Procedural Audio for Game using GAF

Olivier Veneri*
CNAM/CEDRIC

ABSTRACT

Constantly increasing power of gaming platforms now makes
it possible for game developers to consider using procedural
techniques in making games. These techniques are actu-
ally used to create part of graphical assets such as object’s
textures [9] or to generate character motion [26]. However,
sound is still a challenging domain for procedural content
creation. This article presents a new software framework
designed to support the use of procedural audio for games.
This framework is named GAF (Game Audio Framework)
and is currently developped by CNAM/CEDRIC laboratory
in Paris as part of the PLAY ALL platform. In a first part,
we will give a quick overview of current framework architec-
tures. In a second part, we will discuss Procedural Audio. In
a third and forth part, we will introduce the new framework
proposition we make. We end this article with a demonstra-
tion of procedural musical capabilities that this framework
enables.

1. INTRODUCTION

When defining the audio environment of a game, the main
role of a sound designer is to build sound objects. Sound
objects are the game entities that are responsible to pro-
duce the audio responses to some defined game system state
changes. They are the basic building blocks of the audio
environment. We can split the sound designer work in three
principal activities :

e the definition of audio processes (wave player, synthe-
sizer, etc)

e the definition of a musical behavior that control these
audio processes

e the association of these resulting musical structures
with game states[34]

*e-mail: olivier.veneri@cnam.fr
fe-mail: stephane.gros@cnam.fr
fe-mail: snatkin@cnam.fr

Stéphane Grost
CNAM/CEDRIC

Stéphane Natkin?
CNAM/CEDRIC

Current audio tools provide a finite set of audio components
that the sound designer can configure to compose sound ob-
jects [1]. In audio frameworks dedicated to game, sound
designers are mainly provided with some basic types of au-
dio components (wave player, basic generators and some ef-
fects) with some possibilities to insert custom ones, but no
esay way to control them. In this tools, the paradigm used
is this of sequencers, with some functionnalities of musical
trackers (e.g. loops, conditionals, triggers or event manage-
ment fonctionnalities). To define a sound object the sound
designer have to produce audio files for each kind of sounds :
voice, foley, ambiance and music and then pack them in some
containers that possess predifined musical behaviour[17] [4].
Some standard controls available on these containers are :

e Random behavior on parameters of the containers
e Audio components state control (Start, Stop...)

e Audio components parameters manipulation and au-
tomation (crossfading, ...)

After this definition phase the created sound objects will be
assigned to game entities during level construction. Sound
designers have to bind these musical structures with game
states that have to be sonified. To achieve this, nowdays
framework provide some basic scripting capabilities to change
container states when they receive events from the game or
when the state of some shared variable was updated [1].

2. PROCEDURAL AUDIO

Procedural audio is the algorithmical approach to the cre-
ation of audio content, and is opposed to the current game
audio production where sound designers have to create and
package static audio content. Beneficits of procedural au-
dio can be numerous : interactivity, scalabiblity, variety,
cost, storage and bandwidth. But procedural audio must
not be seen as a superior way for creating game audio con-
tent. Procedural audio also has drawbacks indeed, like high
computationnal cost or unpredictable behaviours. Besides,
in some situation, traditionnal content creation can be more
efficient.

However some game genres would greatly benefit from such
techniques. For example, user-driven content games like
the forthcoming games Spore (figure 1) or Little Big Planet,
where the user can customize several assets of the game, it
become desirable to provide the player with some very flex-
ible audio/musical assets. The production of such a game

is untenable with static wave based audio content because
of the huge quantity of audio assets that would have to be
produced in order to meet such a flexibility, due to combi-
natorial explosion.

The problematics that emerge from the use of procedural

Figure 1: Spore screenshot

audio in game is strongly related to state of the computer
music researches, which gives a good insight on what could
be achieved in the context of video gaming.

We can split procedural audio researches in two main cate-
gories :

e Procedural Sound (PS)
e Procedural Music (PM).

