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Abstract

It has been found that, for a variety of probability distributions, there
is a surprising linear relation between mode, mean and median. In
this paper, the relation between mode, mean and median regression
functions is assumed to follow a simple parametric model. We pro-
pose a semiparametric conditional mode (mode regression) estimation
for an unknown (unimodal) conditional distribution function in the
context of regression model, so that any m-step-ahead mean and me-
dian forecasts can then be substituted into the resultant model to
deliver m-step-ahead mode prediction. In the semiparametric model,
Least Squared Estimator (LSEs) for the model parameters and the
simultaneous estimation of the unknown mean and median regres-
sion functions by the local linear kernel method are combined to infer
about the parametric and nonparametric components of the proposed
model. The asymptotic normality of these estimators is derived, and
the asymptotic distribution of the parameter estimates is also given
and is shown to follow usual parametric rates in spite of the pres-
ence of the nonparametric component in the model. These results
are applied to obtain a data-based test for the dependence of mode
regression over mean and median regression under a regression model.

Keywords. Asymptotic normality, hypothesis testing, local linear kernel estimate,
mode, prediction, rate of convergence, semiparametric regression
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1 Introduction

Mode, the most likely value of a distribution, has wide applications in astron-
omy, biology and finance. It is not uncommon in many fields to encounter data
distributions that are skewed or contain outliers. In those cases, the arithmetic
mean may not be an appropriate statistic to represent the center of location of
the data. Alternative statistics with less bias are the median and the mode. The
median is the value of the variable, in an ordered array, which has an equal num-
ber of data points on either side, whereas the mode is the value of the peak of
the distribution. The mean or median of two densities may be identical, while
the shapes of the two densities are quite different. Mode preserves some of the
important features such as wiggles of underlying distribution function, whereas
the mean or median tend to average out of the data. These important features
of a probability distribution are usually very useful (Hedges and Shah, 2003).
However, calculation of the mode is more difficult than the mean or median and
this has limited its widespread application although kernel mode estimation has
attracted much attention in literature. Under nonparametric kernel estimation,
the mode estimator is defined as the maximum of the estimated conditional den-
sity. In fact, nonparametric estimation of mode had been discussed in decades
(Grenander, 1956, Parzen, 1962, Eddy, 1980, Gasser and Hall, 1995, Bickel and
Fan, 1996, Birgė, 1997, Berlinet et al., 1998, Meyer, 2001). For deep discussion
of the mode in regression, see, for example, Lee (1989, 1993), Shoung and Zhang
(2001) and Ziegler (2002, 2003). However, kernel methods are very sensitive to
smoothing parameter selection and not easy to implement in practice. Moreover,
kernel methods and other existing methods for mode estimation do not provide
prediction which is sometimes important. For example, in finance, the prediction
of the single most likely future interest rate or the most likely share price or fore-
casting future inflation is of people’s main interest. Our method in this paper
is motivated by a closely insight of the relationship between mode, mean and
median of a probability distribution. That is, the three simple averages mean,
median and mode are identical for a symmetrical distributions and so, they satisfy
the equation

mode = 3 × median − 2 × mean. (1)

This relation also holds approximatively for a wide range of asymmetrical distri-
butions (see the discussion and proof given by the Section 2.1 of Stuart and Ord,
1994 and the Appendix of Lee, 1994).
To extend the above relation to regression setting, let (X,Y ) be a pair of random
variables, where Y is the response variable and X its covariate. Suppose that
the conditional distribution of Y given X is absolutely continuous. We denote
by f(· | x) and F (· | x) the conditional density and distribution functions of Y
giving X = x. The covariate X may be a vector. Suppose that (X,Y ) is linked
via a nonparametric regression model

Y = m(X) + ǫ, (2)

2



where m is an unknown mean regression function and ǫ is the model error. The
mode function of Y given X = x, denoted by µ(x), is defined as the maximizer
of the function f(.|x). Graphically, µ(x) displays the peak variation at different
locations of X. Under model (2), let m(x) and q(x) be the conditional mean and
median of Y given X = x defined by

m(x) = E[Y |X = x],

q(x) = argmina∈R
{E[|Y − a||X = x]}.

In this paper, we address the estimation of µ(x) via a linear parametric model

µ(x) = θ0 + θ1m(x) + θ2 q(x), (3)

where θ = (θ0, θ1, θ2) is an unknown parameter vector.

In the context of financial returns, if we have historical time-series of mean and
median estimates and records of mode, one-step ahead mean and median fore-
casts, mt+1(x) and qt+1(x) can then be substituted into the resultant model (3)
to deliver one-step ahead mode prediction as in the following expression:

µt+1(x) = θ0 + θ1mt+1(x) + θ2qt+1(x),

where θ0, θ1 and θ2 are the parameters estimated by the Least-Squared regression.

