
Formal Verification of Coalescing

Graph-Coloring Register Allocation

Sandrine Blazy1, Benôıt Robillard1, and Andrew W. Appel2

1 IRISA - Université Rennes 1
2 CEDRIC - ENSIIE

3 Princeton University

Abstract. Iterated Register Coalescing (IRC) is a widely used heuristic
for performing register allocation via graph coloring. Many implementa-
tions in existing compilers follow (more or less faithfully) the imperative
algorithm published in 1996. Several mistakes have been found in some
of these implementations.
In this paper, we present a formal verification (in Coq) of the whole
IRC algorithm. We detail a specification that can be used as a refer-
ence for IRC. We also define the theory of register-interference graphs;
we implement a purely functional version of the IRC algorithm, and we
prove the total correctness of our implementation. The automatic extrac-
tion of our IRC algorithm into Caml yields a program with competitive
performance. This work has been integrated into the CompCert verified
compiler.

1 Introduction: Iterated Register Coalescing

Register allocation via graph coloring was invented by Chaitin et al. [7]. The
variables of the program are treated as vertices in an interference graph. If two
program variables are live at the same time4 then they must not be assigned to
the same register: this situation is indicated by placing an edge in the interference
graph. If the target machine architecture has K registers, then a K-coloring of
the graph corresponds to a good register allocation.

Kempe’s 1879 graph-coloring algorithm works as follows. Find a vertex x of
degree < K from the graph. (Call such a vertex a low-degree vertex.) Remove x
from the graph. Recursively K-color the rest of the graph. Now put x back in the
graph, assigning it a color. Because (when x was removed) its degree was < K,
there must be an available color for x. Kempe’s algorithm is easy to implement
and has a good running time.

But some K-colorable graphs have no low-degree vertices (i.e. Kempe’s algo-
rithm is incomplete); not only that, some source programs are not K-colorable.
Chaitin augmented Kempe’s algorithm to handle spills—that is, some vertices
are not colored at all, and the corresponding program variables are kept in mem-
ory instead of in registers. Spills are costly, because memory-resident variables

4 Except in specific cases where the variables are known to contain the same value.

must be loaded and stored. Chaitin’s algorithm also chooses the set of variables
to spill, based on interference properties of the graph and on cost heuristics.

Briggs et al. [6] improve the algorithm by adding coalescing: if the program
contains a move instruction from variable a to variable b, then these two variables
should be colored the same (assigned to the same register) if possible. Briggs’s
algorithm works by adding preference edges to the interference graph in addition
to interference edges. The problem is now, “K-color the graph subject to all
interference constraints, with the least-cost-possible set of uncolored vertices,
and with the fewest possible preference edges that connect differently colored
vertices.” Because overeager coalescing can lead to uncolorable graphs, Briggs
coalesces preference-related vertices together only when it would not change a
low-degree (< K) vertex to a vertex having more than K high-degree neighbors.

George and Appel [11] improve on Briggs’s algorithm by interleaving graph
simplification with Briggs’s coalescing heuristic, and by adding a second coa-
lescing heuristic. The result is that the coalescing is significantly better than in
Briggs’s version, and the algorithm runs no slower. George and Appel’s “Iter-
ated Register Coalescing” (IRC) algorithm is widely used in both academic and
industrial settings, and many implementations follow the imperative pseudocode
given in their paper.

Graph coloring is NP-complete; IRC (like Chaitin’s algorithm) is subquadratic,
but does not find optimal solutions. In practice IRC performs well in optimiz-
ing compilers, especially for machines with many registers (16 or more). When
there are few registers available (8 or fewer) and when register allocation is pre-
ceded by aggressive live-range splitting, the IRC algorithm is too conservative:
it does not coalesce enough, and spills excessively. In such cases, algorithms that
use integer linear programming [1] or the properties of chordal graphs [13] are
sometimes used to compute an optimal solution.

The CompCert compiler is a formally verified optimizing compiler for the
C language [5, 16]. Almost all of CompCert is written in the purely functional
Gallina programming language within the Coq theorem prover. That part of
CompCert is formally verified with a machine-checked correctness proof, and
automatically translated to executable Caml code using Coq’s extraction facility.
However, register allocation in CompCert uses an imperative implementation of
IRC implemented in Caml, closely following George and Appel’s pseudocode.
The result of (each run of) the Caml register-allocator is checked for consistency
by a Gallina program, whose correctness is formally verified. This is translation
validation [19, 18], meaning that CompCert will (provably) never produce an
incorrect translation of the source program, but if the Caml program produces
an incorrect coloring (or fails to terminate) then CompCert will fail to produce
a result at all.

In this new work we have written Iterated Register Coalescing as a pure
functional program, expressed in Gallina (and easily expressible in pure ML or
Haskell). We have proved the total correctness of the algorithm with a machine-
checked proof in Coq, as well as its termination. Register allocation is widely
recognized as complex by compiler writers, and IRC itself has sometimes been

incompletely or incorrectly described and implemented. The main contribution
of this formalization work is that it provides a correct reference description of
IRC. We believe this is the first formal verification of an optimizing register
allocation algorithm that is used in industrial practice.

All results presented in this paper have been mechanically verified using
the Coq proof assistant [10, 4]. The complete Coq development is available
online at http://www.ensiie.fr/~robillard/IRC/. Consequently, the paper
only sketches the proofs of some of its results; the reader is referred to the Coq
development for the full proofs.

The remainder of this paper is organized as follows. Section 2 introduces the
IRC algorithm. Then, section 3 details this algorithm, as well as the worklists
it computes incrementally. Section 4 defines the interference graphs and their
main properties. Section 5 describes some properties that are useful for updating
incrementally the worklists. Section 6 summarizes the termination proof of the
IRC algorithm. Section 7 explains the soundness of the IRC algorithm. Section 8
is devoted to the experimental evaluation of our implementation. Related work
is discussed in section 9, followed by concluding remarks.

2 Specification of the IRC algorithm

The input to IRC is an interference graph and a palette of colors. The vertices of
the graph are program variables. Some program variables must be assigned to
specific machine registers, because they are used in calling conventions and for
other reasons; these vertices are called precolored. The palette represents the set
of all the machine registers, which corresponds to the precolored variables. The
(undirected) edges of the graph are interference edges, which are unweighted,
and preference edges, which are weighted.

There is just one data type Vertex.t representing all of these concepts:
variable, graph vertex, register, color. A color is just a register; a register is simply
one of the variables from the set of precolored vertices. We require nothing of
the Vertex.t type except that it be provided with a computable total ordering
(for fast search-tree lookups). An edge is (isomorphic to) a pair of vertices with
an optional weight. The equality over edges considers the edge a → b equal to
the edge b → a and we denote the edge by (a, b).

The output of IRC is a coloring, that is, a partial mapping from variables to
colors. The range of the coloring must be a subset of the precolored variables.
Whenever the graph contains an interference edge between a and b, the coloring
must map a and b to different colors.

The cost of a coloring is the sum of move-cost and spill-cost. Move-cost w
occurs when there is a preference edge of weight w between a and b, and the
coloring maps a and b to different variables. Spill-cost occurs when the coloring
fails to map a variable. IRC does not in general produce optimum-cost colorings,
so we will not reason formally about costs: we will not formalize move-cost and
spill-cost, nor specify the properties of the weight type.

The next section details a Gallina program that is equivalent to the IRC
algorithm. Informally we will see that this Gallina program is equivalent to the
IRC algorithm that performs well in the real world, formally we prove that the
algorithm always terminates with a valid coloring, and empirically we measure
the run time of the program (as extracted from Gallina to ML and compiled
with the Caml compiler).

3 Sketch of the IRC algorithm

Recall that a low-degree vertex is incident on < K interference edges. A high-
degree vertex has ≥ K interference edges. A move-related vertex is mentioned
in at least one preference edge. To run faster, IRC uses worklists which classify
vertices according to their degree and their move-relationship. The worklists are
the following ones.

1. spillWL is defined as the set of high-degree, nonprecolored vertices.
2. freezeWL is defined as the set of low-degree, move-related, nonprecolored

vertices.
3. simplifyWL is defined as the set of low-degree, nonmove-related, nonprecol-

ored vertices.
4. movesWL is defined as the set of preference edges.

The properties of the four worklists can be seen as an invariant, that we call
WL_invariant. The efficiency of IRC and its proof rely on this invariant.

Given a graph g, the worklists can be computed straightforwardly by exam-
ining the set of edges incident on each vertex. George and Appel’s IRC algorithm
incrementally updates these worklists. Thus, there is no need to search for low-
degree vertices and move-related vertices in the whole graph after each step, but
only at their initialization.

IRC usually takes as argument the interference graph g and the palette of
colors (or K which is the cardinality of palette since palette is isomorphic to
1..K). The first step is then to initialize the worklists wl that we define as the
quadruple (spillWL, freezeWL, simplifyWL, movesWL). The only argument
we give to the IRC algorithm is a record (called irc graph) consisting of g, wl,
pal, K, a proof that (WL invariant g pal wl) is preserved, and a proof that K is
the cardinality of pal. Maintaining K in the irc graph record avoids computing
it at each recursive call to IRC. This record is defined in Fig. 1 as well as its
construction.

The IRC algorithm as we write it in Gallina5 is given in Fig. 2. Option types
are used to represent partial functions. A value of type option t is either ∅
(pronounced “none”), denoting failure, or ⌊x⌋ (pronounced “some x”), denoting
success with result x : t.

The IRC algorithm is as follows. If there is a low-degree, nonmove-related
vertex, then simplify (lines 2 and 3): remove a low-degree vertex, color the rest

5 Modulo some notation, but otherwise unchanged.

Record irc_graph := Make_IRC_Graph {
gph : Graph . t ;
wl : WL ;
pal : VertexSet . t ;
k : nat ;
Hwl : WL_invariant gph pal wl ;
Hk : VertexSet . cardinal pal = k } .

Definition graph_to_IRC_graph g palette :=
l e t K := VertexSet . cardinal palette in

let wl := init_WL g K in

Make_IRC_Graph g wl palette K

(WL_invariant_init g K wl) (refl_equal K) .

Definition Iterated_Register_Coalescing g palette :=
l e t g ’ := graph_to_IRC_graph g palette in (IRC g ’) .

Fig. 1. The irc graph record and the initialization of IRC. The record is built from
an interference graph and a palette. This irc graph is given as argument to IRC.

