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Abstract

Purpose – The purpose of this paper is to discuss a multiscale pricing model for the French stock
market by combining wavelet analysis and Fama-French three-factor model. The objective is to
examine the relationship between stock returns and Fama-French risk factors at different time-scales.

Design/methodology/approach – Exploiting the scale separation property inherent to the
maximal overlap discrete wavelet transform, the data set are decomposed into components
associated with different time-scales. This wavelet-based decomposition scheme allows the three
Fama-French models to be tested over different investments periods.

Findings – The obtained results show that the explanatory power of the Fama-French three-factor
model becomes stronger as the wavelet scale increases. Besides, the relationship between the portfolio
returns and the risk factors (i.e. the market, size and value factors) depends significantly upon the
considered time-horizon.

Practical implications – The proposed methodology offers investors the opportunity to construct
dynamic portfolio management strategies by taking into account the multiscale nature of risk and
return. Moreover, it gives a new insight to fund rating and fund selection issues in relation to
heterogeneous investments periods.

Originality/value – The paper uses wavelets as a relatively new and powerful tool for statistical
analysis that allows a new understanding of pricing models. The paper will be of interest not only for
academics in the field of asset pricing but also for fund managers and financial market investors.

Keywords Stock markets, France, Capital asset pricing model, Investment appraisal

Paper type Research paper

Introduction
The main concern of investors is to maximize the profitability of their investments and
at the same time to minimize the associated risk. The return-risk tradeoff is a key
issue in finance that has lead to the development of several asset-pricing models.
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Amongst the most extensively used is the capital asset pricing model (CAPM) (Sharpe,
1964; Lintner, 1965). The CAPM is a general equilibrium market model built up to
investigate the relationship between risk and expected returns. It takes into
consideration the asset’s sensitivity to non-diversifiable risk also referred to as
systematic risk or market risk. Nevertheless, CAPM’s assumption of a single risk
factor explaining expected returns has been criticized. Fama and French (1992, 1993,
1995, 1996, 1998) proposed an alternative pricing model which incorporates three
factors as proxies for risk: the market, the size, and the value factors.

Although the Fama-French model has been adopted both by most practitioners and
academics in financial issues pertaining to portfolio management, capital budgeting,
and performance evaluation, the three-factor model suffers from many drawbacks.
In fact, while financial data exhibit multiscaling, i.e. are a combination of different
multi-horizon dynamics, the Fama-French model is a single scale model that studies the
relation between risk factors and expected returns on a global scale investment horizon.

Furthermore, most studies neglect the assets’ long-term holding period focusing
mainly on short-term analysis though it is crucial to take into account the tendency of
some investors to hold stocks over the long-run.

Recently, there has been a substantial interest in a set of basis functions called
“wavelets”. Wavelets are mathematical functions that map data into different
frequency components. Compared to standard Fourier analysis, they have the
advantage of being localized in the time domain as well as in the frequency domain.
Via a multiscale (or multiresolution) approach, wavelets decompose a given time series
into different dynamics evolving at various time scales. This allows one to describe
financial data over different investment horizons.

The objective of this paper is to apply the wavelet multi-resolution analysis
framework to the three Fama-French model in the order to model the relationship
between stock returns and risk factors at different time scales.

This work is organized as follows: section one presents a brief theoretical
background on the Fama-French three-factor model. Basic concepts of wavelet theory
are outlined in section two. Then, a multiscale three-factor model is described in section
three. Data description are given in section four. Sections five and six present some
empirical results of the single and multiscale models. Finally, we end this paper with
concluding remarks.

Fama-French three-factor model
Fama and French (1993, 1995, 1996) argue factors describing “value” (book-to-market
equity ratio) and “size” to be the most relevant factors, in addition to market risk,
for explaining and capturing the cross-sectional variation in average stock returns.
To take these risks into account, they used the excess market returns (Mkt) as market
risk of the CAPM and they constructed two factors to address size risk and to deal with
value risk.

The Fama-French three-factor model is as follows:

Rit 2 Rft ¼ ai þ biMktt þ giSMBt þ diHMLt þ 1it:

In the equation below, Mkt mimics the “market premium” and represents the excess
market returns: (Rmt 2 Rft) where Rmt and Rft are, respectively, the market return and
the free rate.

JRF
10,2

180



SMB which stands for small-minus big, is designed to measure the additional return
that investors have historically received by investing in stocks of companies with
relatively small market capitalization. This additional return is often referred to as the
“size premium”.