Combining model (3) with the nonparametric kernel estimation of m(x) and
q(x), we develop a semiparametric mode function estimation.

Before proceeding the details of theoretical investigation, we carry out a sim-
ulation study to illustrate the performance of the parametric regression (3) in
Section 2. The paper is then organized as follows. Section 3 discusses the estima-
tion of regression parameters and functions involved in the models. Section 4 lists
the main theoretical results of those estimators. The testing theory is derived in
Section 5. Some proofs related to these conclusions are given in the Appendix.

2 Empirical study of semiparametric mode es-

timation under unique mode

Consider an unconditional regression, which is a specific case of model (2)

Yi = ǫi, i = 1, ..., n,

and let f be the underlying unknown probability density. The unique mode
includes unimodal and multimodal with one largest peak.

We discuss the mode estimation of f(·). We compare the mode estimation by
nonparametric kenel estimation of f(.) and the semiparametric model (3).
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Let f(·) be the two-piece normal distribution with parameters µ, σ1 and σ2, whose
probability density function is for each y ∈ R,

f(y) =

{

A exp[−(y − µ)2/2σ2
1], y < µ

A exp[−(y − µ)2/2σ2
2], y ≥ µ

where A = (
√

2π(σ1 +σ2)/2)−1. This density has been used as inflation forecasts
by the Bank of England since 1997. It has mode µ and positive skewness when
σ2 > σ1. Therefore, the distribution fucntion of Y is given for each y ∈ R by

F (y) =

{ 2σ1

σ1+σ2

Φ(y−µ
σ1

), y < µ
2σ2

σ1+σ2

Φ(y−µ
σ2

) + σ1−σ2

σ1+σ2

, y ≥ µ

where Φ is the standard normal distribution function N(0, 1).

The probability of outcomes between L1 and L2 for the two-piece normal distri-
bution is derived as

P (L1 ≤ Y ≤ L2) =

∫ L2

L1

f(y)dy =

• σ
σ1+σ2

[Φ(L2−µ
σ

) − Φ(L1−µ
σ

)] where σ =

{

2σ1, L1 ≤ L2 ≤ µ
2σ2, µ ≤ L1 ≤ L2

• 2σ2

σ1+σ2

Φ(L2−µ
σ2

) + σ1−σ2

σ1+σ2

− 2σ1

σ1+σ2

Φ(L1−µ
σ1

), where L1 ≤ µ ≤ L2.

The exact relation (1) does not hold for this distribution, but we suppose the
relation (3) does hold or approximately holds. When µ = 0, σ1 = 1 and σ2 = 2,
f(.) is skewed to right.

2.1 Kernel estimation of f

Suppose that Y1, Y2, ..., Yn, denotes a random sample from the unknown proba-
bility density function f(.). For each y ∈ R, the kernel density estimator of f(y)
is defined as follows:

f̂(y) = (nh)−1

n
∑

i=1

K(
y − Yi

h
),

where K is a bounded nonnegative function satisfying
∫

K(x)dx = 1, and h =
h(n) is a sequence of positive numbers usually called the bandwidth.
Kernel smoothing provides a simple way of finding structures in data sets without
knowing the probability density function. Theoretical and simulation analysis has
shown that the choice of the kernel is not crucial for density estimation in the
case of independent identically distributed (i.i.d.) random variables. The most
important part in the kernel estimation method is to select the bandwidth. Some
methods are listed below:
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• Least Squares Cross-Validation (see Rudemo, 1982, and Bowman, 1984)

• Biased Cross-Validation (see Scott and Terrell,1987)

• Plug-in Bandwidth Selection (see Sheather and Jones, 1991)

• Smoothed Cross-Validation (see Hall, Marron and Park, 1992)

• Root-n Bandwidth Selection (see Hall, Sheather, Jones and Marron, 1991)

• The Contrast Method (see Ahmad and Ran, 2004)

Most of these methods are based on minimizing the Mean Squared Error (MSE)
or the Mean Integrated Squared Error (MISE).

2.2 Simulations

For convenience, we implement the following three different bandwidth rules for
kernel density estimation. Note that, the first rule is the easiest one, but it
assumes that the data are normally distributed. The other rules suppose that
kernel function K is a second order kernel (

∫

K(y)dy = 1,
∫

yK(y)dy = 0 and
∫

y2K(y)dy 6= 0). This is the case when K is the standard normal kernel. Useful
comments and justification concerning rules 2 and 3 are in the nice paper of
Grund and Hall (1995).

• Silverman’s Rule of Thumb: h = 1.06S n−1/5, where S is the sample stan-
dard deviation of data (Silverman, 1986),

• oversmoothing bandwidth h = c n−1/11, where c is a constant selected prop-
erly (Grund and Hall, 1995),

• the minimised Lp distance based bootstrap estimator on a grid of h-values
(Grund and Hall, 1995).