1 : Algorithm IRC g : Coloring :=
2 : match simplify g with

3 : | ⌊(r, g′)⌋ → available_coloring g r (IRC g ’)
4 : | ∅ → match coalesce g with

5 : | ⌊(e, g′)⌋ → complete_coloring e (IRC g ’)
6 : | ∅ → match freeze g with

7 : | ⌊g′⌋ → IRC g ’
8 : | ∅ → match spill g with

9 : | ⌊r, g′⌋ → available_coloring g r (IRC g ’)
10 : | ∅ → precoloring g

11 : end

12 : end

13 : end

14 : end .

Fig. 2. Implementation of the IRC algorithm in Coq.

of the graph, put back the vertex. Otherwise, if there is a coalescible move (i.e.
vertices a and b related by a preference edge, such that the combined vertex ab
has less than K high-degree neighbors), then coalesce (lines 4 and 5). Otherwise,
if there is a low-degree vertex, then freeze (lines 6 and 7): mark the low-degree
vertex for simplification, even though it is related by a preference edge, and
even though this could cause the move-related vertices to be colored differently.
Otherwise, if there are only high-degree vertices, then spill (lines 8 and 9): remove
a vertex, color the rest of the graph, then attempt to put this vertex back
into the graph. This attempt may succeed, but is not guaranteed to; there may
be no color available for it. Finally, if there are neither low-degree nor high-

degree nonprecolored vertices, the graph contains only precolored vertices, and
the recursion bottoms out (line 10).

Our different data structures are represented using the Coq library for finite
sets (and finite maps) of elements from a totally ordered type, implemented as
AVL trees. We take advantage of not only the library implementations (with
O(log N) operations for nondestructive insert, membership, etc.) but also the
library proofs of correctness of these operations. Thus we can write the algorithm
in a purely functional style with only an asymptotic cost penalty of log N .

Our formally verified implemention of IRC abstracts interference graphs, so
that several implementations of the graph abstraction can be plugged to the
algorithm. We have built one such graph implementation, and proved it correct.
The extraction (automatic translation into Caml) of our implementation runs
competitively with the standard IRC algorithm as implemented imperatively in
Caml.

3.1 Functions updating the graph.

Four auxiliary functions called by IRC update the irc graph g and yield a new
irc graph. These functions are:

(simplify g) simplifies a vertex v and returns ⌊(v, g′)⌋ where g′ is the result
from the removal of v from g. If no vertex is candidate for the simplification,
then ∅ is returned.

(freeze g) deletes the preference edges incident on a low-degree, nonprecolored,
move-related vertex v, and returns ⌊g′⌋. If no vertex can be frozen, then ∅ is
returned.

(coalesce g) looks for a coalescible edge e of g and merges its endpoints, leading
to a graph g′, and returns ⌊(e, g′)⌋. If there is no coalescible edge in the graph,
∅ is returned.

(spill g) spills a vertex v having the lowest spill cost and returns ⌊(v, g′)⌋
where g′ is the result from the removal of v from g. If no nonprecolored
vertex remains in the graph, then ∅ is returned.

Each of these functions is divided into two parts : first it determines whether
the operation is possible or not (e.g. if there exists a coalescible move); then if it
is, it updates the irc graph by calling another function, postnamed with irc.
These latter functions call operations of the graph abstract data type, reuse
directly the palette (as well as K and the proof of Hk), and update the worklists.
Moreover, the proof of the worklist invariant is incrementally updated in order
to prove the invariant for the new graph.

Fig. 3 shows how the simplify irc function calls the remove vertex func-
tion. The (nontrivial) specification of the function updating the graph is defined
in the graph interface. Inv simplify wl is the lemma stating that the invariant
is preserved by the simplify wl function. Its proof is hard and needs to be done
separately for each function. It is required to build the record.

Definition simplify_irc r ircg H :=
Make_IRC_Graph (remove_vertex r (gph ircg))

(simplify_wl r ircg (k ircg))
(pal ircg)
(k ircg)
(Inv_simplify_wl r ircg H)
(Hk ircg) .

Fig. 3. Definition of the simplify_irc function. It takes a vertex r to simplify and
an irc_graph as input and calls the function remove_vertex acting on a graph. The
hypothesis called H states that r belongs to the simplify worklist of (wl ircg).

3.2 Functions updating the coloring.

The algorithm starts from a nonempty coloring (i.e. with precolored vertices).
Then, IRC colors at most one vertex per recursive call until all the nonprecolored
vertices are colored or marked for spilling. This process uses the three following
functions.

(precoloring g) is a mapping containing just x 7→ x for every x such that
x ∈ vertices (gph g) ∩ palette. When we use this function, it should be
the case that vertices (gph g) ⊆ palette, that is, g contains only precolored
nodes.

(available coloring g v m) is defined as m[v 7→ c], where c is any element of
((pal g)− (forbidden v m g)). Informally, this function assigns to v a color
c such that no interference neighbor of v is colored with c, if such a color
exists (it may not be the case when a variable is spilled). The forbidden set
is the union of all the colors (in the range of m) of the interference neighbors
of v in g.

(complete coloring e m), with e = (x, y), is defined as m[y 7→ m(x)] if
x ∈ dom (m), otherwise just m. It is used to assign the same color to the
endpoints of a coalesced edge.

4 Interference graphs

The Coq standard library does not contain any general library on graphs yet.
Indeed, formalizing graph theory requires many application-specific choices. We
have defined a generic interface for interference graphs (i.e. the type called
graph), as well as an implementation of them. Our interface is voluntarily min-
imal: it consists only of definitions and properties that are needed by the IRC
algorithm. Such a minimal interface could be reused and extended in a further
development. This section presents this interface and focuses on the specifica-
tion of the functions updating the graph. The implementation of the interface
as well as the proofs of the properties are not detailed in this paper, but can be
consulted online.

4.1 Vertices and edges

An interference graph is a graph with two kinds of edges. Thus, we have chosen
to describe interference graphs as a set of vertices and two sets of edges, since this
representation is very expressive and is commonly used in graph theory. However,
these sets are only used for the specification. The underlying implementation of
our interface uses adjacency maps. Both vertices and edges are required to be
ordered types in order to use efficient data structures of the Coq standard library.

The type of edges generalizes interference and preference edges. The edges
are classically specified as triples (v1, v2, w) where v1 and v2 are the extremities
of the edge, and w is the optional weight of the edge. For convenience, weights
will be omitted when they do not matter. In addition, edges are provided with
accessors to their first endpoint (fst end), their second endpoint (snd end) and
their weight (get weight). We also define that an edge e is incident to a vertex
v iff v is an endpoint of e:

incident e v =def fst end e = v ∨ snd end e = v

The two kinds of edges can be discriminated by their weight : interference
edges are unweighted edges, their weight is ∅, preference edges are weighted
edges, their weight is ⌊x⌋. Moreover, two predicates pref edge and interf edge

are used to specify whether an edge is a preference edge or an interference edge,
and a predicate same type which holds for two edges iff they are of the same
type. We also define an equality over edges (denoted by =) as the commutative
equality of their endpoints, and the equality of their weight.

Interference graphs are updated through accessors (to vertices and edges)
and predicates that test the belonging of a vertex or an edge to the graph. More
precisely:

– V g is the set of vertices of g.
– IE g is the set of interference edges of g.
– PE g is the set of preference edges of the g.
– v1 ∈v g holds iff the vertex v1 belongs to g.
– e1 ∈e g holds iff the edge e1 belongs to g.

From this basis we derive two other key predicates, representing neighbor-
hood relations.

– interfere x y g =def (x, y, ∅) ∈e g
– prefere x y g =def ∃w, (x, y, ⌊w⌋) ∈e g

4.2 Properties of interference graphs

An interference graph g must be a simple graph, that is, there is at most one
edge between each pair of vertices. This is not restrictive and avoids conflicts
between preference and interference edges. Indeed, two edges of the same type
linking the same vertices are equivalent to one edge of this type, and two edges
of different types linking the same vertices are equivalent to an interference edge.
Formally specifying this property requires some intermediate definitions.

We define an equivalence (denoted by ≃) between edges that does not take
weights into account.

e ≃ e′ =def (fst end e = fst end e′ ∧ snd end e = snd end e′) ∨
(fst end e = snd end e′ ∧ snd end e = fst end e′)

In a simple graph, this equivalence implies equality.

Theorem 1. If e1 ∈e g ∧ e2 ∈e g ∧ e1 ≃ e2, then e1 = e2.

An interference graph must be loop-free: no edge goes from a vertex to itself.

Theorem 2. If e1 ∈e g, then fst end e1 6= snd end e1.

The endpoints of any edge of g must belong to g.

Theorem 3. If e1 ∈e g, then (fst end e1) ∈v g ∧ (snd end e1) ∈v g.

4.3 Specification of the remove vertex function

We characterize g′ = remove vertex v g with the three following axioms.

(RM1) V g′ = (V g) − {v}
(RM2) precolored g′ = (precolored g) − {v}
(RM3) e1 ∈e g′ ⇔ (e1 ∈e g ∧ ¬incident e1 v)

4.4 Specification of the delete preference edges function

Given g′ = delete preference edges v, all the preference edges incident to v
in g are deleted in g′. We axiomatize this function as follows.

(DP1) V g′ = V g
(DP2) precolored g′ = precolored g
(DP3) IE g′ = IE g
(DP4) PE g′ = PE g − {e | incident e v}

4.5 Specification of the merge function

The hardest function of the interface to specify is the merge function. Given an
edge e = (x, y) of g, (merge e g) yields the graph g′ such that x and y have been
merged into a single vertex. This operation requires to define the redirection of
an edge. Intuitively, when an edge is merged, it is transformed into its redirection
in g′.

Let e′ = (a, b) be an edge. The redirection of e′ from c to d (denoted by e′[c→d])

is the edge such that each occurence of c in the endpoints of e′ is replaced with
d. We do not consider the case where e′ = (c, c) since, interference graphs are
loop-free. e′[c→d] is defined as follows.

1. (a, b)[a→d] =def (d, b) if a 6= b
2. (a, b)[b→d] =def (a, d) if a 6= b
3. (a, b)[c→d] =def (a, b) if a 6= c ∧ b 6= c

For g′ = merge (x, y) g, we consider that x is the merged vertex. Thus, the
vertices of g′ are those of g minus y. Any interference edge e of g is transformed
into the edge e[y→x] in g′. Any preference edge e of g is transformed into the
edge e[y→x] in g′ if the extremities of e[y→x] are not linked with an interference
edge in g′. The merge function is axiomatized as follows.

