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1 INTRODUCTION

Early vision directly deals with raw pixel data involving image compression, restoration [12,
25, 66], edge detection (27, 62, 66], segmentation (10, 23, 35, 40, 59j, texture analysis [17-19, 46],

motion detection, optical flow, etc Most of these problems can be formulated within
a

general framework, called image labeling, where
we associate a

label to each pixel from
a finite

set. The meaning of this label depends on the problem that
we are trying to solve. For image

restoration, it means a grey,level; for edge detection, it means the presence or
the direction of

an
edge; for image segmentation, it means a

class (or region) etc The problem here is how

to choose
a

label for
a

pixel, which is optimal in a certain sense.

Our approach is probabilistic. at each pixel,
we want to select the most likely labeling. To

achieve this goal, we
need to define some probability measure on the set of all possible labelings.

In real scenes, neighboring pixels have usually similar intensities; edges are smooth and often

straight. In a probabilistic framework, such regularities are well expressed by Markov Random

Fields (MRF) [15, 21, 32,49, 64]. Another reason for dealing with MRF models [1, 26, 55] is of

course the Hammersley-Clifford theorem [6, 52j which allows to define MRF through clique-
potentials. In the labeling problem, this leads to the following Bayesian formulation [54] we

are
looking for the Maximum A Posteriori (MAP) estimate of the label field yielding to the

minimization of a usually non-convex energy function.

Unfortunately, finding such an estimate is a
heavy computing problem. For example, if

we consider a 16 x 16 image with only two possible labels for each pixel, we obtain a config-
uration space of 2~~~ elements. It is then impossible to find the optimum by computing the

possible values of the cost function. On the other hand, due to the non-convexity, classical

gradient descent methods cannot be used since they get stuck in a
local minimum. In the early

80's, a
Monte-Carlo algorithm [31,58], called Simulated Annealing [24, 63], has been proposed

independently by ©entry ill] and Kirkpatrick et al. [45] to tackle the optimization problem.
However, with the first substantial mathematical results [25, 34j, it becomes clear that success-

ful applications of Simulated Annealing (SA) require a very slow temperature cooling schedule

and thus large computing time. To avoid this drawback, two solutions have been proposed:
One of them deals with the possible parallelization of SA algorithms [2j. The other solution

is to use deterministic algorithms, which are
suboptimal, but converge within a

few iterations

requiring therefore less computing time [5j.
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On the other hand, multigrid [8,41,57j models can also significantly improve the convergence

rate and the quality of the final result of iterative relaxation techniques. Multigrid methods

have a
long existence in numerical analysis (partial differential equations, for instance). In im-

age processing, they have also been used in various context from the mid 70's [41j. Hierarchical

methods [33j applied to MRF image modeling have been more and more popular [3,14,47j.

The essence of such an approach is to represent an image model at multiple resolutions from

coarse to fine.

We are talking about mltltignd methods, if the layers in the pyramid are not connected. In

this case, the optimization algorithm is usually parallelizable only on tlie layers, but it is still

sequential between layers. An important question in multigrid modeling is how to define the

cliques and their potentials at coarse
resolutions. There are various ideas [48j including the

Renormalization Group approach of Gidas et al. [30, 53j, a consistent multiscale approach of

Heitz et al. [37], or Bouman's causal pyramidal model [9j.

If there is an
inter-level communication, the model is called 3D pyramidal [33j. While the

optimization algorithms associated with such models can be parallelized on the whole pyramid,

the underlying MRF model becomes more
complicated requiring more computation but getting

better results [42, 43].

2 FUNDAMENTALS

At the beginning of the previous century, mostly inspired by the Ising model,
a new type of

stochastic process appeared in the theory of probability called Marko.u Random Fields (MRF).
MM become rapidly

a
broadly used tool in various problems, including statistical mechanics.

Its use in image processing became popular with the two famous papers of [18] and [25j in the

80's. Below,
we

briefly give an
introduction to the theory of MM [20, 44, 52].