We simulate 3 samples from f of size n = 50, 100 and 200, respectively. For each
sample we first obtain the kernel mode estimator. For each case of bandwidth
selection, we then regress the kernel mode estimator over mean and median as in
(3) to get the semiparametric mode estimation by Least Squares regression. To
fit the parametric regression (3), we repeatedly estimate the kernel mode, mean
and median via resampling. For example, we resample 50-times with sample size
n = 50, then we obtain 50 observations of kernel mode, sample mean and sample
median. To compare the Bias, Standard Deviation (SD) and Mean Squared Error
(MSE) of kernel estimation and semiparametric estimation, we run the simulation
100 times.
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Table 1. Mode estimation for two-piece normal distribution: Biases, Standard
Deviations and MSEs

n Kernel Semiparametric
smoothing model

h by Bias SD MSE Bias SD MSE

50 Rule-of-thumb 0.283 0.316 0.197 0.239 0.281 0.196
(0.021) (0.014) (0.007) (0.096) (0.020) (0.005)

Oversmoothing -0.276 0.491 0.214 -0.208 0.321 0.193
(0.088) (0.025) (0.016) (0.037) (0.022) (0.010)

Bootstrap 0.207 0.298 0.198 0.195 0.171 0.116
(0.034) (0.008) (0.010) (0.007) (0.012) (0.010)

100 Rule-of-thumb 0.179 0.143 0.117 0.123 0.108 0.154
(0.013) (0.013) (0.007) (0.011) (0.008) (0.005)

Oversmoothing 0.183 0.191 0.114 0.158 0.188 0.101
(0.012) (0.008) (0.006) (0.031) (0.002) (0.010)

Bootstrap 0.155 0.120 0.118 0.152 0.123 0.106
(0.006) (0.014) (0.009) (0.021) (0.012) (0.005)

200 Rule-of-thumb 0.152 0.167 0.019 0.141 0.168 0.009
(0.016) (0.013) (0.008) (0.012) (0.014) (0.007)

Oversmoothing 0.157 0.111 0.021 0.142 0.105 0.019
(0.021) (0.006) (0.006) (0.013) (0.021) (0.008)

Bootstrap 0.112 0.122 0.009 0.112 0.115 0.007
(0.012) (0.021) (0.014) (0.006) (0.022) (0.019)

6



Table 1 summarises the simulations. Clearly, the semiparametric method never
does worse than the kernel estimation. In particular, when the rule-of-thumb
gives small bandwidths which results in too many peaks of kernel density esti-
mation where the highest peak does not correspond to the mode estimation, the
semiparametric estimation is not affected. On the other hand, when the over-
smoothing rule may result in flat top of kernel density estimation with too many
candidates for the mode, the semiparametric estimation still overperforms. We
have done extensive simulations based on a mixture of normal densities and found
similar conclusions to the one reported here.

3 The formulation of the semiparametric model

In Section 1, we have introduced the idea behind the semiparametric mode esti-
mation. Let (X1, Y1), ..., (Xn, Yn) be a random sample from a population (X,Y ).
We consider the following regression model:

(S1) Yi = m(Xi)+ǫi, i = 1, ..., n, where m(.) is an unknown regression function.

We assume that the median function q(.) and the mode function µ(.) are
unknown. Without loss of the generality, all of the three functions are
defined on [0, 1]. The points Xi at which measurements Yi are taken are
assumed to be fixed or random, and in the latter case, the distribution
density g(.) of Xi satisfies 0 < inf [0,1] g(.) ≤ sup[0,1] g(.) <∞.

(S2) For the errors ǫi = ǫ(Xi), it is assumed that they are independent with

E [ǫi] = 0, E
[

ǫ2i
]

= σ2(Xi)

where the conditional variance functions σ2(.) are continuous on [0, 1].

(S3) It is also assumed that there exists an s > 4 such that E [|ǫi|s] < C < ∞,
where C is a positive constant.

Assumptions (S1) and (S3) are rather general, allowing for all kinds of error
distributions, including multi-mode distributions.

The nonparametric part of our model consists of smoothness assumptions (given
below) on regression mean m(.), mode µ(.) and median q(.) functions.

(S4) Let C([0, 1]) denotes the space of two times continuously differentiable func-
tions on [0, 1]. Then,

m(.), q(.), µ(.) ∈ C([0, 1]).
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(S5) For fixed x, the parametric part of our semiparametric model relates the
regression function m(x), the median function q(x) and the mode function
µ(x) as follows:

µ(x) = θ0 + θ1m(x) + θ2q(x).

(S6) For any constant vector β = (θ0, θ1, θ2)
T ,

∫ 1

0

g(u) (θ0 + θ1m(u) + θ2q(u))
2 du > 0,

where V T denotes the transpose of the vector (or matrix) V .