HML which is short for high-minus low, has been constructed to measure the “value
premium” provided to investors for investing in companies with high book-to-market
values (essentially, the value placed on the company by accountants as a ratio relative
to the book equity (BE) divided by the market equity (BM) of the company, commonly
expressed as BE/BM.

The quantities bi, gi and di are the factor sensitivities of the portfolio i to the state
variables obtained from the multiple regression of the excess return of this portfolio,
designed by (Rit 2 Rft) where Rit is his associated return on Mkt, SMB and HML,
respectively. ai is the abnormal return of the portfolio i.

The Fama-French three factors are constructed on the basis of six value-weighted
portfolios based on size and book-to-market equity ratio (BE/BM). As a first step, all
stocks are ordered and divided into two groups formed on size: group small and group
big, which are indicated, respectively, by S and B. The size breakpoint for a given year
is the median market capitalization at the end of June of that year. Secondly, three
groups of stocks are built up on the ratio of book-to-market. The ratio BE/BM for year
t is the BE for the fiscal year ending in (t 2 1) divided by the market equity (ME) for
December of (t 2 1). The BE/BM breakpoints are the 30th and the 70th percentiles
corresponding to the groups indicated by low (L), medium (M) and high (H). As a final
step, the six value-weight portfolios formed at the end of each June are the intersections
of the two size and the three BE/BM-based portfolios. For each obtained portfolio,
which is hereafter labeled SL, SM, SH, BL, BM, or BH, we calculate the corresponding
returns denoted by RSL, RSM, RSH, RBL, RBM, and RBH.

The methodology for constructing the size and the risk factors is as follows: SMB is
the difference between the monthly average return on the three small portfolios and the
monthly average return on the three big portfolios:

SMB ¼ �RS 2 �RB ¼
1

3
½RSL þ RSM þ RSH�2

1

3
½RBL þ RBM þ RBH�:

HML is the difference between the monthly average return on the two portfolios within
the high group and the monthly average return on the two portfolios with low BE/BM
ratio:

HML ¼ �RH 2 �RL ¼
1

2
½RSH þ RBH�2

1

2
½RSL þ RBL�:

Wavelet analysis
The wavelet transform is a time-scale representation that describes the time evolution
of a given signal on a scale-by-scale basis. It is similar to standard Fourier transform.
Yet, the infinite support sine and cosine basis functions are substituted by wavelet
functions that are, actually, dilated and/or translated versions of a unique basic
function.

Wavelet functions can be considered as special filters that have particular
characteristics. Actually, the wavelet transform can be defined in terms of a length-L
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high-pass wavelet filter {hl, l ¼ 0, . . . , L 2 1} and its associated low-pass scaling filter
{gl, l ¼ 0, . . . , L 2 1} linked by the “quadrature mirror” relation:

gl ¼ ð21Þlþ1hðL21Þ2l with l ¼ 0; . . . ;L2 1:

There are various families of wavelet bases. Daubechies (1992) constructed a special
class of wavelet filters of even length L that improve the frequency-domain
characteristics of the Haar wavelet. The Daubechies wavelet filters, denoted by D(L)are
orthogonal, compactly supported, possess different degrees of smoothness and admit a
number of vanishing moments.

Let X be a length N vector containing a real-valued time series {Xt; t ¼
0; . . . ;N 2 1} and let J0 a positive integer. The maximal overlap discrete wavelet
transform (MODWT) of level J0 maps the input data vector X from the time domain to
the wavelet time-scale domain yielding J0 þ 1 vectors: ~w1; ~w2; . . . ; ~wJ 0

and ~vJ 0
, each

of dimension N. Here, ~wj; j ¼ 1; . . . ; J 0 are vectors composed of the MODWT wavelet
coefficients associated with changes on scale tj ¼ 2j21 while vJ contains the MODWT
scaling coefficients associated with averages on scale iJ 0

¼ 2J 0 . With matrix notation,
the MODWT coefficients are obtained via: wj ¼ ~WjX; j ¼ 1; . . . ; J 0 and vJ ¼ ~VJ 0

X
where the matrices ~Wj and ~VJ 0

contain the MODWT wavelet and scaling filter
coefficients.

