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Abstract: Time-average approximation and principal component analysis of the stochastic process 
underlying the functional data are the main ingredients for adapting NIPALS algorithm to estimate missing 
data in the functional context. The influence of the amount of missing data in the estimation of linear 
regression models is studied using the PLS method. A simulation study illustrates our methodology. 
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1  Introduction 

Statistical methods for data representing functions or curves have received much attention in recent years. Such 
data, known in literature as functional data, have received in the last years a large interest for research, especially due 
to the difficulty to deal with infinite dimensional spaces in the context of classical multivariate methods. Examples of 
functional data can be found in several application domains such as medicine, economics, chemometrics and many 
others (Ramsay and Silverman, 2002) . 

A well accepted model for functional data is to consider it as paths of a stochastic process X = {Xt, t ∈[0, T]} 
taking values into a Hilbert space of functions on some interval [0, T]. For example, a second order stochastic 
process X={Xt, t ∈[0, T]} L2–continuous with sample paths in L2 ([0, T]) can be used as model for describing the 
behavior of some quantitative parameter associated to a process observed on a time interval of length T. 

Suppose that for each statistical unit ω we observe the associated curve Xω (Figure 1 (a) provides an example) 
and a single real response Yω. We are interested in predicting Yω from Xω. The linear functional regression model is 
the simplest approach to be considered and an important number of research papers in the functional data field are 
devoted to the estimation of the model,  

 
0

( )   
T

tY X t dtβ ε= +∫   (1)  

It is well known that the direct estimation of the regression coefficient function β using the least square criterion 
yields to an ill posed problem. Solutions based on elements derived from the principal component analysis of X have 
been proposed by Aguilera et al. (1997) and Cardot et al. (1999). These techniques are known in the literature as 
principal component regression (PCR). However, the choice of principal components is not an easy task, since one 
has to choose between robustness of the model (the most explanatories pc's) and his performances (the pc's the most 
correlated with the response). As an alternative to functional PCR, Preda and Saporta (2005) have extended Partial 
Least Squares (PLS) regression to the case of a functional predictor. 
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The aim of this paper is to provide a methodology for estimating linear regression models with functional 
predictor (X) in the presence of missing data. If missing data is quite a common concept in finite multivariate 
analysis (see Little and Rubin (1987) ) that is not the case for functional data. In practice, a curve is generally 
observed in a finite number of time points, 0=t0<t1<…< tk = T, and thus, with missing information. However, the true 
form of the curve can be approximated from the points {(ti , Xti), i=1, …k}using interpolation or smoothing 
procedures (Aguilera et al. 1997).  

We consider that a curve has missing data when one or several continuous part of the curve is missing, i.e 
observation was not possible. This situation occurs, for example, for instruments recording curves (spectrometers, 
oscilloscopes) that are out of service for some short time intervals. Figure 1 (b) provides an example of curve with 
missing data in two intervals of time.  

 

(a) 

 

(b) 

Figure 1  (a) Complete path. (b) Incomplete path 

Our approach for dealing with missing data in the functional framework is to consider that the underlying 
process generating missing data is a jump stochastic process M = {Mt, t ∈[0, T]} with two states, {0, 1}, 
corresponding to the presence or absence of information. 

For estimating the linear model (1) in presence of missing data we propose to use the PLS approach after time-
average approximation (Preda (2000) ) and imputation of missing data by the NIPALS algorithm (Tenenhaus, 1998).  

The paper is organized as follows. In Section 2 we introduce the functional linear model for functional data and 
the PCR and PLS approaches. The process generating missing data as well as the methodology for applying the 
NIPALS algorithm for imputation is presented in Section 3. The Section 4 is devoted to a simulation study.   

2  PLS Regression with Functional Data and Approximation 

Let us consider the functional data as sample paths of a stochastic process X={Xt, t∈ [0, T]} with continuous 
time and Y a random real variable defined on the same probability space as X. We assume that Y is centered and X is 
of second order, L2 continuous and centered for each t∈ [0, T].  

Under the least squares criterion, the estimation of the coefficient function β of linear regression model (1) is in 
general a distribution rather than a function of L2 ([0, T]) (Saporta (1981) ). This difficulty appears also in practice 
because one has generally more predictors than the number of observations. Regression on principal components 



Part 1  Theoretical Research and Methodology 

·19· 

(PCR) of X (Aguilera et al., 1997) and PLS approach (Preda and Saporta (2005) ) provide efficient solutions to this 
problem. We will consider here only the PLS approach. 

2.1  Partial least squares regression for functional data 

The basic idea of PLS approach is to construct a set of uncorrelated random variables {Ti, i ≥ 1} (PLS 
components) in the linear space spanned by X, taking into account the correlation between Y and X. Replacing the 
least squares criterion with that of maximal covariance between X and Y,  

 2

0

max  cov ( , ( ) )
T

tw
Y X w t dt∫   

The PLS regression offers a good alternative to PCR (Preda and Saporta , 2005). The first PLS component is 

given by T1 =
0

( )
T

tX w t dt∫ and further PLS components are obtained by maximizing the covariance criterion between 

the residuals of both Y and Xt with the previous components. 
The PLS approximation is given by 
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As in the finite multivariate setting (de Jong, 1993), in the functional context PLS fits closer than PCR, i.e. 
2 2

( ) ( )
ˆ ˆ( , ) ( , )PCR k PLS kR Y Y R Y Y≤ .  