2.I The lsing Model

Following Ising, we
consider a sequence, 0, 1, 2,

,
n on the line. At each point, there is a spin

which is either ltp or down at any given time (see Fig. I). We define a
probability measure

on the set Q of all possible configurations
w =

(wo, wi, ,wn). In this context, each spin is a

function

An
energy

U(w) is assigned to onfiguration:

U(W)
= -J ~j &i(W)&j

(W) - TnH ~ di(W) (2)
In the first sum, Ising

made
the simplifying assumption

that only
interactions of points

with one unit apart eed to be taken into account.
This

term the nergy caused by

the The constant J is a property of the
material. If J > 0, the

tend to keep neighboring spins
in the same

directions
(attractive case). If J

spins with opposite

orientation are favored epltlsiue case). The second term
he

influence
of

an external
gnetic

field
of intensity H

p(~)
~

~~P ~~~~~~~~
(~)

z '
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Fig. I. One dimensional Ismg model Fig. 2. Cayley tree model.

~/~ ~
q=2 q=3 q=4

Fig. 3. Potts model.

where T is the temperature and k is a universal constant. The normalizing constant (or
partition fltnction) Z is defined by

z
=

~
exP (-(U(W)). (4)

u~en

The probability
measure

defined in Eqn. (3) is called a Gibbs distnblttion. One could extend

the model to two dimensions in a
natural way. The spins are arranged on a lattice, they are

represented by two coordinates and a point have 4 neighbors unless it is on
the boundary. In

the 2D case, the limiting measure P is unstable, there is a phase transition. As it is pointed

out in [44j, considering the attractive case and an external field h, the measure Ph converges

to P~ if h goes to zero
through negative values but it converges to P+ # P~ if h goes to

zero
through positive values. It has been shown that there exists a

critical temperatltre Tc

and below this temperature phase transition always occurs. The temperature depends on the

vertical (Ji) and horizontal (J2) interaction parameters.

As a
special example,

we mention the Cayley tree model [44j, originally proposed by Bethe [4j

as an approximation to the Ising model. In this case, the points sit on a tree (see Fig. 2). The

root is called the 0~~ level. From the root, we
have q branches (q

=
2 in Fig. 2). The q =

I

case simply gives a
lD Markov chain. A configuration on a tree of n levels is an assignment

of a
label ltp or

down to each point. A similar energy function can
be defined

as
for the Ising

model.

Another extension of the Ising model to more
than two states per point is the well known

Potts model [59, 65j. The problem is to look at the Ising model
as a system of interacting

spins that can be either parallel or
antiparallel. More generally, we consider a system of

spins, each spin pointing one of the q equally spaced directions. These vectors are the linear

combinations of q unit vectors pointing in the q symmetric directions of a
hypertetrahedron in

q I dimensions. For q =
2, 3, 4, examples

are
shown in Fig. 3. The energy function of the
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Potts model can be written as

U(w)
=

~j J(H~j), (5)

where J(H) is 2x periodic and B~ is the angle between two neighboring spins in I and j.

The q =
2 case is equivalent to the Ising model.

2.2 Gibbs Distribution and MRF

The most natural way to define MRF [1, 25j related to image models is to define them on a

lattice. However, here we
will define MRF more generally on graphs (for an excellent overview,

see [55j). Let
=

(S, E) be
a

graph where S
=

(si, s2,
,

sN) is a set of vertices (or sites)
and E is the set of edges.

2.2.I Neighbors

Definition: Two points s~ and sj are
neighbors if there is an

edge e~ E E connecting them.

The set of points which
are

neighbors of a site s (ie. the neighborhood of s) is denoted by Vs.

2.2.2 Neighborhood system

Definition: V
=

(Vs s E S) is a
neighborhood system for if

1. S~VS

2. sEVr~mrEVs

To each site of the graph, we assign a
label I from

a finite set of labels A. Such
an assignment

is called a configuration
w

having some probability P(w). The restriction to a subset T C S

is denoted by wT and ws E A denotes the label given to the site s.
In the following,

we are

interested in the probability measures assigned to the set Q of all possible configurations. First,
let us define the local characteristics as the conditional probabilities P(ws wr, r # s).

2.2.3 Markov Random Field

Definition: Af is a
Markov Random Field (MRF) with respect to V if

1. for all
w E Q: P(Af

=
w) > o,

2. for every s E S and
w E Q:

P(Xs
= UJs Xr

" UJr, r # S)
=

P(Xs
= UJs Xr

= UJr, r fi Vs).