In actual fact, matrices ~Wj and ~VJ 0
are not explicitly constructed and the MODWT

is performed via a pyramidal algorithm.
Renormalizing the wavelet filters {hl}

L21
l¼0 and {gl}

L21
l¼0 as follows: ~hl ¼ hl=2l=2 and

~gl ¼ gl=2l=2 and (starting with) setting Xt ¼ ~w0;t , the MODWT coefficients are
obtained through the following filtering steps:

~wj;t ¼
XL21

l¼0

~hl ~vj21;t22j21 l modN and ~vj;t ¼
XL21

l¼0

~gl ~vj21;t22j21 l modN ; t ¼ 0; . . . ;N 2 1:

If we write {wj;t : t ¼ 0; . . . ;Nj 2 1} as ~wj and {vj;t : t ¼ 0; . . . ;Nj 2 1} as ~vj, then,
after J0 iterations, the pyramidal algorithm yields ~w1; ~w2; . . . ; ~wJ 0

and ~vJ 0
.

It should be stressed that we can get an additive decomposition of a time series
{Xt; t ¼ 0; . . . ;N 2 1}. In fact, we have:

X ¼
XJ 0

j¼1

~W
T

j wj þ ~V
T

J 0
vJ 0

¼
XJ 0

j¼1

~dj þ ~sJ 0
:

The latter equation defines a multiresolution analysis (MRA) of X. Whereas the jth level

wavelet detail ~dj ¼ ~W
T

j wj describes changes at a scale tj ¼ 2j21 corresponding to

frequency bands ½1=2jþ1; 1=2j�, ~sJ 0
is referred to as the smooth and is associated with

averages at a scale iJ 0
¼ 2J 0 . The smooth represents the trend component of a time

series, while the wavelet details capture deviations from that trend.
It is noteworthy that each wavelet detail ~dj correspond to a frequency band

½1=2jþ1; 1=2j� and thus to ½2j; 2jþ1� time period, e.g. for monthly data, the level-one
wavelet detail ~d1 is associated with oscillations of two to four months period.

When performing the MODWT filtering algorithms for finite length vectors of
observations, we assume that the signal is periodic with period N. This raises the

JRF
10,2

182



problem of boundary effects affecting the wavelet coefficients near the beginning or the
end of the time series, i.e. at “the boundaries”. Within the MODWT set-up, Percival and
Walden (2000) have shown that the coefficients affected by the boundary are ~wj;t and
~vj;t , where t ¼ 0;K;min{Lj 2 2;N} and Lj ¼ ð2j 2 1ÞðL2 1Þ þ 1.

A key concept in wavelet theory is the wavelet covariance gX ðtjÞ, which
decomposes the covariance between two stochastic processes on scale-by-scale basis.

Formally, let Xt ¼ ðx1;t; x2;tÞ be a length N bivariate stochastic process and let
wj;t ¼ ðw1;j;t;w2;j;tÞ be the wavelet coefficients issued from the wavelet transform of x1,t

and x2,t at a resolution scale tj. It should be stressed here that each wavelet-coefficient
process is derived by implementing the wavelet transform for each series in Xt one at a
time. The wavelet covariance at scale tj is then given by:

gX ðtjÞ ¼
1

2tj
covðw1;j;t;w2;j;tÞ:

An unbiased estimator of the wavelet covariance is constructed using the MODWT as
follows:

ĝX ðtjÞ ¼
1
~Nj

XN21

l¼Lj21

~w1;j;t ~w2;j;t;

where ~Nj ¼ N 2 Lj þ 1 is the number of non-boundary wavelet coefficients at level j
and ~w1;j;t and ~w2;j;t are the MODWT coefficients of the bivariate process Xt.

Equivalently, we can define the MODWT-unbiased wavelet correlation by
normalizing the unbiased wavelet covariance in the following way:

r̂X ðtjÞ ¼
ĝX ðtjÞffiffiffiffiffiffiffiffiffi

~y 2
1 ~y

2
2

q ;

where ŷ 2
i ¼ ð1= ~NjÞ

PN21
t¼Lj21 ~w

2
j;t; i ¼ 1; 2 are the unbiased wavelet variances for x1,t

and x2,t, respectively.