Our first aim is to estimate the functions m(.), q(.) and µ(.) and the parameter
β. A particular interest is the question whether rates of convergence for the
parameter estimates are the usual parametric ones in spite of the nonparametric
smoothness assumptions (S4), and the question whether the usual asymptotic
normality holds for the smoothing functions in spite of the parametric structure
(S5). Theorems 4, 5 and 6 answer that, while Theorems 1, 2 and 3 guarantee
the usual nonparametric rates for function estimates of m(.), q(.) and µ(.). (S6)
means that µ(x) defined under (S5) satisfies EXµ(X) > 0.

4 The estimation

4.1 Estimation of the nonparametric components

The nonparametric components of our semiparametric model (S1)–(S6) consist
of the regression function m(.), median function q(.) and the mode function µ(.).
These functions, which are smooth according to (S4), are studied and estimated
by many authors over last decades. In the following, we will present their estima-
tors based on kernel or linear kernel methods, and give some references to better
understand them.
From now on we suppose that X = x. The classical kernel estimate m̂(x) of m(x)
is given by

mn(x) =
n
∑

i=1

Wi(x)Yi

/

n
∑

i=1

Wi(x) (4)

with

Wi(x) = K

(

Xi − x

h

)

[Sn,2(x) − (Xi − x)Sn,1(x)],

and

Sn,l(x) =
n
∑

i=1

K

(

Xi − x

h

)

(Xi − x)l, l = 1, 2,
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where the measurements (Xi, Yi) come from model (S1), and kernel K(.) and
bandwidth h may satisfy some regularity conditions (see below). Equation (4) is
the typical local linear regression function estimate whose properties are discussed
in Fan and Gijbels (1992) and Wand and Jones (1996).

The local linear kernel estimate qn(x) of q(x) is obtained as â with

(â, b̂) = arg min
a,b

n
∑

i=1

K

(

Xi − x

h

)

|Yi − a− b(Xi − x)|. (5)

More details on this estimator can be found in Fan and Gijbels (1996), Yu and
Jones (1998), Cheng and Peng (2002) and Yu and Lu (2004). Other estimators,
based on conditional distribution, can be found in Samanta (1989) or Berlinet et
al (2001).
Finally, the kernel estimator µn(x) of µ(x) is given by

µn(x) = arg min
y
fn(y|x) (6)

with f̂n(y|x) denotes the kernel estimator of f(y|x) such that

fn(y|x) =
fn(x, y)

gn(x)
,

where

fn(x, y) =
1

nh2

n
∑

j=1

K

(

Xj − x

h

)

K

(

Yj − y

h

)

and gn(x) =
1

nh

n
∑

j=1

K

(

Xj − x

h

)

,

see Samanta and Thavaneswarana (1990) and Berlinet et al. (1998) for more
details.
These estimates would serve as the initial estimators in Section 4.3.

4.2 Parametric estimation

Given the set of observations {(Xi, Yi), i = 1, 2, ..., n}, define the n× 3 matrix

X = [ti,j]1≤i≤n, 1≤j≤3

with ti,1 ≡ 1, ti,2 = m(Xi), ti,3 = q(Xi). Furthermore, let Z = (µ(X1), ..., µ(Xn))T .

Then we could re-write the parametric relation (S5) as a parametric regression
model

Z = Xβ. (7)

It is natural to estimate the parametric vector β by a weighted least squares
method,

β̂ = (θ̂0, θ̂1, θ̂2)
T = arg min

θ0,θ1,θ2

n
∑

t=1

u(Xi) [µ(Xi) − θ0 − θ1m(Xi) − θ2q(Xi)]
2 , (8)
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where u(.) is a weight function, which is assumed to be Lipschitz continuous.

Let X̂ = (t̂i,j)1≤i≤n, 1≤j≤3, Ẑ = (µ̂(X1), ..., µ̂(Xn))T , andQ−1 = diag(u(X1), ..., u(Xn)).
The estimate for parameter β becomes the classical LSE

β̂ =
(

X̂
TQ−1

X̂

)−1

X̂
TQ−1Ẑ.

4.3 Simultaneous estimation of parametric and nonpara-
metric components.

We advise here an iterative procedure for the simultaneous estimation of β, m(.),
q(.) and µ(.) by taking advantage of model (S5) and some additional assumptions.
For simultaneous estimation of the parameters and functions, Gauss-Seidel type
iterative procedure can be employed. Once β̂ estimates have been obtained, they
can be used to improve estimation of m(.), q(.) and µ(.) in the following way.