(ME1) V g′ = (V g) − {y}
(ME2) precolored g′ = (precolored g) − {y}
(ME3) If e′ ∈ (IE g), then e′[y→x] ∈ (IE g′).

(ME4) If e′ ∈ (PE g) ∧ e 6= e′ ∧ ¬interfere (fst end e′[y→x]) (snd end e′[y→x]) g′,

then prefere (fst end e′[y→x]) (snd end e′[y→x]) g′.

(ME5) If e′ ∈e g′, then ∃e′′ ∈e g such that e′ ≃ e′′[y→x] ∧ (same type e′ e′′).

This specification of merge is under restrictive since there is no constraint on
weights. It simplifies both the specification and the implementation of merge. It
allows the user not to take care about possible weights of preference edges.

4.6 Basic interference graph functions

The specification of IRC also requires a few other functions and predicates, that
are used for instance to determine the neighbors of a vertex.

The interference (resp. preference) neighborhood of a vertex v in a graph g,
denoted by N(v, g) (resp. Np(v, g)) is the set containing the vertices x such that
there exists an interference edge (resp. a preference edge) between v and x.

x ∈ N(v, g) =def interfere x v g

x ∈ Np(v, g) =def prefere x v g

The interference (resp. preference) degree of a vertex v in a graph g, denoted
by δ(v, g) (resp. δp(v, g)), is the cardinality of N(v, g) (resp. Np(v, g)).

δ(v, g) =def card(N(v, g))

δp(v, g) =def card(Np(v, g))

The IRC algorithm heavily relies on move-relationship and interference de-
grees of the vertices. Hence, we have to define move-related and low-degree ver-
tices. Both of them are defined as functions yielding booleans, in order to be
computable.

A vertex v is move related in a graph g iff the preference neighborhood of v
in g is not empty.

move related g v =def ¬ is empty Np(v, g)

A vertex v is of low-degree in a graph g if its interference degree is strictly
lower than K.

has low degree g K v =def δ(v, g) < K

5 Incremental update of worklists

The core of the IRC algorithm is the incremental update of the worklists and the
preservation of the associated invariant. Our IRC algorithm handles the worklists
efficiently and updates, for each recursive call, the minimal sets of vertices that
must be updated. Due to a lack of space, only the main properties are given
in this paper. A technical-report version of this paper with extensive proofs
about incremental update is available at http://www.ensiie.fr/~robillard/
IRC/techreport.pdf. For each kind of update (vertex removal, coalescing of
vertices, and deletion of a preference edge), this section details the main lemmas
that are required to prove that the WL_invariant holds on the updated graph
and worklists.

This section only provides the key lemmas sketching in which conditions
vertices have to be moved from a worklist to another one (i.e. how move-related
and low-degree vertices evolve through the updates and the way the worklists
have to be updated).

5.1 Vertex removal

Removing a vertex generalizes both simplification and spill. Given a vertex v
and a graph g, the following properties hold for g′ = remove vertex v g.

Theorem 4. Any nonmove-related vertex x 6= v of g is also nonmove-related in
g′.

Theorem 5. Any move-related vertex x 6= v of g is nonmove-related in g′ iff
x ∈ Np(v, g) ∧ δp(x, g) = 1.

Theorem 6. Any low-degree vertex x 6= v of g is also a low-degree vertex of g′.

Theorem 7. Any high-degree vertex x 6= v of g is of low-degree in g′ iff
x ∈ N(v, g) ∧ δ(x, g) = K.

Let wl = (spillWL, freezeWL, simplifyWL, movesWL) such that the invariant
(WL invariant g palette wl) holds. We denote by IN (v , g) the set of nonprecol-
ored interference neighbors of v in g having an interference degree equal to K.
These vertices are of high-degree in g and will be of low-degree in g′. Thus,
we need to know if they will be move-related of not in g′ to classify them in
the appropriate worklist. To that purpose, INmr (v , g) and INnmr (v , g) are re-
spectively defined as the set of move-related vertices of IN (v , g) in g and of
nonmove-related vertices of IN (v , g) in g. Similarly, we denote by PN (v , g) the
set of nonprecolored, low-degree preference neighbors of v in g having a prefer-
ence degree equal to 1 in g. These low-degree vertices will not be move-related
anymore and have to be moved from the freeze worklist to the simplify one.

Let wl ′ = (spillWL′, freezeWL′, simplifyWL′, movesWL′) the four worklists
that result from the following updates of wl.
1. Vertices of IN (v, g) are removed from spillWL, with IN (v , g) defined as

follows. IN (v, g) =def {x ∈ N(v, g) | x /∈ precolored(g) ∧ δ(x, g) = K}.

2. Vertices of IN mr are added to freezeWL, with INmr defined as follows.
INmr (v, g) =def {x ∈ IN (v, g) | move relatedg x}

3. Vertices of IN nmr are added to simplifyWL, with INnmr defined as follows.
INnmr (v, g) =def {x ∈ IN (v, g) | ¬ move relatedg x}

4. Vertices of PN (v, g) are removed from the freeze worklist resulting from 2
and added to the simplify worklist resulting from 3. PN (v , g) is defined as
follows.
PN (v, g) =def {x ∈ Np(v, g) | x /∈ precolored(g) ∧ δp(x, g) = 1 ∧
(has low degreeg K x)}

5. Preference edges incident to v are removed from movesWL.
6. The vertex v is removed from the worklist it belongs to.

Theorem 8. WL invariant g′ palette wl′.

The accurate update of worklists for the the simplify and spill cases can be
simply derived from the general theorem about vertex removal above : a spill
is a vertex removal of a vertex belonging to spillWL and the simplify case is
a vertex removal of a vertex v belonging to simplifyWL (and hence such that
PN(v, g) is empty by definition of simplifyWL).

5.2 Coalescing two vertices

The coalescing case is the hardest one to deal with. We consider here a graph
g and an edge (x, y) to be coalesced. In other words, x and y are merged in
order to assign the same color to both of them. The resulting graph is called g′.
Classically, there are two coalescing criteria :

1. George’s criterion states that x and y can be coalesced if N(x, v) ⊆ N(y, v).
This criterion is not yet implemented, but represents no real difficulty.

2. Briggs’s criterion states that x and y can be coalesced if the vertex resulting
from the merge has less than K high-degree neighbors, that is card(N(x, g)∪
N(y, g)) ∩ H < K, where H is the set of high-degree vertices of g. This
criterion is simpler and performs usually as well as the previous one.

The proof of correctness of the algorithm only requires that the vertices to be
merged are not both precolored. The other conditions only ensure the conserv-
ability of the coalescing, that is g′ remains K-colorable if g is K-colorable. In-
tuitively, the vertices to be updated in the worklists are the neighbors of the
coalesced edge endpoints. Actually, only a small subset of them needs to be
updated.

Let e = (x, y) and g′ = merge e g. The key lemmas are the following.

Theorem 9. Any nonmove-related vertex of g is also nonmove-related in g′.

Theorem 10. Any move-related vertex v different from x and y of g is nonmove-
related in g′ iff v ∈ (Np(x, g) ∩ N(y, g)) ∪ (Np(y, g) ∩ N(x, g)) ∧ δp(v, g) = 1.

Theorem 11. Any low-degree vertex v different from x and y of g is also a
low-degree vertex of g′.

Theorem 12. Any high-degree vertex v different from x and y of g is of low-
degree in g′ iff v ∈ N(x, g) ∩ N(y, g) ∧ δ(v, g) = K.

Let wl = (spillWL, freezeWL, simplifyWL, movesWL) such that the invariant
(WL invariant g palette wl) holds. We introduce notations that are similar to
those defined in the previous section. We denote by L(x, y, g) the set of non-
precolored interference neighbors of both x and y having an interference degree
equal to K in g. These high-degree vertices of g will be low-degree vertices of g′.
We reason as in the vertex removal case and respectively define Lmr (x , y, g) and
Lnmr (x , y, g) as the set of move-related vertices of L(x , y, g) and of nonmove-
related vertices of L(x , y, g). Last, we denote by M (x , y, g) the set of nonpre-
colored low-degree vertices of (N(x, g) ∩ Np(y, g)) ∪ (Np(x, g) ∩ N(y, g)) having
a preference degree equal to 1 in g. These vertices will not be move-related
anymore and have to be transfered to the simplify worklist.

Let wl′ = (spillWL′, freezeWL′, simplifyWL′, movesWL′) the four worklists
that result from the following updates of wl.

1. Vertices of L(x , y, g) are removed from spillWL, with L(x , y, g) defined as
follows. L(x, y, g) =def IN (x, g) ∩ IN (y, g).

2. Vertices of M(x, y, g) are removed from freezeWL, with M (x , y, g) defined
as follows. M(x, y, g) =def {x ∈ (N(x, g) ∩ Np(y, g)) ∪ (Np(x, g) ∩ N(y, g)) |
x /∈ precolored(g) ∧ δp(x, g) = 1 ∧ (has low degreeg K x)}.

3. Vertices of Lmr(x, y, g) are added to the freeze worklist resulting from 2,
with Lmr (x , y, g) defined as follows.
Lmr (x , y, g) =def {x ∈ L(x, y, g) | move relatedg x}.

4. Vertices of Lnmr (x , y, g) and M (x , y, g) are added to the simplify worklist
resulting from 1, where Lnmris defined as follows.
Lnmr (x , y, g) =def {x ∈ L(x, y, g) | ¬ move relatedg x}

5. For every vertex v of Np(x, g)∩N(y, g) the preference edge (v, x) is removed
from movesWL.

6. For every vertex v of Np(y, g)− N(x, g) a preference edge (v, x) is added to
the move worklist resulting from 5.

7. Every preference edge incident to y is removed from the move worklist re-
sulting from 6.

8. If x is not precolored, x is classified in the appropriate worklist, depending
on its preference and interference degrees.

9. x (and similarly y) is removed from the spill worklist resulting from 1 if it
is of high-degree in g or from the freeze worklist resulting from 3 if it is of
low-degree in g.

Theorem 13. WL invariant g′ palette wl′.

5.3 Deletion of preference edges

Let g′ = delete preference edges v g. The key lemmas are the following.

Theorem 14. Any nonmove-related vertex of g is also nonmove-related in g′.

Theorem 15. Any move-related vertex x 6= v of g is nonmove-related in g′ iff
x ∈ Np(v, g) ∧ δp(x, g) = 1.

Theorem 16. Any vertex is of low-degree in g′ iff it is of low-degree in g.