To continue our discussion about probability
measures on Q, the notion of cliqltes will be

very useful.
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2.2.4 Clique

Definition: A subset C C S is a
clique if every pair of distinct sites in C are neighbors. C

denotes the set of cliques and deg(C)
= maxcec C

[.
Using the above definition,

we can define
a

Gibbs measltre on Q. Let V be
a

potent?al which

assign a number Vc(w) to each subconfiguration wc. V defines
an energy U(w)

on
Q by

U(w)
=

~jVT(w). (6)

T

2.2.5 Gibbs distribution

Definition: A Gibbs distribution is a
probability measure x on Q with the following repre-

sentation:

7r(W) =

j
exp (-U(W)), (7)

where Z is the normalizing constant:

Z
=

~jexP (-U(W)),

The following theorem establish the equivalence between Gibbs measiires and MRF [6, 52j.

Theorem I (Hammersley-Cliffiord theorem). Af is a
MRF with respect to the neighbor-

hood system V if and only if x(w)
=

P(Af
=

w) is a
Gibbs distribution, that is

7r(W)
=

j
exp (- ~j c(W))

(8)

The main benefit of this equivalence is that it provides us with
a simple way to specify MRF,

namely specifying potentials instead of local characteristics, which is usually very difficult.

2.3 Spatial Lattice Schemes

In this section, we
deal with a

particular subclass of MRF which
are

the most commonly used

schemes in image processing. We consider S
as a

lattice £ so that Vs E S s =
(i, j) and define

the so-called n~~ order homogeneolts neighborhood systems as

v"
=

(vj,~~ (i,j) ~ £j, (9)

vj,~~ =

((k,1) ~ £ (k -1)2 + (1
j)2 I ni. (io)

Obviously, sites near the boundary have fewer neighbors than interior ones
(free boundary

condition). Furthermore, V°
W S and for all

n > o :
V" C V"+'. Figure 4 shows a first-order

neighborhood corresponding to n =
I. The cliques are

((i, j)), ((i, j), (i, j + I)), ((i, j), (i +

I, j)). Figure 5 shows
a

second order neighborhood. In practice, third order or larger systems

are rarely used since the energy function would be too complicated and will require a
lot of

computation.
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Cliques:

Cliques:
~ ~

~~°d~

~ ~
~bd~~~~

Fig. 4. First order neighborhood system. Fig. 5. Second order neighborhood system.

3 A GENERAL MARKOVIAN IMAGE MODEL

MRF models in image processing have become popular with the famous paper of S. Geman

and D. Geman on image restoration [25j. The field has grown up in recent years addressing
a

variety of tasks such as [lj:

Compression: Find
a new image as

close
as

possible to the original one but described at a

much smaller cost (MRF
are

used in other compression problems too).

Restoration/deconvolution: Observing
a

degraded image, which can be blurred and noisy,
approximately recover the original one.

Edge Detection: Find smooth boundaries separating image regions.

Segmentation: Partition the image into homogeneous regions where homogeneity is measured

in terms of grey-levels
or texture characteristics.

Motion Detection: In
a sequence of images, try to find

a
field of velocities linking one image

to the next one.

We
now turn to the mathematical formulation of

a
MRF image model. Let 'R

=

(ri, r2,
,

TM )
be a set of sites and F

=

(Fr
: r E R)

a set of image data (or observations)
on these sites.

The set of all possible observations f
=

(fr~, fr~,...
,

fr~) is denoted by 4l. Furthermore,

we are given another set of sites S
=

(si, s2,
,

sN), each of these sites may take
a

label

from A
=

(o, I,...
,

L I). The configuration space Q is the set of all global discrete labeling

w =
(ws~,... ,ws~),ws E A. The two set of sites R and S are not necessarily disjunct, they

may have common parts (see for example Geman's image restoration model involving
a

line

process [25j or refer to a common set of sites. Our goal is to model the labels and observations
with a joint random field (Af, F) E Q x 4l. The field Af

=

(Xs)ses is called the label field and

y
=

(Fr)relz is called the observation field.
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3.I Bayesian estimation

First, we construct a
Bayesian estimator for the label field [16j. We

can
define both the joint

and conditional probabilities in terms of the
a priori and

a posteriori distributions:

Px,F(W, f)
=

Pfix(f W)Px(W) (ii)

p j~ ~~
Px,y(W,f) Pfix(f W)Px(W)

j~~~~" Pflf) Pflf)

Since the realization of the observation field is known, Pi f) is constant and
we can write:

Px FIW f)
c~

PF xlf W)Pxlw) (13)

The estimator is the following decision function d:

d 4l
=

Q (14)

f
--

d(f) =1 lls)

and the corresponding Bayes risk is given by

r(Px,d)
=

E lRlW, dlf))1 l16)

where R(w, d( f)) is a cost function. Our estimator must have the minimum Bayes risk:

£i
= arg min R(w, w')Pxjf(w f)dM (17)

w'Efl ~~n

We mention hereafter the three best known Bayesian estimators [50j.