Set the estimators of m(.), q(.) and µ(.) defined by equations (4), (5) and (6)
as the initial iteration values and denote them as q̂(0)(.) = qn(.), m̂(0)(.) = mn(.)

and µ̂(0)(.) = µn(.), respectively. Set β̂(0) =
(

X̂T
(0)Q

−1X̂(0)

)−1

X̂T
(0)Q

−1Ẑ(0). Then

iterate as follows until convergence:






































β̂(i+1) = (X̂T
(i)Q

−1X̂(i))
−1X̂T

(i)Q
−1Ẑ(i),

m̂(i+1)(.) =
µ̂(i)(.) − θ̂0(i+1) − θ̂2(i+1)q̂(i)(.)

θ̂1(i+1)

,

q̂(i+1)(.) =
µ̂(i)(.) − θ̂0(i+1) − θ̂1(i+1)m̂(i+1)(.)

θ̂2(i+1)

,

µ̂(i+1)(.) =
(

1, m̂(i+1)(.), q̂(i+1)(.)
)

β̂(i+1).

The iterations for m̂(.) and q̂(.) above were derived by the parametric relation (3).
Experience told us that, instead of the equation (6), the relation (1) could be used
to build an alternative simple initial value for estimating µ(.) in the algorithm.

5 Asymptotic properties and rates of conver-

gence

This section needs additional assumptions:

(C1) The kernel functionK(.) is supposed to have compact support and to satisfy

Supp(K) = [−1, 1], K(−u) = K(u), sup
u

|K(u)| ≤ c <∞,

∫

K(u)du = 1,
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∫

uK(u)du = 0 and I2(K) ≡
∫

u2K(u)du 6= 0.

(C2) Basic requirements for the sequence of bandwidths are: h → 0 and nh →
∞, as n→ ∞.

Furthermore, for uniform convergence of m̂(.), q̂(.) and µ̂(.), we need the following
condition:

(C3) For some ζ ∈ (0, 1], it holds that, for all sequences αn,

αn → 0 as n→ ∞, and

∫

|K(v + αn) −K(v)|dv = O(αζ
n).

This condition is for instance satisfied if K(.) is Lipschitz continuous of
order ζ on R except at a finite number of points where K(.) could have a
discontinuity.

For uniform considerations, we will need a further assumptions on the bandwidth
sequence h = h(n).

(C4) Let s be a constant as in (S3), and let r be another constant such that

2 < r < s, with limn→∞ inf

(

nh

log n

)1/2

n−2/r > 0.

(C5) nh2(log n)2 → ∞, nh→ ∞,
√
nh2 → d∗ for a constant d∗ with 0 ≤ d∗ <∞.

Consider first uniform convergence of the nonparameteric estimates m̂(.), q̂(.) and
µ̂(.) defined by the equations (4), (5) and (6).

Theorem 1. Under (S1)– (S6) and (C1)– (C4),

sup
x∈I

|m̂(x) −m(x)| = OP

(

[

log n

nh

]1/2

+ h2

)

where I ⊂ (0, 1). (9)

Theorem 2. Under (S1)– (S6) and (C1)– (C4),

sup
x∈I

|q̂(x) − q(x)| = OP

(

[

log n

nh

]1/2

+ h2

)

where I ⊂ (0, 1). (10)
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Theorem 3. Under (S1)– (S6) and (C1)– (C4),

sup
x∈I

|µ̂(x) − µ(x)| = OP

(

[

log n

nh

]1/2

+ h2

)

where I ⊂ (0, 1). (11)

Some comments.

• Lemmas 1 and 2 (given in the Appendix) lead to the following uniform
rates; analogous result for m̂(.) under nonparametric model is in Müller
and Stadtmüller (1987) and Müller and Zhao (1995).

• These theorems provide consistency of the nonparametric parts, with the
usual nonparametric rates of convergence. Under somewhat stricter mo-
ment conditions, the results (9), (10) and (11) can be modified to yield
almost sure convergence results with the same rate.

Moreover, we have the asymptotic normality for the nonparametric estimators
m̂(.), q̂(.) and µ̂(.). Let Φ(.) be the standard normal distribution function, and
from now on, for any function v, v′′ denotes its second derivative.

Theorem 4. Under (S1)– (S6) and (C1)– (C4), with random design,

P

(

m̂(x) −m(x) − ℓm(x)h2

√

τ 2
m(x)/(nh)

≤ t

∣

∣

∣

∣

∣

X1, ..., Xn

)

= Φ(t) + oP (1), (12)

where ℓm(x) = (1/2)I2(K)m′′(x) and τ 2
m(x) =

∫

K2(u)du

g(x)
σ2(x). The dominated

convergence theorem implies that, unconditionally,

P

(

m̂(x) −m(x) − ℓm(x)h2

√

τ 2
m(x)/(nh)

≤ t

)

= Φ(t) + o(1).

The conditional asymptotic normality also suggests that such a result holds for
fixed design with design points {xj = G−1(j/n), j = 1, ..., n} and G′(.) = g(.).