Let wl = (spillWL, freezeWL, simplifyWL, movesWL) such that the invariant
(WL invariant g palette wl) holds. We denote by D the set of nonprecolored
preference neighbors of v having a degree equal to 1 in g, that are also low-
degree vertices. These vertices have to be moved from the freeze worklist to the
simplify one. D is formally defined as follows.
D(v, g) =def {x ∈ Np(v, g) | x /∈ precolored(g) ∧ δp(x, g) = 1
∧ has low degree g K x}

Let wl′ = (spillWL′, freezeWL′, simplifyWL′, movesWL′) the four worklists
that result from the following updates of wl and g′ the updated graph.

1. The vertex v is removed from freezeWL and added to simplifyWL.
2. Vertices of D are removed from the freeze worklist resulting from 1.
3. Vertices of D are added to the simplify worklist resulting from 1.
4. Preference edges incident to v are removed from movesWL.

Theorem 17. WL invariant g′ palette wl′.

6 Termination proof

When looking at the IRC algorithm, it is not straightforward to realize that
it terminates. Thus, we have proved the termination of IRC. As 1) IRC is not
structurally recursive (there is no argument that decreases along the recursive
calls) and 2) we aim at extracting automatically a Caml code from our IRC
algorithm, a termination proof is required by Coq.

Our termination argument is a linear measure that gives an accurate bound
of the number of recursive calls. Our bound is B(g) = (2 × n(g)) − p(g) where
n(g) is the number of nonprecolored vertices of the graph g, and p(g) is the
number of nonprecolored, low-degree, nonmove-related vertices of the graph g.
p(g) can also be seen as the number of candidates to the simplification in g. The
proof that B(g) decreases at each recursive call heavily relies on the theorems 4
to 17 related to the update of the worklists. The termination proof also ensures
that the number of calls to IRC is linear in the size of the graph.

Theorem 18. Let v be a nonprecolored vertex of g and g′ = remove vertex v g.
Then, B(g′) < B(g).

Proof. First, we show that n(g′) = n(g) − 1. This proof is trivial, since the
vertices of g are the same as the vertices of g′, minus v (which is nonprecolored).
Second, we show that p(g) ≤ p(g′) + 1. Indeed, according to theorem 34, the
number of candidates for the simplification cannot decrease by more than 1.
Thus, 2n(g′) − p(g′) < 2n(g) − p(g).

Theorem 19. Let e be a coalescible edge of g and g′ the graph resulting from
the coalescing of e in g. Then, B(g′) < B(g).

Proof. First, we show that n(g′) = n(g) − 1. This proof is trivial, since the
vertices of g are the same as the vertices of g′, minus the second endpoint of e
(which is nonprecolored). Second, we show that p(g) ≤ p(g′). This proof is trivial
too, since, according to theorem 45, the simplify worklist can only grow during
the coalescing. Hence we obtain B(g′) < B(g).

Theorem 20. Let v be a freeze candidate to g and g′ the graph resulting from
the freeze of v in g. Then, B(g′) < B(g).

Proof. First, we show that n(g′) = n(g). This proof is trivial, since the vertices
of g are the same as the vertices of g′. Second, we show that p(g) ≤ p(g′). This
proof is trivial too, since, according to theorem 53, the simplify worklist can only
grow during the freeze. Hence we obtain B(g′) < B(g).

Theorem 21. If IRC g calls recursively IRC g′, then B(g′) < B(g). Conse-
quentely, the number of recursive calls of IRC g is bounded by B(g) and IRC g
terminates.

Proof. The proof is done by induction on the recursive calls. Each case is dis-
charged thanks to one of the above lemmas.

7 Soundness

A coloring, w.r.t. a palette maps vertices to colors such that 1) two vertices linked
with an interference edge have different colors, 2) any vertex to which a color is
assigned belongs to the graph, and 3) any assigned color belongs to palette. A
coloring is a partial mapping since the variables that are spilled are not colored.

A coloring of an interference graph g w.r.t a palette palette is a function f
from Vertex.t to option Vertex.t such that :

(C1) ∀e = (x, y) ∈ IE(g), f(x) 6= f(y)
(C2) ∀x, f(x) = ⌊y⌋ ⇒ x ∈ V (g)
(C3) ∀x ∈ V (g), f(x) = ⌊y⌋ ⇒ y ∈ palette

The soundness proof of IRC states that IRC returns a valid coloring of the
graph when the precoloring of the graph (defined in section 3.2) is valid.

Theorem 22. If precoloring (g) is a coloring of g w.r.t. palette, then IRC g
returns a coloring of g w.r.t. palette.

Proof. The proof is done by induction on the recursive calls. There are five proof
obligations to consider (one for each recursive call (PO1 to PO4), and one for
the terminal call (PO5))6.

6 For convenience, we present the proof obligations once the irc graph record has
been unfolded.

(PO1) If col = IRC (remove vertex r g) is a coloring of (remove vertex r g)
w.r.t. palette, then (available coloring g r col) is a coloring of g w.r.t.
palette.

(PO2) If col = IRC (merge e g) is a coloring of (merge e g) w.r.t. palette and
e is a coalescible edge, then (complete coloring e col) is a coloring of g
w.r.t. palette.

(PO3) If col = IRC (delete preference edges r g) is a coloring of
(delete preference edges r g) w.r.t. palette, then col is a coloring of g
w.r.t. palette.

(PO4) Same proof obligation as (PO1).
(PO5) (precoloring g) is a coloring of g w.r.t. palette.

The proof of each of the four cases is almost straightforward using the soundness
lemmas of precoloring, available coloring and complete coloring that are
not detailed in this paper. The last case is true by assumption.

8 Experimental evaluation

The source code of IRC is 600 lines of Coq functions and definitions. 1000 lines of
Coq define generic data structures (and modules) that are not used directly by
IRC. The whole proof represents approximatively 4800 lines of Coq statements
and proof scripts (excluding comments and blank lines), including 3300 lines
(110 lemmas) for the properties of incremental update of worklists, 300 lines (17
lemmas) for the termination proof, 650 lines (22 lemmas) for the soundness proof
and 550 lines (55 lemmas) for the properties of interference graphs. The proof is
therefore 8 times bigger than the code it proves, which is a common ratio in the
CompCert development [16]).

We have integrated our IRC in the CompCert compiler. Thus, we can com-
pare our Caml implementation of IRC (that is automatically generated from
our Gallina program) with the Caml imperative one of CompCert. This com-
parison is done on the CompCert benchmark, whose characteristics are given
Fig. 4. The test programs range from 50 to 3000 lines of C code. Classically,
for each program, the compiler generates at most two graphs for each function,
one for integer variables and one for float variables. IRC is applied separately
to each graph. Each line of Fig. 4 represents a program. The columns show the
number of nonempty graphs to color, as well as the average numbers of vertices,
interference edges and preference edges of these graphs.

Integrating our IRC in the CompCert compiler allows us to compare the run-
ning times of both register allocations. The results on the CompCert benchmark
are shown in Fig. 5. Measurements were performed on an Apple PowerMac work-
station with two 2.0 GHz PowerPC 970 processors and 6Gb of RAM, running
MacOS 10.4.11. The first two columns of the histogram show the running times
of both allocators in milliseconds. Our allocator does not run as fast as the im-
perative one : a logarithmic penalty arising from operations on data structures
occurs. However, compilation times remain good (under 1

10 s. for all the programs
of the suite); the slowdown is perfectly acceptable practically.

benchmark graphs variables interferences preferences

AES cipher 7 113 586 166
Almabench 10 53 310 22
Binary trees 6 23 42 14
Fannkuch 2 50 332 27
FFT 4 72 391 37
Fibonacci 2 17 18 9
Integral 7 12 12 5
K-nucleotide 17 24 74 14
Lists 5 18 33 11
Mandelbrot 2 45 117 17
N-body 9 28 73 10
Number sieve 2 25 53 12
Number sieve bits 3 76 58 12
Quicksort 3 28 116 16
SHA1 hash 8 34 107 15
Spectral test 9 14 35 6
Virtual machine 2 73 214 38
Arithmetic coding 37 31 85 15
Lempel-Ziv-Welch 32 32 127 16
Lempel-Ziv 33 29 92 15

Fig. 4. Benchmark characteristics.

The third column represents the virtual time obtained by adding a logarith-
mic penalty to the imperative allocator. In other words, the last column is (log n)
times the running time of the imperative allocator, where n is the number of
vertices of the graph. This virtual measurement emulates the penalty due to
logarithmic-access to data structures. It enables a qualitative comparison be-
tween our functional IRC and a standard imperative implementation. One can
observe that the time spent by our allocator is very close to the one of the imper-
ative implementation with a logarithmic asymptotic cost. Our functional version
of IRC is thus competitive with an imperative version.

Last but not least, we have compared the quality of executable code generated
by both allocators. Actually, both allocators implement the same algorithm. We
have measured the execution times of several executions of the test suite. The
results are equivalent for each test case.

9 Related Work

Despite their wide use in computer science and the maturity of their theory,
graphs are the subject of only a few works in the theorem-proving literature.
Only a small part of graph theory has been represented in proof assistants.

A few works on graphs are devoted to the specification of graph theory ba-
sics. In 1994, Chou formalized in HOL some usual notions of graph theory [9],

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

aes
almabench

binarytrees

fannkuch

fft fib integr

knucleotide

lists
mandelbrot

nbody

nsieve

nsievebits

qsort
sha1

spectral

vmach

arcode

lzw lzss

Comparison of running times of the allocators (in milliseconds)

Imperative Caml allocator
Functional formally verified allocator

Imperative Caml allocator with (log N) penalty

Fig. 5. Comparison of the running times of our register allocator and the Caml one.
To improve readability, results for the third column of almabench and fft are bounded
by 100 though they are actually respectively 131 and 120.

e.g. graphs, digraphs, acyclic graphs, trees. Works of Chou were followed by for-
malizations of planar graphs [20] and of graph search algorithms [21] in HOL. In
2001, Duprat formalized the same notions as Chou and directed graphs in Coq,
using inductive definitions. Unfortunately, these definitions cannot be extracted
using the Coq mechanism for extraction. Hence our work does not use this li-
brary. Mizar is probably the theorem prover in which graph theory has been
studied the most. It provides a large library on graphs including previous-cited
basics and more elaborated formalizations as the one of chordal graphs.