On one hand we have PS that bring together the synthesis
parts of procedural audio. As made in [11], we list here a few
of interesting techniques that can be used for game devel-
opment. This classification is not based on the underlying
model but on the sounds they try to mimic :

Solid Objects [16] [27] [15] [23]
e Water [32]
e Air [10]

Fire [35]

Footstep [25]
e Birds [29]

On the other hand we have PM researches which can lead
to the creation of highly dynamic musical behaviours. We
also list here a few of PM techniques that we think as po-
tentially useful in a video game context, i.e real-time music
compostion or adaptation :

e Stochastic music [5]
e Cellular automata [19]

e Constraint-based composition [30]

e algebraic oriented music composition [21] [13]

We will now introduce GAF (Game Audio Framework), our
sound system designed to fulfill all existing game audio stan-
dard capabilities presented in the first part of this document
but also to extend these functionalities to enable the use of
procedural audio. The framework is tailored to allow audio
creators to tackle the huge set of creative possibilities offered
by the game media and also meet our game audio research
needs.

3. GAF PRESENTATION

GAF Editor

Component Sound
Editor Object Editor
———

GAF HLE PLAY ALL

Custom sound objects behaviors

Game Editor

GAF LLE

Custom source and filter

e —
Audio Core Memory File Graphics Editor |
Driver Driver Driver System Driver Framework |

- -

PLAY ALL Platform

Figure 2: GAF in the PLAY ALL plateform

In this section we will describe the engine parts of the frame-
work, that are currently in development for the PLAY ALL
platform (figure 2). The engine part of GAF is split in
two sub-systems. The first is called the Low Level Engine
(LLE) and is focused on the management of all the syn-
chronous computation that occures, i.e synthesis and DSP
algorithms. The second sub-system is called the High Level
Engine (HLE) and is responsible for handling all the asyn-
chronous computations, i.e event management coming from
the game and definition of musical behaviours. In GAF a
sound objects is defined as the composition of synchronous
and asynchronous computing entities.

3.1 GAF Low Level Engine

The Low Level Engine (LLE) has to rely on a standard game
audio pipeline [31] with 3D audio capabilities (FMOD, XAu-
dio, OpenAL, MultiStream) supplied here by the PLAY ALL
audio driver. GAF LLE focus on the creation of sources and
filters to allow the use of custom synthesis and DSP algo-
rithms. GAF users can create custom pipeline objects by
definig a typed data flow graph made of connections be-
tween processing unit’s ports. This data flow graph is called
a Processing Network in GAF and is similar to the data
flow pattern [18] [3] which is intensively used in audio soft-
ware industry. Current game audio frameworks also have
graph capabilities but the main difference lies in the fact
that in existent game audio frameworks, graph can only
handle one type of data, namely audio data in temporal
domain, whereas GAF allows handeling of any data type, as
users can define custom types. The introduction of typed
port connexion in processing network allows users to create
a broader class of synchronous audio processing algorithms
that can include frequential domain or any musical data type
[3] like midi data for example.

In order to create new processing units, users have to derive
the [ProcessingBase interface and provide this implementa-
tion to the framework through the creation of a dynamic
library or by statically registering it at the engine initializa-
tion. Creating a new processing unit has two uses : the first
is obviously to extend the panel of functionalities available
in graph creation. The second concerns optimisation. The
algorithm described by a graph is splited into isolated pro-
cessing units, which might not allow fine optimization. Once
an audio processing algorithm has been designed, fine-tuned
and tested using a graph of existing processing units, it can
be useful to set it up as a single processing unit performing
the whole algorithm if its opimization matters.

Each Processing Network of the LLE can declare global ports
that permit state control by the sound objects through the
GAFScript language provided by HLE.

3.2 GAF High Level Engine
3.3 Sound Object behavior

The HLE is used to defined custom sound object behaviours
thanks to GAFScript, a scripting language tailored for that
purpose.

The development of a domain specific language (DSL) is
challenging but this is the only satisfying way to meet our
goal i.e. sound designer autonomy and tool flexibility. DSLs
exchange genericity for expressiveness in a limited domain,
by providing notations and synthax tailored toward a par-
ticular application domain, they also offer substantial gains
in expressiveness and ease of use compared with general pur-
pose programming languages for the targeted domain.