3.I.I Maximum A Posteriori (MAP)

The MAP estimator is the most frequently used estimator in image processing. Its cost function

is defined by

RIM, W')
=

I A~,lW), l18)

where /h~>(w) is the Dirac
mass in w'. Clearly, this function has the same cost for all configu-

rations different from w'. From Eqn. (17) and Eqn. (18), the MAP estimator of the label field

is given by

DM~~
= argma~Pxjy(Wlf). l~~)

This estimator gives for
a given observation f, the modes of the posterior distribution, that is

the most likely labelings given the observation f. Eqn. (19) is a
combinatorial optimization

problem which requires special algorithmi such as
Simulated Annealing [2,63j.

3.1.2 Marginal A Posteriori Modes (MPM)

We define the cost function of the MPM estimator as

R(W, W')
=

~(l Awi (Ws)). (2°)
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Remark that the above function is related to the number of sites s E S such that ws # w[.
The solution of Eqn. (17) is given by

Vs E S Df~"
= arg max PX~jF(ws f), (21)

W~EA

which gives the configuration which maximizes at each site the
a posteriori marginal PX~ jF(.

f).

3.1.3 Mean Field (MF)

Here,
we

have the following cost function:

RIW,W')
=

~(Ws Wl)~. (22)

From Eqn. (17) and Eqn. (22),
we have

Vs E S £if~
=

/ wsPxj,(w f)dM, (23)
won

which is nothing else but the conditional expected value of Af given F
=

f that is the
mean

field of Af.

3.2 Defining a Priori and a Posteriori Distributions

Within the Bayesian framework,
our

knowledge about the "world" is represented by
a priori

probabilities. However, in practice, it is extremely difficult to define such probabilities globally,

even if we focus
on a

specific
area of image processing. But there are some well defined prop-

erties if we are
considering images locally. Usually, neighboring pixels have similar intensities,

edges are smooth and often straight and textures have also well defined local properties. It is

then a
better idea to represent our

knowledge in terms of some
local random variables. This

kind of knowledge is well described by means of MRF.

3.2.I Prior Distribution

Let us suppose that Af is a
MRF with

some neighborhood system V'
=

(V[
s E S) and

distribution

PjJf
=

uJ)
=

j
exp j-U'juJ))

,

j24)

U'lU~)
=

~j Vii") (25)

where U'(w) is the energy function. The above equations give another good reason using MRF

priors, namely their Gibbs representation through clique-potentials, which
are more convenient

than working directly with probabilities.
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3.2.2 Degraded Image Model and Posterior Distribution

The observations are related to the label process through a degradation model which mod-

els the relation between the label field ) and the observation process F. In image restora-

tion/deconvolution for example, what we observe is a
blurred noisy image and

we want to

restore the original
one.

So, the label process represents grey-levels in this
case.

We
are now

considering
a

similar model but in a more general manner. Most of the problems result in the

following function:

Jz
~

~y(H(x), N), (26)

or at the pixel level:

VT E R Fr
=

lY(Hr(X~~r~), Nr) (27)

where lY la, b) is an invertible function m a. Hr is a local function defined
on a small part ~b(r)

of S such that ifi(r) E S, ifi(r) [<[ S and ifi~'(s)
=

(r E R s E ifi(r)). N is a
random

component (usually
a Gaussian white noise but in tomography Nr

are
Poisson variables whose

means are
related to Af). In [25j, for instance, H is a blltrnng matrtz and N is an additive

Gaussian noise. If
we assume that the distribution of N is given by

PN(.)
=

fl PN~(.) (28)

re~

then we obtain

Pyjxlf W) =

fl PNrliY~~lHrlw~(r)), fr)). (29)

The conditional distribution of the observation field F given Af can
be written as

PfiXlf 1~)
" ~~p (~j '~lPNrllY~~(Hr(°J~(r))>

r)))1>
(3°)

assuming that PN~(.) > 0 at each site r in R. Combining the above equation with Eqn (13)

and Eqn. (24), the posterior distribution is of the following form:

PXIFI~ f)
"

j
~~p (~j '~lPNr(~v~~lHr(°J~(r))> fr))) +

~j Vll~)l131)
rE~ CEC'