Other work naturally focuses on polynomial graph problems and their algo-
rithms. More precisely, the most studied problem is the (very classical) problem
of the shortest path in a positive-weighted graph. In 1998, Paulin and Filliâtre
proved Floyd’s algorithm using Coq and a tool for verifying imperative programs
that will become Caduceus later. To fit this tool, their algorithm is written in
an imperative style where graphs are simply represented as matrices. Another
algorithm for the same problem, Dijkstra’s algorithm, has been formalized and
proved correct in both Mizar [8] and ACL2 [17]. Again, Mizar is in advance
with the formalizations of other algorithms as the Ford-Fulkerson algorithm for

flows, LexBFS for chordal graph recognition, or Prim’s algorithm for minimum
spanning tree. The latter algorithm has also been proved correct using B [14].

Kempe proved the five-color theorem for planar graphs in 1879 using a vari-
ation of the simple algorithm described in the second paragraph of this paper.
Alas, he had no mechanical proof assistant; his “proof” of the four-color theorem
[15] had an error that was not caught by mathematicians for 11 years. Appel
and Haken proved the four-color theorem 97 years later [2]; this was the first
use of a computer to prove a major open problem that was unsolved without
mechanization. But major parts of that proof were unmechanized.

Recently, the theoretical problems of reasoning about planar graph coloring
have been tackled in modern proof assistants. Bauer and Nipkow formalized
undirected planar graphs and discussed a proof of the five-color theorem in Is-
abelle/HOL [3]. Gonthier and Werner produced the first fully mechanized proof
of the four-color theorem, using a formalization of hypergraphs which are a gen-
eralization of graphs [12]. Gonthier and Werner’s proof includes graph algorithms
implemented in Gallina and reasoned about in Coq.

Our work is significant for many reasons. It constitutes the first machine-
checked proof of a nontrivial register allocation algorithm and a reference im-
plementation of IRC. In addition, using a functional language, as Gallina, and
a recursive definition of an algorithm, requires hard work on the termination
proof. Furthermore, the algorithm we prove is an optimizing algorithm working
on interference graphs. These graphs have specific properties that must be kept
in mind along the specification of the algorithm. Finally, we took a special care
of the algorithmic complexity of the generated code since it deals with a real and
concrete problem, register allocation that has been integrated to the CompCert
compiler.

10 Conclusion

We have presented, formalized and implemented an optimizing register alloca-
tion algorithm based on graph coloring. The specification of this algorithm raises
difficult programming issues, such as the proof of termination, the specification
of interference graphs, the care of algorithmic complexity and the functional
translation of an imperative algorithm. In particular, we provided a very accu-
rate way to adjust worklists incrementally, even better than the ones usually
implemented. We also provided a correct reference description of IRC.

The extraction of our implementation leads to a Caml code that has been
embedded in CompCert and whose results are equivalent to the one of the current
release version of CompCert. The execution times (of the graph coloring phase
of the CompCert compiler) are competitive with the ones of the release version
of CompCert. Only a very little slowdown that cannot be avoided appears, due
to logarithmic data structures operations of purely functional programming.

References

1. Andrew W. Appel and Lal George. Optimal spilling for CISC machines with few
registers. In PLDI, 2001.

2. Kenneth Appel and Wolfgang Haken. Every planar map is four colorable. Bulletin

of the American Mathematical Society, 82:711–712, 1976.
3. Gertrud Bauer and Tobias Nipkow. The 5 colour theorem in Isabelle/Isar. In

TPHOLs, volume 2410 of LNCS, pages 67–82, 2002.
4. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program De-

velopment – Coq’Art: The Calculus of Inductive Constructions. EATCS Texts in
Theoretical Computer Science. Springer-Verlag, 2004.

5. Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal verification of a C
compiler front-end. In FM 2006, volume 4085 of LNCS, pages 460–475, 2006.

6. Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph
coloring register allocation. TOPLAS, 16(3):428 – 455, 1994.

7. Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E.
Hopkins, and Peter W. Markstein. Register allocation via coloring. Computer

Languages, 6:47–57, 1981.
8. Jing-Chao Chen. Dijkstra’s shortest path algorithm. Journal of Formalized Math-

ematics, 15, 2003.
9. Ching-Tsun Chou. A formal theory of undirected graphs in higher-order logic.

In Workshop on Higher Order Logic Theorem Proving and Its Applications, pages
144–157, 1994.

10. Coq development team. The coq proof assistant, http://coq.inria.fr.
11. Lal George and Andrew W. Appel. Iterated register coalescing. TOPLAS,

18(3):300–324, 1996.
12. Georges Gonthier. Formal proof – the four-color theorem. Notices of the American

Mathematical Society, 55(11):1382–1393, December 2008.
13. Sebastian Hack and Gerhard Goos. Copy coalescing by graph recoloring. In PLDI,

2008.
14. Dominique Méry Jean-Raymond Abrial, Dominique Cansell. Formal derivation of

spanning tree algorithms. In ZB 2003, volume 2651 of LNCS, pages 627–628, 2003.
15. A. B. Kempe. On the geographical problem of the four colors. American Journal

of Mathematics, 2:193–200, 1879.
16. Xavier Leroy. Formal certification of a compiler back-end or : Programming a

compiler with a proof assistant. POPL, pages 42–54, 2006.
17. J. Strother Moore and Qiang Zhang. Proof pearl: Dijkstra’s shortest path algorithm

verified with ACL2. In TPHOLs, volume 3603 of LNCS, pages 373–384, 2005.
18. George C. Necula. Translation validation for an optimizing compiler. SIGPLAN

Not., 35(5):83–94, 2000.
19. Amir Pnueli, Michael Siegel, and Eli Singerman. Translation validation. In TACAS

’98, volume 1384 of LNCS, pages 151–166, 1998.
20. Mitsuharu Yamamoto, Shin-ya Nishizaki, Masami Hagiya, and Yozo Toda. For-

malization of planar graphs. In Workshop on Higher Order Logic Theorem Proving

and Its Applications, pages 369–384, 1995.
21. Mitsuharu Yamamoto, Koichi Takahashi, Masami Hagiya, Shin-ya Nishizaki, and

Tetsuo Tamai. Formalization of graph search algorithms and its applications. In
TPHOLs, LNCS, pages 479–496, 1998.

A Incremental update of worklists

The core of the algorithm is the incremental update of the worklists. As few
vertices as possible are updated. In this section, we formally describe how to
maintain the worklists efficiently. In other words, we determine, for each recursive
call, the minimal sets of vertices that must be updated.

The graph can be updated before the computation of its new worklists. As a
result, one can use the new graph to compute the worklists. We here detail these
proofs. We encourage the reader interested in details to browse the development
online. The use of intermediate is indicated by bracketed references. Theorems
provided without proofs are corollaries immediately derived from other lemmas.

A.1 Vertex removal

For every vertex x belonging to the neighborhood (resp. preference neighbor-
hood) of v in g, the interference neighboorhood (resp. preference neighborhood)
of x in g′ is obtained by removing v from the neighborhood (resp. preference
neighborhood) of x in g.

Theorem 23. For every vertex v 6= x, N(x, g′) = N(x, g) − {v}.
For every vertex v 6= x, Np(x, g′) = Np(x, g) − {v}.

Proof. We prove the result for the interference neighborhood, for the preference
one the proof is analogous.
(⇒) Let y be a vertex of N(x, g′). y is different from v since y belongs to g′ while
v does not (Th. 2) (RM1). In addition, the interference edge (x, y) belongs to
g′ (Def. of N) and thus to g (RM3). As a result, x belongs to N(x, g) − {v}.

(⇐) Let y be a vertex of N(x, g) − {v}. The interference edge (x, y) belongs to
g (Def. of N). In addition, (x, y) is not incident to v since both x and y are
different from v. Hence, (x, y) belongs to g′ and thus y ∈ N(x, g′) (Def. of N
and RM3).

If x is a neighbor (resp. preference neighbor) of v in g, then its degree (resp.
preference degree) is one more in g than in g′.

Theorem 24. If x ∈ N(v, g), then δ(x, g′) = δ(x, g) − 1.
If x ∈ Np(v, g), then δp(x, g′) = δp(x, g) − 1.

Proof. Again, we only prove the result for the interference degree. Let x 6= v be a
vertex of g. We have δ(x, g′) = card(N(x, g)−{v}) and δ(x, g) = card(N(x, g)).
Finally, the symmetry of N (Def. of N) and the assumption lead to the result.

A vertex x belonging to the interference neighborhood of v in g is of low-
degree in g′ iff its degree in g is lower than or equal to K.

Theorem 25. If x ∈ N(v, g) then has low degree g′ K x ⇔ δ(x, g) ≤ K.

A vertex x belonging to the interference neighborhood of v in g is nonmove-
related in g′ iff its preference degree is lower than one in g.

Theorem 26. If x ∈ Np(v, g), then ¬move related g′ x ⇔ δp(x, g) ≤ 1.

For every vertex x 6= v which does not belong to the neighborhood (resp.
preference neighborhood) of v in g, the degree (resp. preference degree) of x is
the same in g′ as in g.

Theorem 27. Let x be a vertex such that x 6= v.
If x /∈ N(v, g), then δ(x, g′) = δ(x, g).
If x /∈ Np(v, g), then δp(x, g′) = δp(x, g).

Proof. We prove the result for interference degree only. Let x 6= v be a vertex of
g. We have δ(x, g′) = card(N(x, g) − {v} and δ(x, g) = card(N(x, g)). Finally,
the symmetry of N (Def. of N) and the assumption lead to the result.

A vertex x 6= v which does not belong to the interference neighborhood of v
in g is of low-degree in g′ iff it is in g.

Theorem 28. Let x be a vertex such that x 6= v. If x /∈ N(v, g), then has low degree g K x ⇔
has low degree g′ K x.

A vertex x 6= v which does not belong to the preference neighborhood of v
in g is move-related in g′ iff it is in g.

Theorem 29. Let x be a vertex such that x 6= v. If x /∈ Np(v, g), then move related g x ⇔
move related g′ x.

To summarize, the key lemmas are:

Theorem 30. Any nonmove-related vertex x 6= v of g is also nonmove-related
in g′.

Theorem 31. Any move-related vertex x 6= v of g is nonmove-related in g′ iff
x ∈ Np(v, g) ∧ δp(x, g) = 1.

Theorem 32. Any low-degree vertex x 6= v of g is also a low-degree vertex of
g′.

Theorem 33. Any high-degree vertex x 6= v of g is of low-degree in g′ iff
x ∈ N(v, g) ∧ δ(x, g) = K.

