
Qualitative Comparison of Audio and Visual
Descriptors Distributions

Stanislav Barton∗, Valerie Gouet-Brunet∗, Marta Rukoz†, Christophe Charbuillet‡ and Geoffroy Peeters‡
∗CNAM/CEDRIC, 292, rue Saint-Martin, F75141 Paris Cedex 03

†LAMSADE CNRS UMR 7024, Place de Lattre de Tassigny 75775 Paris Cedex 16
‡IRCAM, 1, place Igor-Stravinsky, 75004 Paris

Abstract—A comparative study of distributions and properties
of datasets representing public domain audio and visual content
is presented. The criteria adopted in this study incorporate the
analysis of the pairwise distance distribution histograms and
estimation of intrinsic dimensionality. In order to better under-
stand the results, auxiliary datasets have been also considered
and analyzed. The results of this study provide a solid ground
for further research using the presented datasets such as their
indexability with index structures.

I. INTRODUCTION

In order to make the multimedia data searchable by its con-
tent, various methods of mapping the multimedia content into
high-dimensional spaces have been introduced for images [4]
and audio [7]. Since, like all high dimensional data suffer from
the curse of dimensionality, we would like to analyze such
data to understand its nature and to give other researchers a
base ground for further work, e.g., indexing. In [2] was proven
that the complexity of searching the data grows exponentially
with the dimensionality of data thus it is important to be able
to set the tradeoff between fine grained information as high-
dimensional feature vectors and good searchability of the data.

Therefore, in this paper we present a comparative study
of the properties of multimedia datasets representing visual
and audio descriptors acquired from the public domain content
provided by EWA 1. The data is investigated in terms of pair-
wise distance distribution and of the estimation of the intrinsic
dimensionality. Because we focus on multimedia in general,
we incorporate in our study both visual and audio data. Using
the same methodology and criteria and by comparing the
results, we would like to depict the different characteristics
of these two types of multimedia considering also the datasets
where the characteristics is known.

A. Visual Descriptors

Color, texture and shape have been identified as the main
low-level and global descriptors that can characterize the
image content. For example, the visual features included in
the MPEG-7 standard consist of histogram-based descriptors,
spatial color descriptors and texture descriptors [10]. They are
called global descriptors because they resume in one feature
vector all the image content, in comparison to other local
techniques, e.g., interest point identification, which can result
in more than one feature vector per investigated image.

1European Web Archive (EWA) is an open archive that hosts several col-
lections of public domain content crawled from publicly available resources.

Global features has been used for a long time to characterize
the visual aspect of images. They have the advantage of encap-
sulating some global semantics or ambiance such as indoor or
painting, while requiring a low amount of data to describe
it. Despite the simplicity, such family of descriptors was
evaluated as relevant for content-based information retrieval
applications [5].

In this study, color histogram as global description of the
color distribution present in the image [12] is used. Such
histogram counts the proportion of each color in the image.
The color space chosen is classical RGB (for Red, Green and
Blue). Because a 24 bytes image is able to store more than
17 millions of colors, a discretization of the space is required
to reduce the number of colors to count. By considering for
example 4 bits for the Red channel, 4 bits for the Green one
and 8 for the Blue one, the RGB descriptor obtained is a
4 × 4 × 8 = 128 feature vector. The similarity measure used
is Euclidean distance – L2.

B. Audio Descriptors

Global audio descriptors used for music similarity are
mainly based on the modeling of short term audio features.
We present here a study on the model proposed by [11]. The
main idea of this approach is to describe the temporal evolution
of a sequence of short term descriptors.

Obviously, the choice of the short term feature is fun-
damental. In order to provide a general audio description,
we selected four different short term descriptors. The Mel
Frequency Cepstrum Coefficient (MFCC) which gives a ro-
bust cepstral shape description, the Chroma descriptors which
provides an harmonic representation, the Spectral Crest Factor
(SCF) and the Spectral Flatness Measure (SFM) which provide
complementary information about the spectral shape [15], [9].
These four descriptors are extracted by a frame analysis of
20ms windows length and 10ms hop size and concatenated,
resulting in a 33 dimensional short term audio descriptor
sequence (13 MFCC + 12 Chroma + 4 SCF + 4 SFM).