2.2  Time average approximation  

The principal components analysis of X is often realized by approximating the principal factors in a finite 
dimensional space of functions. One of the approximations, which is convenient in presence of missing data, is the 
time-average approximation developed in Preda (2000). This approximation, easy to put in practice, consists into 
approximate X by a stochastic process with whose the sample paths are constant piecewise functions. If ∆={0=    
t0 < t1 <… < tp=T} is a discretisation of [0, T] then the time-average approximation of X is given by X∆ defined by  

 Xt
∆ = mi =
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Properties of this approximation with respect to the accuracy of the approximations provided by the elements 
derived from principal components analysis are presented in Preda (2000). Let observe that the principal component 
analysis in this case is equivalent with the principal component analysis of the set of variables {mi, i=1, …, p} using 
as metric diag (t1-t0, …., tp-tp-1). The principal factors fi of the process X are approximated by constant piecewise 
functions f∆

i obtained from the principal factors of the set {mi, i=1, …, p} and so are for the principal components, 
ξ∆

i.  
The functional PCR regression of Y on X is then approximated by the PCR of Y on the set {ξ∆

i. , i=1, …, k, 
k≤p}.  

In the same way, the PLS regression of Y on X is approximated by the PLS regression of Y on the set of 
variables { 1i i it t m−− × , 1, …, p} (Preda and Saporta, 2005).      

3  Missing Data for Functional Data and NIPALS Algorithm  

At our knowledge, there are not works on dealing with missing data for functional variables. We can observe 
that when the situation occurs, it is often question of the end of the curve and thus imputation of missing data is 
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synonym of time series prediction.  

3.1  Missing data model 

In our approach we consider that the missing information could occur in any continuous time interval of [0, T]. 
Thus, a curve can miss information of a set of intervals [a1, b1], …, [ am, bm]. Of course, the number of these intervals 
is random as well as their length. One possible model for missing data in this context is to consider an underlying 
jump continuous time process Mt with two states, 0 and 1, with the following signification  

 Mt  = t0,  if X  is observed at time t,
1,  otherwise.

⎧
⎨
⎩

  (4)  

Thus, to each curve ω of X corresponds a curve ωM of M. A curve ωM that corresponds to the “0” constant 
function means that the curve ω is completely observed.  

In the multivariate finite case, it is usually to speak about the ratio of the missing data in the whole dataset. In 
the functional context, we can extend this notion to the ratio of the sum of the length of the intervals [ai, bi] within [0, 
T] for all available curves. However, if this ratio has some interpretation when the missing data is “completely at 
random” (see Little and Rubin, 1987), it is difficult to justify this measure in the case of functional data.  

 
Inspired by the reliability theory of repairable systems, we propose as measure for quantify the missing 

information the mean time of missing observation (MTMO) defined by  

 MTMO =
0

1 ( ) , 
T

U t dt
T ∫   (5)  

where U (t) is the probability that the process X is not observable at the instant t, i.e. U (t) = P (Mt = 1). Obviously, 
the simplest model for M is a two state markovian process with exponential times for each state. Considering that 
M0=0 and the rate parameters describing the system are λ (for state 0) and μ (for state 1) then one can show 
(Iosifescu et al (2007) that  

 MTMO= 
-

T
2  ( 1  e )

( ) T

λ μλ λ
λ μ λ μ

+

− × −
+ +

  (6)  

For example, for T=1, λ=1 and μ=100 we have MTBO = 0.009802 that means that the process is unobservable 
about of 1% of time.   

3.2  Estimation of missing data by the NIPALS algorithm 

For each curve ω let consider the set of intervals [a1 (ω), b1 (ω) ], …[am (ω), bm (ω) ] corresponding to missing 
data (eventually empty). Let ∆={0=t0 <t1 <… < tp=T} be an equidistant discretization of [0, T] with δ = ti+1–ti such 
that each length of data missing intervals is multiple of δ. Then, the time average approximation can be used by the 
NIPAL algorithm in order to predict the missing values of the variables defined by (3), {mi, i=1, …, p}.  

Based on the estimation of simple linear regression models with missing data, the NIPALS algorithm provides 
estimation for the principal components and principal factors of the principal component analysis of X. Therefore, by 
the reconstruction formula of principal component analysis, one obtains values for the missing data and PLS 
regression model can be estimated. 

4  Simulation Study 

Let consider Y be a real random variables defined by the linear regression model 
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 Y = 
1

0

( )tX t dtβ ε+∫ ,   (7)  

where X is the standard Brownian motion on [0, 1], β (t) = 3t3 , t ∈[0, 1] and ε is the error term such that V (ε) =0, 1. 
Notice that V (Y) =0, 5 and thus R2 =0.8.  

We generate n=100 curves representing the sample paths of X observed on a discretization ∆1 of the interval   
[0, 1] in 1000 equidistant intervals. The Simpson quadrature method provides the values of Y for each one of curves.  

In order to smooth the local variation of curves, a time-average approximation is performed on data using a 
discretization ∆2 with 100 equidistant intervals. Then, the PLS estimation, βPLS, of the regression coefficient function 
β is obtained with three PLS components and is represented in Figure 2 (a) . 

Missing data is now simulated for several values of MTMO. We use for simulation a two state markovian jump 
process with exponential times for the two states as in (6). The exponential distribution is simulated with a precision 
of 1/1000, thus the change points belongs to ∆1. In Table 1 are presented the performances (measured by R2) of the 
PLS regression after time-average approximation and estimation of the missing data using the NIPALS algorithm for 
several values of MTMO (λ and μ).      

 

Figure 2  Regression coefficient function with complete data 

Table 1  Performances of the PLS regression with missing data 

Parameters MTMO R2 

Complete data 0 0.7645 

λ=1, μ=100 0.00980 0.7263 

λ=1, μ=50 0.01922 0.7288 

λ=1, μ=20 0.04535 0.7144 

λ=2, μ=20 0.08677 0.6625 

λ=2, μ=10 0.15277 0.6218 

λ=2, μ=5 0.24493 0.4872 
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