Let wl = (spillWL, freezeWL, simplifyWL, movesWL) such that the invariant
(WL invariant g palette wl) holds. We denote by IN (v , g) the set of nonprecol-
ored interference neighbors of v in g having an interference degree equal to K.
These vertices are of high-degree in g and will be of low-degree in g′. Thus,
we need to know if they will be move-related of not in g′ to classify them in
the appropriate worklist. To that purpose, INmr (v , g) and INnmr (v , g) are re-
spectively defined as the set of move-related vertices of IN (v , g) in g and of
nonmove-related vertices of IN (v , g) in g. Similarly, we denote by PN (v , g) the
set of nonprecolored, low-degree preference neighbors of v in g having a prefer-
ence degree equal to 1 in g. These low-degree vertices will not be move-related
anymore and have to be moved from the freeze worklist to the simplify one.

Let wl ′ = (spillWL′, freezeWL′, simplifyWL′, movesWL′) the four worklists
that result from the following updates of wl.

1. Vertices of IN (v, g) are removed from spillWL, with IN (v , g) defined as
follows. IN (v, g) =def {x ∈ N(v, g) | x /∈ precolored(g) ∧ δ(x, g) = K}.

2. Vertices of IN mr are added to freezeWL, with INmr defined as follows.
INmr (v, g) =def {x ∈ IN (v, g) | move relatedg x}

3. Vertices of IN nmr are added to simplifyWL, with INnmr defined as follows.
INnmr (v, g) =def {x ∈ IN (v, g) | ¬ move relatedg x}

4. Vertices of PN (v, g) are removed from the freeze worklist resulting from 2
and added to the simplify worklist resulting from 3. PN (v , g) is defined as
follows.
PN (v, g) =def {x ∈ Np(v, g) | x /∈ precolored(g) ∧ δp(x, g) = 1 ∧
(has low degreeg K x)}

5. Preference edges incident to v are removed from movesWL.
6. The vertex v is removed from the worklist it belongs to.

Theorem 34. WL invariant g′ palette wl′.

Proof. 1. spillWL’ (⇒) : Let x be a vertex of spillWL’. We have to show that
x is in g′, is of high-degree in g′ and is not precolored in g′. Since x is in
spillWL’, x is different from v, and hence belongs to g′ (RM1). Moreover,
x is in spillWL since, by definition of spillWL’, spillWL′ ⊆ spillWL. For
the degree of x in g′ there are two cases to distinguish :

(a) x belongs to N(v, g) : Since x does not belong to IN (v , g), its degree is
at least K + 1. Hence, its degree in g′ is at least K (Th. 24).

(b) x does not belong to N(v, g) : x has the same degree in g and g′ (Th.27).
Thus, it is of high-degree in g′ (Th.28).

Finally, x is not precolored since the precolored vertices of g and g′ are the
same (RM2) and x is not precolored in g (because x is in spillWL).

2. spillWL’ (⇐) : Let x be a nonprecolored, high-degree vertex of g′. We have
to show that x is a vertex of spillWL and does not belong to IN (v , g). We
first show that x belongs to spillWL, that is equivalent to show that x is a
nonprecolored, high-degree vertex of g. x 6= v since x is in g′ (RM1), and x
belongs to g. This implies that x is of high-degree in g (Th. 32). Last, x is a
nonprecolored vertex of g since x is a nonprecolored vertex of g′ ((RM2)).
Last, x does not belong to IN (v , g) since it is of high-degree in g′ (Th.33).
Hence, x belongs to spillWL− IN (v , g) ⊆ spillWL′.

3. simplifyWL’(⇒) : Let x be a vertex of simplifyWL’. Hence, x is not equal
to v. We distinguish now three cases:

(a) x is in simplifyWL : First, x is in g′ since it is not equal to v. Second,
x is of low-degree since degrees only decrease when v is removed (Th.
32). Third, x is not move-related in g′ since it is not move-related in g
(Th. 30). Last, x is not precolored in g′ since it is not in g (RM2).

(b) x ∈ INnmr : First, x is in g′ since x 6= v. Indeed, v cannot belong to
IN , and thus to INnmr (v , g), since any vertex cannot belong to its own
neighborhood (Th. 2). Second, x is of low-degree in g′ (Th. 32). Third,
x is nonmove-related in g and so does it in g′ (Th. 30). Last, x is not
precolored in g′ since it is not precolored in g (RM2).

(c) x ∈ PN : First, x is in g′ since it is not equal to v. Second, x is of
low-degree in g′ since it belongs to freezeWL. Indeed, x is of low-degree
in g and its degree is lower in g′ than in g (Th. 32). Furthermore, x is
not move-related in g′, according to (Th. 31). Last, x is not precolored
in g′ as in g (RM2).

4. simplifyWL’(⇐) : Let x be a low-degree, nonmove-related vertex of g′. Since
it is in g′, x is different from v. Hence x belongs to g (RM1). There are two
cases to consider :
(a) x is move-related in g : x can nothing but belong to Np(v, g) (Th. 31).

Hence, it does not belong to N(v, g) and, hence, its degree is the same in
g and g′ (Th. 1) (Th. 28). Thus, x is of low-degree in g. Consequently,
x belongs PN , and so to simplifyWL’.

(b) x is not move-related in g. There are again two cases :
i. x is of low-degree in g. Thus, x belongs to simplifyWL and thus to

simplifyWL’ since simplifyWL⊆ simplifyWL′.
ii. x is of high-degree in g. x can nothing but belong to INnmr (v , g).

Indeed, x ∈ N(v, g) since its degree is strictly lower in g′ than in g
(Th. 33). In addition, x does not belong to Np(v, g) since it belongs
to N(v, g). Hence its preference degree in g′ is the same as in g (Th.
27). Thus, x is not move-related in g. Finally, x is not precolored in
g since it is not precolored in g′ (RM2). As a consequence, x belongs
to simplifyWL’.

5. freezeWL’ (⇒) : Proof analog to the simplify (⇒) case.
6. freezeWL’ (⇐) : Proof analog to the simplify (⇐) case.
7. movesWL’ (⇒) : Let e be an edge of movesWL’. By definition of movesWL’, e

belongs to movesWL and is not incident to v. Hence, e is a preference edge of
g and is not incident to v. Hence, (RM3) concludes that e is a preference
edge of g′.

8. movesWL’ (⇐) : Let e be a preference edge of g′. Hence, (RM3) ensures that
e is a preference edge of g.

The accurate update of worklists for the the simplify and spill cases can be
simply derived from the general theorem about vertex removal above : a spill
is a vertex removal of a vertex belonging to spillWL and the simplify case is
a vertex removal of a vertex v belonging to simplifyWL (and hence such that
PN(v, g) is empty by definition of simplifyWL).

A.2 Coalesce

The coalescing case is the hardest one to deal with. We consider here a graph
g and an edge (x, y) to be coalesced. In other words, x and y are merged in
order to assign the same color to both of them. The resulting graph is called g′.
Classically, there are two coalescing criteria :

1. George’s criterion states that x and y can be coalesced if N(x, v) ⊆ N(y, v).
This criterion is not yet implemented, but represents no real difficulty.

2. Briggs’s criterion states that x and y can be coalesced if the vertex resulting
from the merge has less than K high-degree neighbors, that is card(N(x, g)∪
N(y, g)) ∩ H < K, where H is the set of high-degree vertices of g. This
criterion is simpler and performs usually as well as the previous one.

The proof of correctness of the algorithm only requires that the vertices to be
merged are not both precolored. The other conditions only ensure the conserv-
ability of the coalescing, that is g′ remains K-colorable if g is K-colorable. In-
tuitively, the vertices to be updated in the worklists are the neighbors of the
coalesced edge endpoints. Actually, only a small subset of them needs to be
updated.

First, we define the key properties required to realize the proof. Two vertices
v and v′ both different from x and y are linked with an interference edge (resp.
preference edge) in g′ iff they are linked with an interference edge (resp. prefer-
ence edge of the same weight) in g.

Theorem 35. If v 6= x ∧ v 6= y ∧ v′ 6= x ∧ v′ 6= y then (v, v′) ∈e g′ ⇔
(v, v′) ∈e g.

Proof. We first prove this proposition for an interference edge.
(⇒) We apply (ME3). Since (v, v′) is not incident to x and y, we obtain that
(v, v′) belongs to g (ME5) (Th.1).

(⇐) By assumption, (v, v′) is an interference edge of g. In addition, (v, v′) is
neither incident to x nor y. This implies that (v, v′) is left unchanged when e is
coalesced (ME3). Hence, (v, v′) belongs to g′.

For a preference edge, the proof is almost the same, but we have to prove that
v and v′ do not interfere in g and g′, in order to apply (ME4). We apply the
lemma for interference edges to prove that v and v′ interfere in g iff they interfere
in g′. Hence, they cannot interfere since the graph is simple (Th.1).

The interference neighborhood of x in g′ is the union of interference neighbor-
hoods of x and y in g.

Theorem 36. N(x, g′) = N(x, g) ∪ N(y, g).

Proof. We show the double inclusion.
N(x, g′) ⊆ N(x, g) ∪ N(y, g) : Let v be a vertex of N(x, g′). The interference
edge (v, x) belongs to g′. Thus, the interference edge (v, x) or the interference
edge (v, y) belongs to g (ME3). Hence, x ∈ N(x, g) ∪ N(y, g).

N(x, g) ∪ N(y, g) ⊆ N(x, g′) : Let v be a vertex of N(x, g) ∪ N(y, g). In both
cases, we have to take care that v is neither x nor y. Indeed, these cases lead to
contradictions. Indeed, a vertex cannot interfere with himself and (x, y) cannot
be an interference edge of g since it is, by assumption, the preference edge to be
coalesced. Once these cases have been treated, the proof is obtained by applying
(ME2).

The interference neighborhood of a vertex v different from x and y in g′ is
obtained by removing y from it and adding x iff x or y is an interference neighbor
of v in g.

Theorem 37. If v ∈ N(x, g) then N(v, g′) = N(v, g) − {y}.
If v /∈ N(x, g) ∧ v ∈ N(y, g) then N(v, g′) = (N(v, g) − {y}) ∪ {x}.
If v /∈ N(x, g) ∧ v /∈ N(y, g) then N(v, g′) = N(v, g).

Proof. We show the double inclusion.
(⇒): Let v′ be a vertex of N(v, g′). The interference edge (v, v′) belongs to g′

(Def. of N). Hence, (v, v′) belongs to g′ (ME3) since v′ is not y (Th. 1). Hence,
N(v, g′) ⊆ N(v, g) − {y}. It proves the first inclusion for the 3 cases.