Notice that the posterior distribution is also a Gibbs distribution with the smallest neighbor-

hood system V containing all the cliques in C' and the sets (ifi(r),
r E R):

VS E S
. Vs

~

U lfiir)
silU

Vi 132)re~-i(s)
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Let us
denote the corresponding energy function by U(w, f):

U(", f)
"

( 'r'(PN~ (il~'(Hr("~(r))> fr))) + /j~ Vl(U~)

=

~
((uJ~~r~ ), fr) + ~j V](uJ)

~

(33)

re~ ccc>

In the following, we will be more
specific about Vr(uJ~~r~), fr) and suppose that it is of the

form:

Vr (UJ~(r) )>
fr

~
Vr (UJ~(r) +

~j ~,r(°Js fr (~~)

sE~(r)

This restriction is less severe than it might be expected. As we will see, most of the nowadays

used models have this kind of energy function. The above equation can
be rewritten as

~Vr(UJ~(r))> fr)
"

~j Vr(°~~(r)) + ~j ~ ~s,r("s> fr) (35)

rE~ rE~ rE~ sE~(r)

~

~ Tl~~(r)) + ~j ~j vs,rl~s, fr) (36)

rE~ SES rE~~~(r)
,

_

,

v~(W~, f ~-lj~>)

(37)

Finally, we have the following energy function associated with the posterior distribution of the

label field Af:

u(u~, f)
=

~j i(u~~, f~-i~~~ +
~j Vc(uJ) (38)

ses ccc

=
ui ju~~, f~-1~~~ + u~ju~). (39)

where the clique-potentials Vc(uJ) are defined
as

vjjUJ) If C 6 C' and C ~ jl~jT), T 6 kj
~Ci°J)

"
Vri°J~(r)) If C

~
lki~) ~~~ lki~) ~ C' 14°)

~ii°~) + ~ri°J~(r)) If C
"

lki~) ~~~ lki~) ~ C'

If
we assume that the observed image F is affected at site s

only by the pixel s itself then Eqn.
(38) can

be further simplified: ifi(r) reduces to s and the neighborhood system of the posterior
distribution is equivalent to the one of the prior distribution.

3.3 Some Examples of Markov Models

Herein, we present some models applied to a variety of image processing tasks. Most of them

uses the general model discussed in the previous section. Let us begin this discussion with the

restoration/deconvolution model proposed by D. Geman and S. Geman in [25].
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!
f~~ ~

Q pixel process

Q line process

Fig. 6. Geman's image restoration model

3.3.I Image Restoration/Deconvolution

We observe
a

blurred noisy image F and
we want to restore the original one. The components

of the degraded model in Eqn. (26) have the following meanings: N is supposed to be
a

white

Gaussian noise with
mean ~ and variance a~. H is a

shift-invariant blurring matrix. First of

all,
we define the lattices on which the label process and the observation process are defined.

The observation process simply consists of the grey-level at each pixel of the given image. Thus

R is a lattice, each site corresponds to a pixel. The label process is more sophisticated involving
both plzel sites and line sites. Af is then

a
"mixed" process having two subprocesses:

a pizel

process and
a

line process. The lattice S contains R (pixel sites) and another lattice with sites

siting between each vertical and horizontal pair of pixels representing a possible location of

edge elements (see Fig. 6).
We

now turn to the posterior distribution and its energy function. Let
us

denote the line

process by Af~ and the pizel process by RF. We assume that RF is a MRF over an homogeneous
neighborhood system (see Section 2.3) V

on
R and Af~ is also a MRF over a

neighborhood
system shown

on
Fig. 6. (the neighbors of the black site are the grey sites). Af has

a prior
distribution of

P(AfP
=

wP, Af~
= w~)

=

j
exPl-U'(W~,W~))

=

j
exP I- ~j c(W)j

,

141)

ccc

where
w =

(wP, w~). wP takes values among the available grey-levels and w~ among the line

states. If we choose V such that it is large enough to encompass the dependencies caused by