Multiscale Fama-French three-factor model
The proposed methodology, which was initiated by Kim and In (2006, 2007), entails
two steps. First, we perform a MODWT-based MRA curtailed at a resolution level J0 for
the series relative to excess portfolio return, Mkt, SMB and HML. Every series can be
then expressed as the sum of the smooth component and the wavelet details. As a
second step and at each resolution scale tj ¼ 2j21, we consider the following time series
regression scheme hereafter called the multiscale Fama-French three-factor model:

RitðtjÞ2 RftðtjÞ ¼ aiðtjÞ þ biðtjÞMkttðtjÞ þ giðtjÞSMBtðtjÞ þ diðtjÞHMLtðtjÞ þ 1itðtjÞ;

where RitðtjÞ, j ¼ 1, . . . , J0, is the excess return over the risk free rate on a buy-and-hold
portfolio i at time t and scale tj ¼ 2j21. MkttðtjÞ, SMBtðtjÞ and HMLtðtjÞ are the
Fama-French risk factors at time t and scale tj ¼ 2j21. The intercept ai(tj) is the
measure of the abnormal performance or pricing error at scale tj. The residual 1itðtjÞ, is
a zero mean abnormal portfolio return unexplained by common risk factors at scale tj.
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biðtjÞ, giðtjÞ and diðtjÞ are the assigned loadings at scale tj for the market, the size and
the value factors, respectively.

The underlying idea behind the suggested approach is that financial time series
exhibit “multi scaling phenomenon”, i.e. exhibit different dynamics each occurring at a
particular time horizon. Exploiting the scale separation characteristics of the wavelet
transform, the MRA isolates low-frequency dynamics from high-frequency dynamics
resulting in a set of sub-series that evolve at different scales. Hence, investigating the
relationship between the risk factors and the portfolio returns over different time scales
would allow analyzing the investment strategies and decision making on different time
periods.

Data description
Our investigation deals with the French market over the period ranging from January
1985 to October 2006. It is worth mentioning that the start and the end dates are
determined by the data availability. The data set are measured at monthly frequencies
totalling 256 observations for each variable. The 13-week (91-day) treasury bill rate is
used as a risk free rate and the Cac40 as a market index.

Descriptive statistics for the portfolios returns are reported in columns (2:7) of
Table I.

All sample means are negatively valued ranging from 20.051 (SL) to 20.045 (SH).
Looking at the standard deviation estimation results, we see that the portfolios show
almost the same degree of volatility. All analyzed datasets present significant kurtosis
values greater than 3. This indicates that the six portfolios are characterized by
heavy-tailed leptokurtic distributions. While examining the skewness coefficients
estimates, we observe that the return series are negatively skewed as compared to the
Gaussian distribution. Deviation from normality is further confirmed by the
Jarque-Bera test statistics, which are highly significant at 1 per cent statistical level
thus rejecting the null hypothesis of Gaussianity. For the six portfolios, the Box-Pierce
test statistics for up to 20th-order serial correlation point towards the existence of
linear and non-linear dependencies.

Looking at the summary statistics for the three Fama-French factors given in
columns (8:10) of Table I, we see that the statistical results concerning the excess
market factor do not differ significantly from those related to the six portfolios in terms
of sample mean, standard deviation, skewness, kurtosis and Box-Pierce statistics’
values while the Jarque-Bera test rejects the normal distribution at 5 per cent level of
statistical significance. However, in contrast to the other datasets, the SMB and the
HML variables show positive sample means. Moreover, compared to the excess market
returns, the standard deviations for the size and value factors are smaller indicating
that these two variables are more volatile. Nevertheless, whereas the descriptive
statistics point out that the HML variable is positively skewed and the normality
assumption is rejected at the1 per cent level, SMB is slightly negatively skewed with a
skewness value of 20.082. In addition, the Jarque-Bera test fails to reject the null
hypothesis of Gaussianity.

Table II reports the sample correlations between the three risk factors.
The HML portfolio returns and the excess market returns are positively correlated.

In contrast to Fama and French (1993), SMB and market factor have negative
correlation. Molay (1999) argues that this negative correlation can be due to the fact
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Summary statistics
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that market portfolio is value weighted and shows via empirical investigation that
when dealing with an equally weighted portfolio, SMB and Mkt become positively
correlated. Interestingly, the correlation coefficient between HML and SMB, although
small-valued, is negative.

Estimation results for the single-scale Fama-French model
In this section, we present the empirical results drawn from the implementation of the
Fama-French model during the period of study. For sake of conciseness, we do not
report the constant terms’ estimates. Nevertheless, the values of the constant terms are
generally not statistically significant at conventional levels. The estimation results are
given in the Table III.

First, when investigating the market-factor effect, we see that all estimated market
coefficients b̂ðtjÞ are statistically significant at the 1 per cent level. The point estimates
display only positive values. It should be noticed that the market effect is nearly the
same across the constructed portfolios with the coefficients’ values lying in the range
0.898 (SM) 20.917 (SL). Hence, we can state that the market risk is a key variable in
capturing the cross-section of average stock returns regardless of the assets forming
the portfolios.