The temporal evolution of the obtained short term descrip-
tors are then modeled by the following process: the amplitude
spectrum of the temporal evolution of each component of the
short term descriptors are computed. The obtained spectra are
then passed through a filter bank and the log energy in each
band are returned. The two types of global audio descriptors
presented in this paper are extracted using two different filter
banks. The first one, ID 11 in Table I, is composed of four



ID Descriptor type Dimensionality Distance function
Video Descriptors Datasets

1 RGB global histogram 125 L2

2 RGB global histogram 343 L2

Audio Descriptors Datasets
11 132 L2

12 330 L2

Synthetic Datasets
101 random uniform 125 L2

102 random uniform 343 L2

Adopted Datasets
201 ISOMAP face dataset 4096 L2

202 Animal dataset 72 L2

TABLE I
SUMMARY OF DATA THAT HAVE BEEN CONSIDERED FOR EVALUATION.

rectangular filters centered in [0, 1−2, 3−15, 20−43]Hz. The
second one, ID 12 in Table I, is composed of 10 rectangular
filters, equally distributed in [0, 43]Hz. The two obtained
global audio descriptors have 132 and 330 dimensions.

II. DATASETS RECAPITULATION

Table I summarizes the datasets that were subject of our
study. Besides the principal datasets of extracted audio and
visual features, some auxiliary datasets have been also in-
cluded in order to better understand and interpret the results
of the study. In the last part of this section a sample selection
method is discussed because the computational intensiveness
of the criteria studied did not allowed direct application on the
particular datasets as a whole.

A. Visual and Audio Datasets
As was mentioned earlier, the datasets were acquired pro-

cessing the public domain content provided by EWA. In the
case of visual datasets, about 2,000 hours of video were
processed, computing the RGB global descriptor from one
frame every two seconds. Thus, more than 10,000 videos were
processed forming a dataset having about 3,500,000 feature
vectors.

The audio descriptors were extracted from 10,000 musical
audio files, totalizing 927 hours of signal. The temporal
modeling was performed on a 3s window with a shift of 0.5s,
producing 6,674,400 feature vectors.

B. Auxiliary Datasets
Synthetic floating type datasets with predefined number of

dimensions and uniformly distributed were randomly gener-
ated. The values are ranging in an interval [0, 1].

ISOMAP face dataset (ID 201) is a dataset of vectors
representing synthetic faces used for evaluation of ISOMAP
dimensionality reduction algorithm [13]. The dataset consists
of 698 images (256 gray levels) of size 64 x 64 of the synthetic
face where the rotation of the face and the lighting varies. The
4096-dimensional vectors represent linearized images which
are compared using the L2 metric. The last auxiliary dataset
used is a dataset representing animals. It is clustered and
represents kinds of animals where each is described by a 72-
dimensional vector. It contains four clusters with 2,500 feature
vectors, each one representing an instance of one animal. To

Num. of Clips Num. of Frames Total Num. of Vectors
A 1 1,000 1,000
B 10 1,000 10,000
C 100 100 10,000
D 1000 10 10,000
E 10,000 1 10,000

TABLE II
SAMPLE SELECTION SUMMARY.
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Fig. 1. Pairwise distance distributions of datasets ID 101, 102, 201 and 202.

which group the instance belongs is known. This dataset was
used for classification methods evaluation for instance in [6].

C. Sample Selection Method

The criteria evaluation is often computationally intensive
task that makes infeasible to use on the input the whole
acquired dataset – millions of objects. This fact brings out the
necessity to select sample from the whole dataset on which
the evaluation will be done. In order to avoid biased results
caused by improper or superficial sample selection, a set of
sample datasets have been selected for each studied dataset.

The samples are denoted using capitalized letters to dis-
tinguish from the IDs of the dataset and are summarized in
Table II. The sample selection method takes into consideration
the scale of redundancy in the sample. For instance, in
sample type B, the 100 clips (either audio or video) were
selected randomly from the whole dataset and from each clip,
100 frames were randomly selected, thus this sample has
100 × 100 = 10, 000 feature vectors. For each dataset type
(audio or video) the clip and frame selection was identical for
both dimensionalities.

III. PAIRWISE DISTANCE DISTRIBUTION

The first criteria studied is the pairwise distance distribution.
This criteria gives an insight into the organization of the
distances among the feature vectors in the dataset. With
comparison to the auxiliary datasets, whose structure is known,
the overall structure of the data is discovered.