(⇐): We now distinguish the three cases :

– v ∈ N(x, g) : Let v′ be a vertex of N(v, g) − {y}. If v′ is equal to x then
it belongs to N(v, g) by assumption, and to N(v, g′) by (ME3). Else, (Th.
35) applies.

– v /∈ N(x, g) ∧ v ∈ N(y, g) : Let v′ be a vertex of (N(v, g) − {y}) ∪ {x}. If v′

is equal to x, then (v, v′) belongs to g′ since (v, y) belongs to g (ME3). Else,
(Th. 35) applies.

– v /∈ N(x, g) ∧ v /∈ N(y, g) : Let v′ be a vertex of N(v, g). (Th. 35) applies.

The degree of any vertex v that interferes with both x and y decreases by 1
when e is coalesced.

Theorem 38. If x ∈ N(x, g) ∩ N(y, g), then δ(v, g′) = δ(v, g) − 1.

Proof. Let v be a vertex interfering with both x and y. Since a vertex cannot
interfere with himself, v is different from x and from y. N(v, g′) is obtained by
deleting y from N(v, g) and adding x if x ∈ N(v, g) or y ∈ N(v, g) (Th. 37).
Since x and y belong to N(v, g) we obtain that N(v, g′) is obtain only by deleting
y from N(v, g). Hence, we have δ(v, g) = δ(v, g′) + 1.

The degree of any vertex v different from x and y that does not interfere
with both x and y remains the same when e is coalesced.

Theorem 39. If v 6= x ∧ v 6= y ∧ v /∈ N(x, g)∩N(y, g), then δ(v, g′) = δ(v, g).

Proof. Let v be a vertex different from x and y and which does not interfere with
both x and y. Again, N(v, g′) is obtained by deleting y from N(v, g) and adding
x if x ∈ N(v, g) or y ∈ N(v, g) (Th. 37). We thus distinguish four cases :

1. x /∈ N(v, g), y /∈ N(v, g) : In this case we do not add and remove anything
from N(v, g);

2. x ∈ N(v, g), y /∈ N(v, g) : x is added to N(v, g), but already belongs to it.
Thus, N(v, g) remains unchanged;

3. x /∈ N(v, g), y ∈ N(v, g) : y is deleted from N(v, g) and x is added to
N(v, g). Since y belongs to N(v, g) and x does not already belong to N(v, g),
the degree of v in g decreases of 1 and increases of 1. Thus, it globally remain
unchanged;

4. x ∈ N(v, g), y ∈ N(v, g) : This case is absurd by hypothesis.

The degree of a vertex v of g′ linked with an interference edge with x and a
preference edge with y (or, symmetrically, with a preference edge with x and an
interference edge with y) decreases by one when e is coalesced.

Theorem 40. If v ∈ (N(x, g)∩Np(y, g))∪ (Np(x, g)∩N(y, g)), then δp(v, g′) =
δp(v, g) − 1.

Proof. Any vertex v′ different from both x and y belongs to N(v, g) iff it belongs
to N(v, g′) (Th. 35) (Th. 2). In addition, x and y do not belong to Np(v, g′)
since x belongs to N(v, g′) (Th.36) (Th. 1) and y does not belong to g′ (ME1).
Hence, using the assumption, we prove the result.

To summarize, the key lemmas are :

Theorem 41. Any nonmove-related vertex of g is also nonmove-related in g′.

Theorem 42. Any move-related vertex v different from x and y of g is nonmove-
related in g′ iff v ∈ (Np(x, g) ∩ N(y, g)) ∪ (Np(y, g) ∩ N(x, g)) ∧ δp(v, g) = 1.

Proof. (⇒) Let v be a move-related vertex of g different from x and y which is
not move-related in g′. There exists in g a preference edge e′ which is incident to
v. Equivalently, there exists a vertex v′ of g such that e′ = (v, v′). Necessarily,
v′ is equal to x or y. Otherwise, (v, v′) would belong to g′ (Th. 35) and v would
be move-related in g′. There are thus two cases to consider :

1. v′ = x : We again split this case into two ones :

(a) v ∈ N(y, g) : We apply (Th. 40). We obtain that δp(v, g) − 1 = 0 and
thus that δp(v, g) = 1.

(b) v /∈ N(y, g) : We prove this case is absurd by showing that v is move-
related in g′. We use the lemma (ME4). We now have to prove that e′

is a preference edge of g, that e′ 6= e and that v and v′ do not interfere in
g′. The first fact is trivial. The second is true since v is different from y.
The last is harder. Using (M5), we can prove that v and v′ interfere in
g′ iff (v, x) or (v, y) belongs to g. The graph is simple and thus (v, x) is
not an interference edge of g, since its endpoints are the same than the
ones of e′. Finally, (v, y) is not an interference edge of g by assumption.

2. v′ = y : The proof is symetric to the one of the previous case.

(⇐) Let v be a vertex of g′ such that δ(v, g) = 1 and v ∈ (N(x, g) ∩ Na(y, g)) ∪
(Na(x, g)∩N(y, g)). Applying (Th. 40) we obtain that δ(v, g′) = 0. Hence, v is
not move-related in g′.

Theorem 43. Any low-degree vertex v different from x and y of g is also a
low-degree vertex of g′.

Theorem 44. Any high-degree vertex v different from x and y of g is of low-
degree in g′ iff v ∈ N(x, g) ∩ N(y, g) ∧ δ(v, g) = K.

Let wl = (spillWL, freezeWL, simplifyWL, movesWL) such that the invariant
(WL invariant g palette wl) holds. We introduce notations that are similar to
those defined in the previous section. We denote by L(x, y, g) the set of non-
precolored interference neighbors of both x and y having an interference degree
equal to K in g. These high-degree vertices of g will be low-degree vertices of g′.
We reason as in the vertex removal case and respectively define Lmr (x , y, g) and
Lnmr (x , y, g) as the set of move-related vertices of L(x , y, g) and of nonmove-
related vertices of L(x , y, g). Last, we denote by M (x , y, g) the set of nonpre-
colored low-degree vertices of (N(x, g) ∩ Np(y, g)) ∪ (Np(x, g) ∩ N(y, g)) having
a preference degree equal to 1 in g. These vertices will not be move-related
anymore and have to be transfered to the simplify worklist.

Let wl′ = (spillWL′, freezeWL′, simplifyWL′, movesWL′) the four worklists
that result from the following updates of wl.

1. Vertices of L(x , y, g) are removed from spillWL, with L(x , y, g) defined as
follows. L(x, y, g) =def IN (x, g) ∩ IN (y, g).

2. Vertices of M(x, y, g) are removed from freezeWL, with M (x , y, g) defined
as follows. M(x, y, g) =def {x ∈ (N(x, g) ∩ Np(y, g)) ∪ (Np(x, g) ∩ N(y, g)) |
x /∈ precolored(g) ∧ δp(x, g) = 1 ∧ (has low degreeg K x)}.

3. Vertices of Lmr(x, y, g) are added to the freeze worklist resulting from 2,
with Lmr (x , y, g) defined as follows.
Lmr (x , y, g) =def {x ∈ L(x, y, g) | move relatedg x}.

4. Vertices of Lnmr (x , y, g) and M (x , y, g) are added to the simplify worklist
resulting from 1, where Lnmris defined as follows.
Lnmr (x , y, g) =def {x ∈ L(x, y, g) | ¬ move relatedg x}

5. For every vertex v of Np(x, g)∩N(y, g) the preference edge (v, x) is removed
from movesWL.

6. For every vertex v of Np(y, g)− N(x, g) a preference edge (v, x) is added to
the move worklist resulting from 5.

7. Every preference edge incident to y is removed from the move worklist re-
sulting from 6.

8. If x is not precolored, x is classified in the appropriate worklist, depending
on its preference and interference degrees.

9. x (and similarly y) is removed from the spill worklist resulting from 1 if it
is of high-degree in g or from the freeze worklist resulting from 3 if it is of
low-degree in g.

Theorem 45. WL invariant g′ palette wl′.

Proof. 1. spillWL’ (⇒) : Let v be a vertex of spillWL’. We distinguish two
cases, depending wheter x belongs to spillWL’ or not.

(a) x does not belongs to spillWL’ : v is not equal to y, belongs to spillWL
and does not belong to L(x , y, g). Hence, v belongs to g′ (ME1), is not
precolored in g′ (ME2), and is of high-degree in g′ (Th. 43).

(b) x belongs to spillWL’ : if v 6= x, the previous reasonment applies. Oth-
erwise, x is well classified, by assumption.

2. spillWL’ (⇐) : Let v be a nonprecolored, high-degree vertex of g′. We have
to show that v belongs to spillWL and not to L(x , y, g). We know that v is a
nonprecolored (ME2) high-degree vertex of g (Th. 43). Hence, v belongs to
spillWL. In addition, v does not belong to L(x , y, g) since it is of high-degree
in g′ (Th. 44).

3. simplifyWL’(⇒) : Let v be a vertex of simplifyWL’. v belongs to simplifyWL,
to Lnmr (x , y, g), or to M (x , y, g) :

(a) v belongs to simplifyWL : v is a nonprecolored, nonmove-related, low-
degree vertex of g. Since it is nonmove-related, it cannot be either x
nor y. Hence, v is a nonprecolored (ME2), nonmove-related (Th. 41),
low-degree vertex of g′ (ME1);

(b) v ∈ Lnmr (x , y, g) : v is, by definition, a nonprecolored vertex of g of
degree K, interfering with both x and y. Hence, v is a nonprecolored
(ME2), low-degree (Th. 43) vertex of g′. Furthermore, v is not move-
related in g′ since it is not move-related in g (Th. 41).

(c) v ∈ M (x , y, g) : v is, by definition, a nonprecolored low-degree vertex of
(N(x, g)∩Np(y, g))∪(Np(x, g)∩N(y, g)) having a preference degree equal
to 1. Hence, v is different from x and y, since a vertex cannot belong
to its own neighborhood. Consequently, v is a nonprecolored (ME2),
nonmove-related (Th. 42), low-degree (Th. 39) vertex of g′.

4. simplifyWL’(⇐) : Let v be a nonprecolored, low-degree, nonmove-related ver-
tex of g′. If it is x, it is well classified. In the other case, we have to consider
two cases :

– v is of low degree in g : since v is not precolored in g′, it is not precolored
in g. Hence, v belongs to either simplifyWL or freezeWL. In the first
case, it belongs to simplifyWL’, since simplifyWL’ contains simplifyWL.
In the second, v is move-related in g and is not in g′, thus v belongs to
M . Hence, v belongs to simplifyWL’ (Th. 42).