Theorem 5. Under (S1)– (S6) and (C1)– (C4), with random design,

P





q̂(x) − q(x) − ℓq(x)h
2

√

τ 2
q (x)/(nh)

≤ t

∣

∣

∣

∣

∣

∣

X1, ..., Xn



 = Φ(t) + oP (1), (13)

where ℓq(x) = (1/2)I2(K)q′′(x) and τ 2
q (x) =

∫

K2(u)du

g(x)

1

4f 2(q(x)|x) .
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Theorem 6. Under (S1)– (S6) and (C1)– (C4), with random design,

P





µ̂(x) − µ(x) − ℓµ(x)h2

√

τ 2
µ(x)/(nh)

≤ t

∣

∣

∣

∣

∣

∣

X1, ..., Xn



 = Φ(t) + oP (1), (14)

where ℓµ(x) = (1/2)I2(K)µ′′(x) and

τ 2
µ(x) =

∫

K2(u)du

g(x)

(

9

4f 2(q(x)|x) + 4σ2(x) − 3σ2(x)

f(q(x)|x)

)

.

Some comments.

• Theorem 6 shows that the median function has effect on the asymptotic
variance of mode function estimation through the conditional distribution
density function, and mean function has effect on the asymptotic variance
of mode function estimation only if the regression model is really a het-
eroscedastic one, but both mean and median functions have no effect on
the asymptotic bias.

• The unconditional results of theorems 5 and 6 are the same as that of
Theorem 4.

Turning now to the parameter estimates β̂, the following asymptotic normality
result establishes parametric rates of convergence. It provides the basic tool to
check if the peak of the model depends on the average qualities such as the mean
and median in our semiparametric variance function model. The derivation which
is given in the Appendix requires the uniform convergence results given by The-
orems 1, 2 and 3.

Remark. Although all the previous results are known, we prove them in lighter
and more compact way. Next theorems are quite new.

Recall that u(.) is a weight function introduced in equation (8). We have:

Theorem 7. Under (S1)– (S6) and (C1)– (C5),

√
n
(

β̂ − β
)

→d N(Σ−1
0 η,Σ),

where Σ = Σ−1
0 Σ1Σ

−1
0 and η = (η0, η1, η2)

T , Σ0 = (ρi,j)0≤i,j≤2 and the 3 × 3

diagonal matrix Σ1 = 3R(K)diag(τ0, τ1, τ2) with R(K) =

∫

K2(t)dt; and with

13



η0 =
1

2
d∗ I2(K)

(∫ 1

0

g(t)u(t)µ′′(t)dt− θ1

∫ 1

0

g(t)u(t)m′′(t)dt

− θ2

∫ 1

0

g(t)u(t)q′′(t)dt

)

;

η1 =
1

2
d∗ I2(K)

(∫ 1

0

g(t)m(t)u(t)µ′′(t)dt− θ1

∫ 1

0

g(t)m(t)u(t)m′′(t)dt

− θ2

∫ 1

0

g(t)m(t)u(t)q′′(t)dt

)

;

η2 =
1

2
d∗ I2(K)

(∫ 1

0

g(t)q(t)u(t)µ′′(t)dt− θ1

∫ 1

0

g(t)q(t)u(t)m′′(t)dt

− θ2

∫ 1

0

g(t)q(t)u(t)q′′(t)dt

)

;

ρ0,0 =

∫ 1

0

g(t)u(t)dt;

ρ0,1 = ρ1,0 =

∫ 1

0

g(t)u(t)m(t)dt;

ρ0,2 = ρ2,0 =

∫ 1

0

g(t)u(t)q(t)dt;

ρ1,1 =

∫ 1

0

g(t)u(t)m2(t)dt;

ρ1,2 = ρ2,1 =

∫ 1

0

g(t)u(t)m(t)q(t)dt;

ρ2,2 =

∫ 1

0

g(t)u(t)q2(t)dt;

τ0 =

∫ 1

0

u(t)2 σ2(t)

f(q(t)|t)dt;

τ1 =

∫ 1

0

u(t)2m2(t)
σ2(t)

f(q(t)|t)dt;

τ2 =

∫ 1

0

u(t)2q(t)2 σ2(t)

f(q(t)|t)dt.

Remark. d∗ = 0 in (C5) corresponds to further undersmoothing of nonpara-
metric curve estimates for the purpose of estimating the parametric part β. Note
also that the asymptotic bias and covariance matrices depend on the unknown
parameter β.