For the value risk factor proxied by the explanatory variable HML, empirical results
suggest that the book-to-market ratio has a non-negligible impact on the stock returns
regardless of the portfolios as the value coefficients are highly significant. In terms of
their signs, the results show a clear pattern. In fact, for two small-value stock portfolios
(SL and BL) estimated coefficients are negative, whereas for the portfolios
characterized by large and medium ratio, HML regression coefficients are of positive
signs.

For the size factor represented by SMB, significant positive relationships can be
observed for all portfolios. The estimated size effect is more pronounced for small

SH SM SL BH BM BL

MKT 0.916 0.898 0.917 0.914 0.903 0.913
29.5 28.56 29.72 29.95 29.55 30.45

SMB 1.239 1.125 1.35 0.305 0.215 0.194
12.94 11.59 14.19 3.24 2.28 * * * 2.1 * * *

HML 0.819 0.316 20.483 0.586 0.178 20.112
9.76 3.71 25.79 7.1 2.15 * * * 21.35 *

R 2 0.820 0.790 0.804 0.798 0.779 0.784

Notes: *, * * and * * * indicate rejection significant at: 10, 5 and 1 per cent levels, respectively

Table III.
Single-scale Fama-French
estimation results

Mkt HML SMB

Mkt 1.0000 0.1176 20.0530
HML 0.1176 1.0000 20.0239
SMB 20.0530 20.0239 1.0000

Table II.
Correlation between
factors
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portfolios than for big ones. These results are in accordance with the findings of Fama
and French (1995) who found that the exposure to size risk is particularly important for
small portfolios. Moreover, estimation results show that the sensitivities to size risk for
the big portfolios decrease when the book-to-market ratio for theses portfolios decrease.

When looking at the adjusted R 2 ð �R2Þ values, it is clear that the Fama-French
three-factor model captures common variations in stock returns quite well. Actually,
for the six portfolios, the �R2 values vary between 0.779 (BM) and 0.82 (SH) with an
average �R 2 of approximately 80 per cent.

Estimation results for the multiscale Fama-French model
Before reporting the parameters’ estimates of the wavelet Fama-French model,
we examine the wavelet correlations between the three risk factors over different
time-scales. As can be seen from Figure 1, a positive relationship between the market
and the HML factors can be observed over scales d1 (two to four months period) and d5

(32-64 months period), while for intermediate wavelet resolution levels, a negative
relationship exists between the two series.

Looking at Figure 2, the wavelet correlations between the market excess returns and
the SMB series increase with increasing resolution level. These correlations are
positive and appear to be statistically significant at the shortest scale d1 and the largest
scale d5.

Figure 3 shows that the wavelet correlation, between the size and the value factors,
is an increasing function of the wavelet scale. It should be remarked here that the
correlation takes negative values for scales d1 2 d2 corresponding to two to four
months and four to eight months periods whereas at the large-scales d4 2 d5, the
wavelet correlations are positively valued thus reflecting a positive association
between the two factors. In sum, the correlation between the three factors if found to be
scale-dependent; the wavelet MRA seems to be a well-adapted framework for studying
and investigating time-scale correlation’s characteristics.

We note also that the confidence intervals are significantly increased given the
amount of variability in the estimated wavelet variances.

Estimation results are presented in Table IV. Let us retain the following remarks.
For the excess market return, the estimated coefficients b̂ðtjÞ are all statistically
significant at usual levels for all portfolios regardless of the resolution scale.

Figure 1.
Estimated

MODWT-wavelet
correlations between the

market factor and the HML
factor

* *

* *

*
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This shows that the excess market return plays a significant important role in
explaining the cross-sectional variation of the six analyzed portfolios over the range of
time-scales. Nevertheless, it should be stressed here that estimated coefficients show
positive values for all scales except for the smallest high-frequency scale d1 (level 1,
covering a period of two to four months). In fact for d1, we have a negative effect that is
almost constant for all the portfolios with coefficients values ranging from 20.39 to
20.45. Another interesting feature here is that the impact of the market factor
increases when increasing the multiresolution scale, i.e. with time period. Compared to
the results obtained by the single scale Fama-French model, the coefficients in the
multi-sale framework are lower-valued reflecting a lower impact of the market factor
for all the portfolios.