A. Auxiliary Datasets

In Fig. 1, the pairwise distance distribution histogram of the
animal dataset ID 202 shows six peaks in total. As mentioned
in Section II-B, the dataset has four clusters with 2,500 feature
vectors in each. There are six possible different combinations
of distances among the cluster centers. Therefore, the first
largest peak denotes both the distances within all clusters and
the smallest distance between clusters that is 1.05. The other
peaks denote the respective distance to the remaining data
points in other clusters. The clusters are also well separated in
the feature space since the distances from the cluster centers
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(a) ID 1, samples A, B, C, D, E
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(b) ID 2, samples A, B, C, D, E

Fig. 2. Pairwise distance distributions of the visual descriptor datasets.

are smaller than the distances among cluster centers – the
peaks are significantly distinct.

The pairwise distance histograms of the other datasets ID
101, 102 and 201 in Fig. 1 do not exhibit behavior of such
clustered dataset. They have only one peak and differ only
by the indentation from zero, the height and the width of the
peak – the variance. Simply, the narrower the peak is the more
objects from the dataset have the more less the same distance
from each other.

B. Visual Content

Fig. 2(a) and 2(b) depict the pairwise distance distributions
for the visual descriptor datasets 1 and 2 respectively. The
histograms of samples A to E are depicted from left to right.
It can be seen that for the sample A, the redundancy is really
high as it was expected, since the mutual distances among the
objects in the dataset do not vary much in comparison with
the other samples. In fact, the less redundant the sample is the
larger is the range of the measured distances. This is desirable
since it means that the histogram is not similar to that of
the random datasets (ID 101 and 102, see Fig. 1). From the
indexing point of view, high dimensional uniformly distributed
random data is the hardest to index. It is due to the fact that
vast majority of the objects have very similar mutual distance.

In general, no histogram of the visual dataset samples has
the same shape as the histogram of the animal dataset (see
Fig. 1, ID 202). In the case of sample B, small peaks can
be seen at values 0.2 and 0.7, besides the large peak at value
0.45. Remember that sample B is formed by 10,000 frames
taken from 10 videos – 1000 frames each. This might show
that the intra-video frames are closer than the inter-video
frames regarding the histogram of sample A. So, the videos
might behave like clusters, yet the clusters are significantly
overlapped in the space. An emerging peak at value 1 can be
seen in histograms of sample E of datasets ID 1 and 2. This
peak is formed by outliers and with the transition to greater
dimensionality (ID 2) the interval of their distances to the rest
of the dataset contracts.

The subject of the investigation is also the difference
between the respective samples of the different dimensionality.
From the mutual distances point of view we wanted to
study whether with the growing dimensionality granularity
of the descriptor was finer. Considering the respective pairs
of samples, the shape slightly changes, yet both the mean
and the variance of the histograms remain the same. The
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Fig. 3. Pairwise distance distributions of the audio descriptor datasets.

slight change is attributed to the greater amount of dimensions
available in the case of the ID 2 dataset. Logical would be also
larger mean in the case of the ID 2 dataset, yet the histogram
prove that if there are some changes they are negligible. From
these observations we can conclude that adding more than
200 dimensions to the ID 2 dataset did not bring any finer
granularity and the information about the objects remained
more less the same as in the case of the dataset ID 1.

C. Audio Content

Regarding the audio descriptor datasets, the results are
depicted in Fig. 3. In this case, the shape of the histograms is
more similar to the histograms of the random uniform datasets
101 and 102. Yet, still the variance of the histograms of the
audio datasets is larger. On the other hand the mean, is also
larger and according to [1] these are the main indicators of
difficulties with the ability to index this data.

The enlarged dimensionality caused increase in the variance
of the distances in the histogram, from which can be derived,
that such implementation of the descriptor stores finer infor-
mation about the original object. Yet, this must be verified by
the intrinsic dimensionality estimation of these datasets.

IV. INTRINSIC DIMENSIONALITY ESTIMATION

To estimate the intrinsic dimensionality, two methods have
been used: firstly, the linear PCA, secondly, an approach that
is invariant to the non-linearity of the embedding.