6 Testing

The mode of some distributions is identical or approximately equal to mean
or/and median. For example, for normal probability distribution N(µ, σ2),
median = mean = mode = µ. This is generally true for any symmetric and uni-
modal distribution such as the Student’s t-distribution. But for Binomial distri-
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bution B(m,π), the mode is approximately equal to mean but not to the median,
as mean=mπ, mode=[(m+1)π], but median is found from P (Y ≤ median) = 1/2
and P (Y ≥ median) = 1/2. This is also true for Poisson distribution and hyper-
geometric distribution. However, the mode of most of distributions links to both
mean and median as in (3). On the other hand, for the Fisher’s Z distribution,
which is defined as Z = 1

2
log Y with Y ∼ Fν1,ν2

, Z has non-zero mean and me-
dian, the mode of Z is always zero for any degrees of freedom. This means that
the mode of Fisher’s Z distribution is independent of the mean and the median.
Therefore, in (3) we are concerned with the following hypotheses:

H0 : θ1 = 0, H0 : θ2 = 0 and H0 : θ1 = θ2 = 0.

In this section, we develop a data-dependent test statistic whose distribution
under the null hypotheses above is derived. All the three different tests mentioned
above belong to the linear parametric testing, and we can write the linear testing
as

H0 : Λβ = 0,

where Λ is a linear operator. It follows under H0 that,

√
nΛβ̂ →d N(0,ΛΣΛT ),

where Σ is defined in Theorem 7.

To find a data-based test statistic, we still need to estimate Σ. To do that,
we use sample-based sums to estimate the elements of these covariance matrix,
which are some integrals. We can still prove that Σ̂ → Σ.

Let Π be an (m× 3)-matrix of rank m, m ≤ 3, and let ς0 an ς1 be m-vectors. To
test

H0 : Πβ = ς0,

we consider the test statistic

Tn = n(Πβ − ς0)
T (ΠΣ̂ΠT )−1(Πβ − ς0).

Theorem 8. Under (S1) – (S6) and (C1) – (C5), it holds that, under the
null hypothesis H0,

Tn →d χ(m)2,

where χ(m)2 is the central χ2 distribution with m degrees of freedom.

Assume that the alternatives H1 : Πβ = ς1 satisfy

n(ς1 − ς0)
T (ΠΣΠT )−1(ς1 − ς0) → λ2,

for a fixed real constant λ. Then, under H1,

Tn →d χ
2(m,λ2),
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where χ2(m,λ2) is the noncentral χ2 distribution with m degrees of freedom and
noncentrality parameter λ2.

Consequence. The application to the construction of a level-α test is: reject
H0 if Tn > χ2

α(m), the 100(1-α) quantile of the corresponding χ2 distribution.

Appendix: Some lemmas and proofs of Theorems

Proof of Theorem 1. Theorem 1 can be proved along the lines of Theorem
4.1 of Müller and Zhao (1995). In fact Lemma 6.1 of Müller and Zhao (1995) is
true here and is still specified as Lemma 1. We may need to use the following
facts thoughout the proofs.
For any Lipschitz-continuous function u defined on [0, 1],

1

n

n
∑

i=1

u(Xi) =

∫ 1

0

g(t)u(t)dt+O

(

1

n

)

. (A1)

Analogously

1

n

n
∑

i=1

u(Xi)K

(

Xi − x

h

)

=

∫ 1

0

g(t)u(t)K

(

x− t

h

)

dt+O

(

1

n

)

. (A2)

Lemma 1. Under (S1)–(S4), (C1)–(C4), for x ∈ (0, 1),

m̂(x) −m(x) =

[

1

2
h2I2(K)m(2)(x) +O

(

1

nh

)

+ o(h2)

]

+
n
∑

i=1

wi(x)
∑n

j=1wj(x)
ǫi,

(A3)
where wj(x) is the kernel weight function. The proof of this lemma was given by
Section 4 of Müller (1988).

Proof of Theorem 2. We need the following Lemma 2 to establish Theorem
2.

Lemma 2. Under (S1)–(S4), (C1)–(C4), for x ∈ (0, 1),

q̂(x) − q(x) = φ(x)
n
∑

i=1

ψ(Y ∗
i )K

(

Xi − x

h

)

+ o(h2), (A4)

where ψ(y) = 1/2 − I(y < 0), Y ∗
i = Yi − q(x) and φ(x) = (f(q(x)|x)g(x))−1.

This is the Bahadur equation (see Bahadur, 1966), and the proof was also given
by Yu and Lu (2004).
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Proof of Theorem 3. Theorem 3 is proved by µ̂(.) = θ̂0 + θ̂1m̂(.)+ θ2q̂(.), and
β̂ → β.

Proof of Theorems 4 and 5. The proofs of Theorems 4 and 5 are standard
by the equation (A3) with Lemma 1 and the equation (A4) with Lemma 2 re-
spectively.