Looking at the estimated coefficients ĝðtjÞ and their corresponding t-statistics, we
see that SMB factor loadings are significant at the 5 per cent level for all time-scales.
Exceptions are the estimates associated with the scale d1 for the portfolio BH and those
related to the intermediate scale d4 for the BM and BL. It is noteworthy that coefficients
ĝðtjÞ show positive values at the long-term for all portfolios, i.e. at scales d4 and d5.
These coefficients’ values are increasing with the time scales. Nevertheless, when
considering the high frequency (short and medium term) d1, d2 and d3 the results

Figure 2.
Estimated
MODWT-wavelet
correlations between the
market factor and the SMB
factor
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Figure 3.
Estimated
MODWT-wavelet
correlations between the
HML factor and the SMB
factor
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diverge between small and big portfolios. In fact, while for small stocks, the estimated
coefficients are positive showing a positive impact of the SMB factor, they are
negatively valued for large portfolios. This confirms the Fama-French findings that
small capitalization stocks are more profitable than those with big market
capitalization.

When focusing on the HML coefficients estimates, we observe that the
book-to-market effect is rejected at the resolution scale d1 for the portfolios BM and
BL, at scale d2 for the portfolios SH and BH, at scale d3 for the portfolio SL and BL and
at scale d4 for the portfolio BL and BM as the corresponding loadings’ estimates are not
statistically significant at conventional levels. Hence, the resolution level d5 is the only
wavelet scale for which all coefficients are significantly different from zero for all
portfolios. Apart from these exceptions, all other estimates are highly significant at the
1 per cent level leading to rejection of the null hypothesis H 0 : dj ¼ 0 for large
investment horizons. However, it is worthy to note here that discrimination can be
made between stocks with high book-to-market ratio and those with low
book-to-market ratio.

In fact, similar to the results drawn from the unit-scale Fama-French model, the
estimated coefficients for the value risk factor HML display positive values for stocks
with the highest BE/BM ratio, known as value stocks, whereas these coefficients are
negatively valued for stocks with the lowest book-to-market equity ratio, known as
growth stocks.

Within the multiscale framework, the goodness-of-fit of the Fama-French
three-factor model measured by the adjusted coefficients of determination �R 2 is
scale-sensitive. In fact, for the small scales d1 and d2, capturing the short-term
dynamics (two to four months and four to eight months, respectively), estimated �R 2 are
very low-valued ranging from 0.175 for the portfolio BH at scale d2 to 0.362 for the
portfolio BL at the smallest scale d1. This indicates that the three risk factors possess
limited power in explaining cross-sectional variation of the stock returns in the French
market. However, for medium- and high-resolution scales, the explanatory power of
the Fama-French improves considerably while increasing the investment periods.
The adjusted coefficients of determination �R 2 display very high values attaining 0.94
for the largest wavelet scale d5 associated with the longest investment horizon.
This demonstrates the relevance of the three risk factors in explaining the returns of
the French stocks.

Conclusions
In this paper, a multiscale Fama-French three-factor model has been investigated in the
French market. Using a time-scale mapping induced by the MODWT-based MRA, the
data set are decomposed into dynamics associated with different time periods. Within
the multiscale framework, the relationships between expected returns and the three
risk factors have been examined over different investment horizons.

Empirical results show that the multiresolution approach improves the explanatory
power of the Fama-French model as compared to the single scale model. It should be
stressed here that the highest �R 2 are obtained for the medium- and long-term scales
(especially for more than 12 months period). Moreover, we have shown that the
risk-sensitivity strongly depends on the time scale as the estimated factor loadings
exhibit different values and are of different signs depending on the considered wavelet
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resolution level. This information was hidden within the single scale set up, i.e. the
classical Fama-French model.

Another contribution of this paper is the correlation analysis between the expected
returns and the risk factors at different time scales using wavelet techniques.

In view of the obtained results, investors can adopt the wavelet-based pricing
scheme to conduct risk-based analysis for heterogeneous investment horizons. The
multiscale Fama-French framework also permits to build adequate portfolio allocation
strategies vis-à-vis different targeted time periods. Besides, it is known that fund
ratings play a significant role in fund selection for investors either for an initial
subscription or with the objective of readjusting their investments in function of rating
upgrades or downgrades. Therefore, time-scale models mentioned above can address
the required properties for an optimal rating system by handling the time-varying
nature of the risk factors.

As future research directions, we intend to construct a higher-order version of the
multiscale Fama-French model. This could be done by incorporating additional pricing
factors such as systematic co-skewness and systematic co-kurtosis. This new
methodology is expected to further enhance the explanatory power of the model by
taking into account the excess kurtosis and the skewness coefficients reported in
Table I which are indicative of non-normality.
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