A. Principal Component Analysis

PCA [14] is a statistical method that gives an insight
into the internal structure of the data through its eigenvalue
decomposition. It transforms the original vector data into lower
dimensional data that respects its variance. In order to reduce
the dimensionality, only the components of the eigenvalue de-
composition, that significantly contribute to the data’s energy
(cumulative sum of the eigenvalues) are kept. Though, for each
dataset minimal number of components needed to achieve the
95% of the energy of data was computed.

B. kNN Intrinsic Dimensionality Estimator

To estimate the intrinsic dimensionality, the estimator
(kNN-IDE) described in [3] utilizes the notion of k-NN
graph and its total length. The k-NN graph (kNNG) puts an
edge between each point in the dataset (X ) and its k-nearest
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ID kNN-IDE PCA
A B C D E A B C D E

1 3.5 4.3 4.9 7.2 10.6 3 8 15 25 25
2 3.8 4.0 5.6 9.2 11.6 4 11 26 43 48
11 3.7 6.3 12.2 15.4 25 46 44 47 50 50
12 4.5 8.3 13.8 17.8 27 128 141 154 169 157
101 52.4 118
102 92.8 319
201 4.2 59
202 12.1 11

TABLE III
INTRINSIC DIMENSIONALITY ESTIMATIONS.

neighbors. Let Nk,i(Xn) be the k-nearest neighbors of point
Xi ∈ X , the total length of kNNG is defined as follows:

L̂γ(X ) =
n∑
i=1

∑
X∈Nk,i(X )

dγ(X,Xi)

The authors in [3] found and proved the strong dependence
of the length of the kNNG to the intrinsic dimensionality.
Therefore they stated a simple estimator of the intrinsic
dimensionality m:

log L̂γ(Yn) = a log n+ b+ εn

where L̂γ(Yn) is a total length of the kNNG of a uniform
sample Yn, a = (m−γ/m) and γ is power weighting constant,
in our case γ = 1, b represents the entropy of the dataset
and for the estimation of the intrinsic dimensionality is not
necessary, εn is an error residual. a and b are approximated
using several bootstrapping samples Yn and using the method
of moments and linear least squares. For our estimations we
have used the same parameters as the authors. Each result of
the estimation was rounded to the next greater integer and ten
estimations were averaged to get the final estimation.

C. The Results
The results of the intrinsic dimensionality estimations are

summarized in Table III. To interpret the results, the intrinsic
dimensionality estimations of the auxiliary datasets needs to
be explained at first. From [8] is known that the intrinsic
dimensionality, in other words the degree of freedom, of
the dataset ID 201 is three. Estimation using the kNN-IDE
is 4.2, this discrepancy is attributed to different rounding
method of the implementations. However, using PCA leads
into significant overestimation of the intrinsic dimensionality.
On the other hand, via PCA, the estimations of datasets 101
and 102 where the degree of freedom is very close to the actual
dimensionality of the data is underestimated by the kNN-IDE.

By juxtaposing these observations for the studied datasets
1, 2, 11 and 12, two main conclusions can be derived.
Firstly, the intrinsic dimensionality grows with the diminishing
redundancy of the sample. Even though, for the least redundant
sample E the intrinsic dimensionality does not reach the
numbers of the datasets 101,102 and since it is the least
redundant sample, this should represent the upper bound on
the intrinsic dimensionality. Secondly, the estimations of the
higher dimensionality dataset of the particular descriptor has
similar estimation as the lower dimensionality dataset (kNN-
IDE). Though, utilizing more dimensions for the extracted

feature vector in this case does not mean having in the same
extent finer granularity. In fact this could mean that with
the same descriptiveness the acquired data would be worse
suitable for indexing due to the fact it is embedded in much
higher dimensional space.

V. CONCLUDING REMARKS AND FUTURE WORK

The main motivation behind this work was to get an insight
into the internal structure of the high-dimensional multimedia
data for further processing, for instance for searching. Espe-
cially for indexing, it is necessary to have the feature space as
low dimensional as possible to reduce the curse of dimension-
ality. From this point of view the target dimensionality must
be selected carefully because it seems that introducing more
dimensions in the feature space necessarily not means finer
granularity of stored information.

Even though the datasets represent euclidean vector spaces,
the tools for this study, besides the PCA, have been selected
with respect for other datasets and possible application to fea-
ture spaces where other distance functions might be employed.

As a future work we would like to verify the implications of
this study by testing the indexability of the datasets presented
here. The preliminary results of applying various indexing
structures confirm the observations presented in this paper.
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