Proof of Theorem 6. Similarly, Theorem 6 can be established through Theo-
rems 4 and 5 and µ̂ = θ̂0+ θ̂1m̂+θ2q̂, β̂ → β, and using further the Gram-Charlier
expansion, see Kendall, Stuart and Ord (1987), Section 2.11, β ≈ (0,−2, 3) under
large sample or n→ ∞. In particular, asymptotically, from

V ar(µ̂(x)) = θ2
1 V ar (m̂(x) − E(m̂(x)) + θ2

2 V ar (q̂(x) − E(q̂(x)))

− 2θ1θ2 Cov (m̂(x) − E(m̂(x)), q̂(x) − E(q̂(x))) ,

we could obtain the asymptotic variance of Theorem 6.

Proof of Theorem 7. Write S = Ẑ − Z and V = X̂ − X, then Theorems 1 to
6 indicate S = [Op(h

2)] and V = [Op(h
2)].

Lemma 3. As n→ ∞,

1

n
X

TQ−1
X → Σ0 and

1

n
X̂

TQ−1
X̂ →p Σ0.

If we write β̂ = (X̂TQ−1
X̂)−1

X̂
TQ−1

X̂β, then

√
n(β̂ − β) = (X̂TQ−1

X̂)−1(X̂TQ−1)(Ẑ − X̂β) = (X̂TQ−1
X̂)−1(X̂TQ−1)(S − V β).

Hence,
√
n(β̂ − β) = (n−1

X̂
T
Q−1

X̂)−1(n−1/2
X̂

TQ−1)S − n−1/2
X̂Q−1V β.

Observe that n−1/2
X

TQ−1S − n−1/2
X

TQ−1V β = (ξ0, ξ1, ξ2)
T , where

ξ0 =
∑n

i=1 u(Xi)(µ̂(Xi) − µ(Xi)) − θ1

∑n
i=1 u(Xi)(m̂(Xi) −m(Xi))

− θ2

∑n
i=1 u(Xi)(q̂(Xi) − q(Xi)),

ξ1 =
∑n

i=1m(Xi)u(Xi)(µ̂(Xi) − µ(Xi)) − θ1

∑n
i=1m(Xi)u(Xi)(m̂(Xi) −m(Xi))

− θ2

∑n
i=1m(Xi)u(Xi)(q̂(Xi) − q(Xi)),

ξ2 =
∑n

i=1 q(Xi)u(Xi)(µ̂(Xi) − µ(Xi)) − θ1

∑n
i=1 q(Xi)u(Xi)(m̂(Xi) −m(Xi))

− θ2

∑n
i=1 q(Xi)u(Xi)(q̂(Xi) − q(Xi)).

Also, note that the 6 different elements of the symmetric matrix XTQ−1X are
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given by

n
∑

i=1

u(Xi),
n
∑

i=1

u(Xi)m(Xi),
n
∑

i=1

u(Xi)q(Xi),
n
∑

i=1

u(Xi)m(Xi)
2,

n
∑

i=1

u(Xi)m(Xi)q(Xi) and
n
∑

i=1

u(Xi)q(Xi)
2, respectively.

Using Lemmas 1 and 2 and (S5), we can replace all m̂−m, q̂ − q and µ̂− µ
by a linear combination of normal variables in ξ0, ξ1 and ξ2. Then compute the
asymptotic bias and asymptotic variance of random vector (ξ0, ξ1, ξ2)

T to obtain
the vector η and matrix Σ1 respectively, so to establish Theorem 7 immediately.
For example, the variance of ξ0 could be simplified into

−4θ1θ2Cov

(

n
∑

i=1

u(Xi)(m̂(Xi) −m(Xi));
n
∑

i=1

u(Xi)(q̂(Xi) − q(Xi))

)

,

which is asymptotically equal to 3R(K)

∫ 1

0

u(t)2 σ2(t)

f(q(t)|t)dt.

Proof of Theorem 8. The proof of Theorem 8 is easy. In fact, Theorem 7
implies that

n1/2(ΠΣ̂ΠT )−1/2(Πβ − ς0) → N(0, I) under H0,

which implies part 1 of Theorem 8, whereas under H1

n1/2(ΠΣ̂ΠT )−1/2(Πβ − ς0) → N(ρ, I)

where ||ρ|| = λ,

n1/2(ΠΣ̂ΠT )−1/2(Πβ − ς0) =

n1/2(ΠΣ̂ΠT )−1/2(Πβ − ς1) + n1/2(ΠΣ̂ΠT )−1/2(Πβ − ς0) → N(ρ, I).
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d’estimateurs convergents du mode conditionnel. La Revue Canadienne de Statis-
tique, 26, 365–380.

18



Berlinet, A., Gannoun, A., Matzner-Lober, E. (2001) Asymtotic normality of
convergent estimates of conditional quantiles. Statistics. 35, 139–169.

Bowman, A. W., (1984) An alternative method of cross-validation for the smooth-
ing density estimates. Biometrika, 71, 353–360.

Bickel, P. J. and Fan, J. (1996) Some problems on the estimation of unimodal
densities. Statistica Sinica, 6, 23–45.
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