– v is of high degree in g : v cannot but belong to L(x , y, g) (Th. 44).
Hence v is move-related in g iff it is in g′. It yields that v is a nonmove-
related vertex of M (x , y, g). Thus, v belongs to Lnmr (x , y, g) and hence
to simplifyWL’.

5. freezeWL’ (⇒) : Let v be a vertex of freezeWL’. If v is equal to x, v is well
classified. Otherwise, we consider two cases :

– v belongs to freezeWL and not to M (x , y, g) : v is a low-degree, move-
related, nonprecolored vertex of g. Since v is different from x and y, v is
of low-degree in g′ (Th. 43). Moreover, v does not belong to M (x , y, g).
Hence, v is move-related in g iff it is in g′ (Th. 41) (Th. 42). It yields
that v is move-related in g′. Finally, v is not precolored in g′ since it is
not in g (ME2).

– v belongs to Lmr (x , y, g) : v belongs to L(x , y, g) implies that v is of
low-degree in g′ (Th. 44). In addition, v does not interfere with x nor
y and hence is move-related in g′ iff it is in g (Th. 41) (Th. 42). It
yields that v is move-related in g′, by definition of Lmr (x , y, g). Finally,
v is not precolored in g′ since it is not in g(ME2).

6. freezeWL’ (⇐) : Let v be a low-degree, move-related, nonprecolored vertex of
g′. If x is equal to v then it is well classified. Otherwise, v is move-related in
g since it is move-related in g′ (Th. 41) (Th. 42) and is a nonprecolored
vertex of g since it is a nonprecolored vertex of g′ (ME2). We consider two
cases, depending on the degree of v in g.
– v is of low-degree in g. Hence, v belongs to freezeWL. Furthermore, v

is move-related in g′ and hence does not belong to M (x , y, g) (Th. 42).
Hence, v belongs to freezeWL’.

– v is of high-degree in g. Hence, v belongs to L(x , y, g), because v is of
low-degree in g′ (Th. 44). Moreover, v is move-related in g and thus
belongs to Lmr (x , y, g). It implies that v belongs to freezeWL’.

7. movesWL’ (⇒) : Let (v1, v2) be an edge of movesWL’. Then v1 and v2 are
both different from y. We have to show that there exists a preference edge
(v3, v4) such that (v1, v2) = (v3, v4)[y→x] and that v1 and v2 do not interfere
in g′. We consider two cases :
– If v1 and v2 are both different from x, then (v3, v4) can be equal to (v1, v2).

Moreover, v1 and v2 do not interfere in g′ since they do not interfere in
g (they interfere in g′ iff they interfere in g by (Th. 35)). Hence, (v1, v2)
is a preference edge of g′ (ME4).

– If v2 is equal to x (we do not consider the symetric case, i.e. v1 equal to
x) then (v1, v2 can be either the redirection of (v1, x) or of (v1, y).
• If v4 is equal to x, then v1 cannot interfere with y since we remove

from movesWL the edges (v, x) such that v belongs to Np(x, g) ∩
N(y, g). Hence, v1 does not interfere with x nor y in g and thus does
not interfere with x in g′ (Th. 36).

• If v4 is equal to y, then v1 cannot interfere with x. Otherwise, (v1, v2) =
(v1, x) would not be in movesWL since it would have been removed
from it (by the fifth step of the worklists construction).

8. movesWL’ (⇐) : Let (v1, v2) be a preference edge of g′. We consider two
cases :
– If (v1, v2) is not incident to x then it belongs to g (ME5). Hence it

belongs to movesWL and does not enter in the cases where it is removed
from movesWL. Thus, it belongs to movesWL’.

– If x is equal to v2 (the symetric case, i.e. v1 equal to x is not considered)
then there exists an edge (v1, v3) such that (v1, v3)[y→x] = (v1, x). Hence,
v3 is either equal to x or y.
• If v3 is equal to x then (v1, x) belongs to g (and thus to movesWL)

and v1 does not interfere with y (otherwise, (v1, x) would not belong
to g′ by (ME4) and (ME5)). Hence, (v1, v2) belongs to movesWL’.

• If v3 is equal to y then (v1, y) belongs to g (and thus to movesWL)
and v1 does not interfere with x (otherwise, (v1, x) would not belong
to g′ by (ME4) and (ME5)). Hence, (v1, v2) belongs to movesWL’.

A.3 Freeze

We now consider a vertex v to be frozen in g. Since v is candidate to the freeze,
it is a move-related, low-degree vertex of g. Recall that freezing v consists in

deleting its incident preference edges. The result of this freeze leads to the graph
g′. Hence, the following properties hold.

Let x 6= v a vertex of g. When v is frozen, the preference degree of x decreases
by one if x is a preference neighbor of v in g.

Theorem 46. If x ∈ Np(v, g), then δp(v, g′) = δp(v, g) − 1.

Proof. Let x 6= v be a vertex of g. If x is a preference neighbor of v in g then
the neighbors of x in g′ are exactly the same than in g, minus v. Hence, the
preference degree of x decreases by exactly one.

Let x 6= v a vertex of g. When v is frozen, the preference degree of x is left
unchanged if x is not a preference neighbor of v in g.

Theorem 47. If x /∈ Np(v, g), then δp(v, g′) = δp(v, g).

Proof. Let x 6= v be a vertex of g. If x /∈ Np(v, g), then the neighbors of x in g′

are the same than in g (DP3), and thus the degree of x is unchanged.

Any vertex x 6= v which is not a preference neighbor of v in g is move-related
in g′ iff it is move-related in g.

Theorem 48. If x 6= v ∧ x /∈ Np(v, g), then move related g′ v = move related g v.

Any preference neighbor x 6= v of v in g is move-related in g′ iff its preference
degree in g is strictly greater than 1.

Theorem 49. If x ∈ Np(v, g), move related g′ x ⇔ δp(x, g) > 1.

To summarize, the key lemmas are:

Theorem 50. Any nonmove-related vertex of g is also nonmove-related in g′.

Theorem 51. Any move-related vertex x 6= v of g is nonmove-related in g′ iff
x ∈ Np(v, g) ∧ δp(x, g) = 1.

Theorem 52. Any vertex is of low-degree in g′ iff it is of low-degree in g.

Let wl = (spillWL, freezeWL, simplifyWL, movesWL) such that the invariant
(WL invariant g palette wl) holds. We denote by D the set of nonprecolored
preference neighbors of v having a degree equal to 1 in g, that are also low-
degree vertices. These vertices have to be moved from the freeze worklist to the
simplify one. D is formally defined as follows.
D(v, g) =def {x ∈ Np(v, g) | x /∈ precolored(g) ∧ δp(x, g) = 1
∧ has low degree g K x}

Let wl′ = (spillWL′, freezeWL′, simplifyWL′, movesWL′) the four worklists
that result from the following updates of wl and g′ the updated graph.

1. The vertex v is removed from freezeWL and added to simplifyWL.
2. Vertices of D are removed from the freeze worklist resulting from 1.
3. Vertices of D are added to the simplify worklist resulting from 1.
4. Preference edges incident to v are removed from movesWL.

Theorem 53. WL invariant g′ palette wl′.

Proof. 1. spillWL’ (⇒) : Let x be a vertex of spillWL’. By definition spillWL’
is equal to spillWL and hence x is a nonprecolored, high-degree vertex of g.
From (DP1), (DP2) and (Th. 52) respectively, we obtain that x is in g′,
x is not precolored in g′ and x is of high-degree in g′.

2. spillWL’ (⇒) : Let x be a nonprecolored, high-degree vertex of g′. Thus, x is
a nonprecolored (DP2), high-degree vertex of g (DP1) (Th. 52). Hence, it
belongs to spillWL and finally to spillWL’.

3. freezeWL’ (⇒) : Let x be a vertex of freezeWL’. Since freezeWL’ ⊆ freezeWL,
x belongs to freezeWL. Hence, x is a nonprecolored, low-degree, move-related
vertex of g. From (DP1) we obtain that x is in g′. Moreover, (Th. 52)
implies that x is of low-degree in g′ and (Th. 51) implies that x is move-
related in g′. Indeed, (Th. 51) applies since x is different from v and does
not belong to D, by definition of freezeWL’.

4. freezeWL’ (⇐) : Let x be a nonprecolored, low-degree, move-related vertex of
g′. The precolored vertices are the same for both g and g′ (DP2), and thus
x is not precolored in g. Moreover, x is move-related in g since it is move-
related in g′ (Th. 50). Finally, x is of low-degree in g (Th. 52). These
facts ensure that x belongs to freezeWL. In addition, x is different from v
and does not belong to D since x is move-related in g′ (DP4) (Th. 51).
Hence, x belongs to freezeWL’.

5. simplifyWL’ (⇒) : Let x be a vertex of simplifyWL’. There are three cases
to consider :
(a) x = v : The specification of the delete preferences function (DP1) (DP2)

(DP4) implies that v is a nonprecolored and nonmove-related vertex of
g′. Moreover, v is of low-degree in g′ since it is of low-degree in g (Th.
52).

(b) x ∈ D : By definition, D is a subset of freezeWL. Hence, x is a nonpre-
colored, low-degree vertex of g. Hence, x is a nonprecolored, low-degree
vertex of g′ (DP1) (DP2) (Th. 52). Furthermore, x is nonmove-related
in g′ since it is in D (Th. 51).

(c) x belongs to simplifyWL : It is easy to show that x is a nonprecolored
(DP2), low-degree vertex of g′ (Th. 52). In addition, x cannot be move-
related in g′ since it is not in g (Th. 50).

6. simplifyWL’ (⇐) : Let x be a nonprecolored, low-degree, nonmove-related
vertex of g′. Propositions (DP2) and (Th. 52) respectively ensure that x
is a nonprecolored, low-degree vertex of g. Moreover, x is wheter nonmove-
related in g or belongs to D (Th. 50) (Th. 51). Indeed, otherwise x would
be move-related in g′, that is absurd. In both cases, x belongs to simplifyWL’.

7. movesWL’ (⇒) : Let e be an edge of movesWL’. By definition of movesWL’,
e belongs to movesWL and is not incident to v (DP4). Hence, e is a pref-
erence edge of g and is not incident to v. Hence, (DP4) concludes that e is
a preference edge of g′.

8. movesWL’ (⇐) : Let e be a preference edge of g′. (DP4) ensures that e is
a preference edge of g.