the blurring H then the posterior distribution also defines a MRF with energy function

~~~p ~i~ ~,~~p ~i~ ~
lli iY~~lHlW~),f)ll~

j~~~
' ' 2«2

The optimal labeling £i is found by the MAP estimate minimizing the above energy function.

The restored image is then given by the pizel process £iP.
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3 3.2 Texture Segmentation

The observations consist of a set of various texture features describing spatial statistics of

the image. These features are
computed on local windows around each pixel including mean,

variance, correlation, entropy, contrast, homogeneity, etc [17-19,27,32j Here, both the

observation process and the label process are defined on the same lattice S with sites corre-

sponding to image pixels. The terms Ui and U2 from Eqn. (39) are
defined in the following

way: The prior energy U2 usually favors spatially homogeneous regions assigning lower poten-

tials to homogeneous cliques. The term Ui does not have such a
"standard" definition. It has

various forms in the literature. In [36], it measures the distance, at a given point s, between

the distribution of the texture features in a small block Es centered at s and the one in the

whole (candidate) region Rs to which
we want to assign s.

This technique, as claimed in [36j,
permits to automatically determine the number of regions. The energy function is defined as

U, (w, f)
=

~j ( (Es, Rs (43)

ses

KlBs, Rs)
=

fl2Aldlfl~, (~)
> C~) 1) 144)

where
m is the number of considered features. £B~ and fR~ denote the set of feature vectors

on block Es and on the region Rs respectively. d(a,b) stands for the Kolmogorou-Smirnou
distance and c~ is a

threshold given by statistical tables associated to the Kolmogorov limit

distribution. The function /h returns I if its argument is true, 0 otherwise.

3.3.3 Edge Detection

MRF models for edge detection
are often compoltnd Galtss-Markou random fields (CGMRF)

[39, 66j. The local characteristics of
a

CGMRF is given by

where ~ is the deviation, ~m is the mean and or is the model parameter. The supporting graph
is similar to the one reported in [25j (cf. Fig. 6). The observations F are considered to be

corrupted by
an additive Gaussian noise with zero mean and variance a~. The label field is

again a "mixed" process containing both
a

pixel process AfP and a
line process. Assuming

a
first

order neighborhood system (cf. Fig. 4) and denoting the horizontal and vertical line process
by Af~ and Af~ respectively,

a possible form of the energy function is given by [66j:

U(U~, f)
~

~ ~ ((fi,J U~~j)~ + fl~(1 2(°h + 9v))f/j
s=(i,j)eS

+ 9h(fl~ (fi,J fi-i,j )~ Ii
U~~j + °~J~J

+ 9vlfl~lfi,j fi,j+1)~ Ii ~Jlj) + °~Jlj)) l~~)

with 2(9h + 9~) > 0. 9~ and oh are the model parameters for the vertical and horizontal

cliques. fl~ corresponds to a
regularization term reflecting the confidence in the data. In [66],

fl~
=

a~/~~ expressing that when F is very noisy, we have
no confidence in the data (fl~ is

high). This model is related to the weak membrane model presented in [7]. The estimation of
the line process is done by

a
Mean Field approach.
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3.3.4 Motion Analysis

In [56] a MRF model for motion detection is presented. The observation process is defined
both on the image-lattice S and on a time axis t. The detection of moving objects relies

on

the analysis of the variation of the intensity distribution in time. At each pixel, we have a

two-element observation vector:

flit) =I Yslt) Yslt dt)
1,

147)

where ys it) stands for the intensity value at pixel
