hamiltonian cycle

We are interested in deciding if a given hypochordal graph is hamiltonian or
not.

Theorem 4. The problem Hamiltonian Cycle is NP-complete in hypo-
chordal graphs.

Proof. We know that deciding if a 3-regular graph is hamiltonian is NP-com-
plete. We are going to show that this problem reduces to the problem of the
existence of a hamiltonian cycle in a hypochordal graph.

The problem of deciding if a hypochordal graph is hamiltonian is in NP .
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Let G = (V, E) be a 3-regular graph. We build a hypochordal graph H =
(U, F ) by the following polynomial transformation. Each vertex a of G becomes
a subgraph Ha of H isomorphic to K6. Each edge [a, b] of G is substituted by a
gadget (Figure 7) connected to Ha and Hb. The vertices a1, a2 are belonging to
Ha and b1, b2 to Hb. G being a 3-regular graph, any vertex a has three incident

u1

u2

u0

a1

a2

b1

b2

Figure 7: The gadget corresponding to the edge [a, b] of G

edges [a, b], [a, c] and [a, d]. You can see the corresponding subgraph of H on
Figure 8.

c

a

b d

v2v1 v0

c5c6

a5a6

w1

w2

w0

a4

a3

d4

d3

u2

u1

u0

b1

b2

a1

a2

Figure 8: The neighbourhood of a vertex a of G

and the corresponding subgraph of H

We should first make sure that the graph H we have build is hypochordal.
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We consider the common neighbours of vertices at distance two (see Figure 8).
Given the symmetry of H , we need to consider the vertices at distance two from
a1 plus the pair {u1, u2}. The vertices at distance two from a1 are b1 (and b2),
u0 and v1 (and v2).

• Vertices a1 and b1 have two common neighbours u1 and u2;

• vertices a1 and u0 have two common neighbours u1 and u2;

• vertices a1 and v1 have two common neighbours a5 and a6;

• vertices u1 and u2 have five common neighbours a1, a2, b1, b2 and u0.

We show that if G has a hamiltonian cycle then there is a hamiltonian cycle
in H . Let CG be a hamiltonian cycle of G: from any vertex v ∈ V , CG induces
a total order < on V .

For an edge [x, y] of G, [x, y] ∈ CG, we associate a path in the gadget between
Hx and Hy as shown in Figure 9.

u1

u2

u0

x1

x2

y1

y2

Figure 9: Path in H corresponding to an edge of the hamiltonian cycle of G

For an edge [x, y] of G with [x, y] 6∈ CG and x < y, we associate a path of
the gadget which does not bridge over Hx and Hy, as shown in Figure 10.

u1

u2

u0

x1

x2

y1

y2

Figure 10: Path corresponding to an edge not in the hamiltonian cycle of G

For any vertex a of G, two of its three incident edges are in C. Assume that
b, c, d are the three neighbours of a and [a, b] and [a, c] belong to CG. We have
to connect the corresponding paths through Ha. There are two different cases:

• a < d: there are three paths to connect, one between Ha and Hb (with a1

as end point), one between Ha and Hc (with a6 as endpoint) and one in
the gadget corresponding to the edge [a, d] (with a3, a4 as endpoints). We
join these three paths with the vertices of Ha that are not in a path yet
i.e. a2 and a5, see Figure 8.

• d < a: there are two paths to connect, one between Ha and Hb (with a1

as endpoint) and one between Ha and Hc (with a6 as endpoint). We join
these two path with the path [a1, a2, a3, a4, a5, a6].
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Let CH be the cycle of H obtained this way. For any x of H , x is either a
vertex of a gadget or a vertex of a subgraph isomorphic to a K6. In both cases,
it belongs to CH , thus CH is hamiltonian.

We will now show that if H has a hamiltonian cycle then there is a hamilto-
nian cycle in G. For this, let us look to the different ways to have a hamiltonian
path through a gadget. Due to vertex u0, a hamiltonian cycle can either get in
and out the gadget in the same K6 (as in Figure 10), or get in on one side and
out on the other (as in Figure 9). In the second case, for any gadget, we keep
the corresponding edge of G. This way, we have a hamiltonian cycle of G.

4.2 Vertex colouring

Theorem 5. The problem Vertex Colouring is NP-complete in hypochordal
graphs.

Proof. We recall that the mapping G 7→ 2G constructs a hypochordal graph.
Suppose having a minimum colouring of G, we obtain a colouring of 2G by
affecting to v1 and v2 the same colour as the corresponding vertex v in the
colouring of G. Since G is an induced subgraph of 2G, this colouring of 2G is
minimum.

Now consider a minimum colouring of 2G. Since the twin vertices v1 and
v2 are nonadjacent and have the same neighbours, we can affect them the same
colour. Given such a colouring of the vertices of 2G, we deduce a colouring
of G by affecting to v the colour of its corresponding vertices in 2G. This
colouring of G is minimum, otherwise we would obtain a better colouring of 2G

by affecting to v1 and v2 the same colour as the corresponding vertex v in a
minimum colouring of G.

4.3 Maximum clique

Theorem 6. The problem Maximum Clique is NP-complete in hypochordal
graphs.

Proof. A clique in 2G can contain only one of the twin vertices v1 and v2.
Therefore given a set K of vertices of G and K ′ a set of vertices of 2G where
every vertex v ∈ K corresponds to either v1 or v2 in K ′ (|K| = |K ′|), K is a
maximum clique of G if and only if K ′ is a maximum clique of 2G.

4.4 Maximum stable set

Theorem 7. The problem Maximum Stable Set is NP-complete in hypo-
chordal graphs.

Proof. A stable set of 2G can contain the twin vertices v1 and v2 since they are
nonadjacent. Let S be a set of vertices of G and S′ = 2S the set of corresponding
vertices of 2G, |S′| = 2 × |S|. S is a maximum stable set of G if and only if S′

is a maximum stable set of 2G.

5 Conclusion

In this paper, we have introduced a new class of graphs which turns out to be
interesting for shortest paths routing in networks since the distances between
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nonadjacent vertices remain unchanged in case of one vertex or one edge dele-
tion. Then we have characterised the class of minimum hypochordal graphs, at-
tractive when creating a network from scratch since their number of edges is two
times minus four their number of vertices. Moreover a minimum hypochordal
network is easy to construct from a graph with the vertices corresponding to the
sites to connect and the edges corresponding to the possible links between these
sites, it is polynomial to find a spanning tree T with bounded diameter [3]; then

we build the network 2̃T with two servers per internal vertex of T which has a
bounded diameter to limit the transmission time through this network.
Finally, we have proven that the problems of hamiltonian cycle, vertex colouring,
maximum clique and maximum stable set remain NP-complete in hypochordal
graphs.
In this paper, we have not tackled the hypochordal recognition issue. This prob-
lem is obviously solved by a matrix multiplication and runs at worst in O(n2.376)
due to the result of D. Coppersmith and S. Wmograd in [4]. A challenge is to
find a O(n2) or O(m) algorithm for the recognition of hypochordal graphs.
Moreover a research in progress consists in the minimum edge-completion and
edge-deletion problems [6] i.e. making hypochordal an existing graph; some
additional constraints like diameter or maximum degree should be taken into
account.
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