s at time t. P is a

logical map of temporal
changes between time t and t dt. It equals to I if

a
temporal change of the intensity is valid

at site s and 0 otherwise. The label process is binary valued (Xs it)
=

I if s is on a mask of

a mobile object at time t). The energy function U consists of three terms. Two of them are

related to the observations and labels simultaneously (taking the role of Ui in Eqn. (39)). One

of them is used to reconstruct the mask of
a mobile object at a given time:

Ullw, if)
=

~j Vi lws It), Jilt), Jilt
+ dt)), 148)

the other one expresses consistency between the current labeling and the intensity variation:

Ullw, ff)
=

~j ~~lfflt) ~wslt))~ +
lfflt

+ dt)
Ws)~)

149)

where ~ and
a are model parameters. The third term of the energy function U corresponds to

U2 with potentials favoring homogeneous masks.

4 AN APPLICATION TO REMOTE SENSING AND ASTROPHYSICS: IMAGE DECON,

VOLUTION

Remote sensing and planetary images can be modeled by MRF, which enables
us to use the

stochastic framework defined herein to construct an automatic image deconvolution method.

First,
we

describe the prior model, then we show how to compute the MAP to get the image
estimate, and finally

we give the outline of an unsupervised method to estimate the parameters
of the model and the image at the same time.

Let us recall the expression of the prior probability associated to the MRF model:

FIX
= W) =

j
exPl-U21W))

=

j
exP 1- ~

clw))
15°)

We choose
a

MRF with a
first order neighborhood to model the image which has to be decon-

volved, but this model can be easily generalized to handle longer interactions. We define the

clique potentials by:

vC(°Js,~t)
~

>~ i'~~~ ~

~)
lsi)

where the function
q7 is positive, increasing on

R+ and symmetric, as
introduced in [13] and (28].

Properties of the q7-function have been studied in order to preserve the edges, avoiding noise

amplification. If
we use a convex function, ensuring the uniqueness of the solution, then

restoration can be made by a
deterministic minimization algorithm. Thus, it is possible to
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preserve the edges, since the potential function is not quadratic. It means that the high

pixel differences (corresponding to the edges) are not penalized
as

much as if the potential

was quadratic, while low pixel differences, corresponding to noise, are penalized following a

quadratic function. Therefore the noise is efficiently filtered on homogeneous areas, while

preserving the edges.
Then the energy of the prior probability distribution can be expressed as:

U~(uJ)
=

>~ ~ v7 ~~~~'~~ ~~'~
+ v7

~"~~~~ ~~'~ )l152)
s=(i,j)es

The observation model is a convolution by the kernel h corrupted by
a

white Gaussian noise

of variance a~. It corresponds to the following energy:

Ui(uJ, f)
=

~j ~~ /~~~~ 153)

ses

~

The energy associated to the posterior density is U
=

Ui + U2. Computing the MAP to

deconvolve the image is equivalent to minimize the energy U. Since U is convex in this case,

we use a deterministic method to perform the minimization, which is faster than stochastic

methods.

The idea is to diagonahze the convolution operator, which is equivalent to replace the

convolution by a point to point multiplication, in the frequency space. The difficulty is to

diagonalize at the same time the non quadratic regularization term. This is achieved by taking

a
half,quadratic expansion of q7, in order to linearize the problem (29] :

~7l~)
= )n( [l~ b)~ + lfilb)1 154)

Two auxiliary MRF b~ and bY are defined, so that:

~i(°~)
"

~~ £s=(~,j)ES
~~~j ~~~~~~

~
~~~~

+ lfi(~~j (55)
~

bY ~l>3+1 ~~>3
~ ~fij~y

I
i,j ~

~

~,j

Instead of minimizing w.r.t. w
only,

we minimize alternately w,r.t. w, with b~ and bY fixed, and

w.r.t. b~ and bY with
w

fixed. The first step is easy to achieve, since each auxiliary variable

is updated independently according to b(
= 1t q7'(1t)/2 where k is either z or y, and1t is

the respective pixel difference divided by d. The second step is done in the Fourier domain,
since the Fourier transform diagonalizes the quadratic form U( when b~ and bY are fixed. We

use in fact a Cosine transform instead of a
Fourier transform, which enables us to fulfill the

symmetric boundary conditions, which avoid artefacts on the borders of the image.
The half-quadratic expansion enables

us to define an implicit "mixed" MRF, with a line

process and
a

pixel process related to b~ and bY and w, which are linked through the
q7 function.

The quality of the restored image is highly sensitive to the value of the parameters I and d.

Therefore, they must be accurately determined. The first parameter controls the smoothness

of the solution to be restored, while the second one is a threshold, which controls the noise

cancellation and the edge preservation (in fact it enables us to choose gradually between
a

quadratic model and a total variation model).
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To estimate these parameters, we have developed
a

method called MCMCML, for Markov

Chain Monte Carlo Maximum Likelihood [38]. The optimal parameter values
are determined

by maximizing the incomplete data likelihood

ii, I)
= argmax Pyj f I, d) j56)

Using Bayes rule, the likelihood
can be expressed as:

P,( f I, d)
= ~~~" (57)

F
x.Zx

where Zxjf, Z,jx and Zx
are

respectively the normalizing constants corresponding to the

posterior, the likelihood of
w

and the prior distribution. The main difficulty of parameter
estimation comes from these functions, which depend

on IA, d) and f but ire impossible to

evaluate in practice. So we optimize this criterion without explicitly computing them,
as we

only compute the derivatives, by using a
gradient descent algorithm.

To optimize the likelihood we minimize the -log-likelihood, and we need its derivatives. To

estimate them we use
the following property: let Z denote the normalizing constant related to

a distribution Po(w)
=

Z~le~~(~>°), where 9 is a vector parameter, then
we

have
:

~j)~
=

-Ew~Po(w) l~~$'°~j 158)

where Eli is the expectation of w w,r.t. Pa (w). This expectation can be estimated using a

Monte Carlo method [31,58], by sampling from the distribution Pa (w).
We need to sample from both prior and posterior densities. Sampling from the posterior

density is intractable by means of classical algorithms such
as

Gibbs sampler [25] or
Metropolis

dynamics [51] due to the large support of the PSF, inducing a large neighborhood for the

conditional probability. We use the idea introduced by Geman & Yang [29] to derive
a

simulated

annealing algorithm for MAP estimation of X. The idea is to use the same half-quadratic
expansion of

q7 as
before, to introduce two auxiliary MRF b~ and bY defined the same way.

This defines
an

augmented stochastic process. Instead of sampling only
w

from
a

distribution

P(w), we sample (w, b~, bY) from
a joint density P(w, b~, bY) and keep only the

w
samples. The

sampling is done alternately:
w is fixed and the auxiliary fields are

sampled, which is not

difficult because the components of these fields
are

independent, then the auxiliary fields
are

fixed and
w is sampled. This step is made possible by using the same

trick
as

before, I.e. by
diagonalizing. There is a

multivariate Gaussian distribution to be sampled, whose covariance

matrix is diagonalized by a Fourier transform [29] (we
use a Cosine transform instead [38]).

Then the sampling is performed in the frequency space, by sampling each Fourier coefficient

independently.
Finally, the MCMCML algorithm enables us to estimate the parameters of the unknown

image to be restored, directly from the blurred and noisy observation. We prefer to fix the

threshold d, because the joint ML estimator defined here is degenerate, since it produces
multiple solutions. Then,

we estimate the value of the regularizing parameter I and use it

to deconvolve the image with a deterministic algorithm using alternate minimizations. The

estimation and the deconvolution
are

simultaneous, because the posterior sampling algorithm

is initialized with the MAP estimate. At each gradient descent step, the parameter value

is updated and the MAP is computed, then prior and posterior sampling are
performed, to

estimate the gradient and go to the next step. This defines
a convergent method, which needs

maximum lo iterations to produce
a

deblurred image with optimal parameter values [38j.
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it)

ii)

I')

Fig. 7. <ii oiigm<tl mi<w~ of Saturn, b) blurred and noisy image (Gaussian blur wit-h standard

~l~vi<itioii=2) <aid nut;t. v<iiiaii<e
a~=2, c) deconvolved image with d=5 <ind estimated ~=n it-i,

p(I)
=

log(i + t~)
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<1)

1))

1')

Fig. 8. ri) <ingmal miag~ of Nimes (SPOT 5) f CNES, b) blurred and noisy image (bhirniig kernel

pr~lvided h; tile I'NES) <md v<trance
a~=2, c) deconvolved image with d=10 and estimat.e~l ~=0,5,

pit)
=

2wm 2
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The results are shown on Fig. 7 and Fig. 8 for astrophysics and remote sensing data.

They exhibit both sharp edges and clean homogeneous areas. For an image made of large

constant areas, such
as

Saturn, the model enables us to obtain good results. They can still

be improved by choosing a non-convex
potential function, but the optimization becomes more

difficult:
a

stochastic technique is needed to avoid falling in a
local maximum of the posterior

density. It is possible to use the mean field estimate to compute the unknown image, the mean

is estimated using the posterior sampler.
For aerial and satellite images, the textures are not always preserved, because they are

not taken into account in the prior model, but the results are globally correct, since the small

features are preserved.
The framework developed herein can be used to define other models, with higher order

interactions (to take into account the textures, for instance), and using potential functions

allowing half-quadratic expansions lead to the same type of MCMC algorithm for simultaneous

parameter and image estimation.

5 CONCLUSION

As
we

have
seen

above, MRF models
are

widely used in image processing, mainly due to

the fact that they enable to express global constraints or hypothesis in a
local way. This is

true, in particular, for remote sensing applications such as road network detection, urban area

extraction, image classification for precision farming, super-resolution, digital elevation map

etc. using satellite images and for astrophysics applications such as planetary imaging.
Nevertheless, for images taken by very high resolution satellites such as Ikonos, IRS, Helios

or the future Plhiades for instance, classical MRF models
are not well adapted to incorporate

geometrical constraints on the shape of objects. New models based
on

marked point processes,

which can exhibit the Markov property, are
currently under investigation in Ariana research

group [22, 60, fill.
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