3.3.1 GAFScript Language

GAFScript is a statically typed, stack based scripting lan-
guage. It is compiled to a bytecode interpreted by the
GAFScript virtual machine. The type system is built on the
reflection capabilities of the interface IObject. It is used to
retrieve description of components that implement the 10b-
ject interface and hence enable their use in GAFScript. This
interface is used to implement custom data types that will be
usable in the scripting language. This mechanism also meets
our high performance intents : thanks to it, GAFScript is
only glue code that interface hard-coded C++ objects that
perform costly computation.

GAFScript is set up to define custom behaviours for sound
objects and especially to allow the use of procedural music.
To achieve this, GAFScript brings expressivity of domain
specific language by integrating game (like UnrealScript [2])
and music (like Chuck [33]) related semantic [6] :

o Game Communication
e Convenient methods of handling the flow of time

e Concurrency

Structural organization of musical materials,

Musical data representation

The communication mechanisms in GAF currently enables
a sound object to send events to the game. Existent game

system/sound system communication scheme is one way[22],
client/server, that is to say that there is no possibility to
notify the game system when some specific events occur in
sound script. This is not convenient for generative music
handeling. Indeed in generative case, we cannot always as-
sert on a precise timing for a definite musical event. For
example, if the sound designer wants to use synchresis [7]
! to strenghten audiovisual relations, it is easier to let the
sound object communicate back to the game to achieve syn-
chronizations between the audioviual fluxs.

GAFScript also integrates music related semantic and draws
on the [12] statement:

Programming languages for music typically go
beyond standard general-purpose languages in im-
plementing special musical data types and opera-
tions, methods for representing the flow of time,
and methods to represent the forms of recursion
and parallelism commonly found in music.

As GAF enables the insertion of custom data type through
the IObject interface, it can be extended with any suitable
musical data type.

Time manipulation is a major novelty of GAFScript in the
game audio field. Many authors [24] [28] [33] identify timed
based languages for musical applications as a important fea-
ture. GAFScript combine the use of a duration type and a
special keyword, next, to control script execution : We now
show how to manipulate time in GAFScript with the defi-
nition of a sound object that generate echoed notes. This
example is inspired by the discussion in [8] about real-time
scheduler.

soundobject {
duration m_EchoDur = 250::ms;
source m_oSynth = "StringSynth";

channel m_oChannel;

event Init()

{
m_oChannel.SetSource(m_oSynth);
m_oChannel.Play();
}
event Notel()
{
integer iVelocity = 127;
do
{
m_oSynth.NoteOn(56, iVelocity);
iVelocity -= 1;
next = m_EchoDur;
}while(iVelocity > 0)
}
event Note2()
{
integer iVelocity = 127;
do
{

m_oSynth.NoteOn(55, iVelocity);
iVelocity -= 1;
next = m_EchoDur;

1Synchresis is the forging between something one sees and
something one hears

}while(iVelocity > 0)

We can see in this example how GAFScript allows the user
to control pipeline objects defined in the LLE. In this script
the source that is identify by m_oSynth is an LLE object.

4. SOUND EDITORS

This part gives an insight of the specifications of the tools
that are being developed to allow the use of GAF by end-
users. The potentials users of the Game Audio Framework
Tools are mainly Sound Designers, used to work with some
prevalent software, who have to compel with strict time con-
straints, who have interest in generative, innovative or dy-
namic sound or music creation.

Making the sound-designers as independent as possible of
developers is an aim of the Game Audio Framework, the
tools specifications have been set up in this perspective.
Once the work of the sound designer has been integrated
in a the game environment, on-the-fly editing is much wel-
come, so sound editors are fully integrated in the game editor
framework of the PLAY ALL plateform. GAF is also de-
signed to be used as a tool for research purposes, which pre-
supposes a more heavily iterative process and user-defined
data manipulation. In this purposes, the tools have to allow
as much modularity as possible and to allow to define new
script data types and new processing units.

Two main basic tools are planed for the GAF : one that al-
lows the construction of user-defined fine-tunable processing
units, the other that allows the definition of Sound Objects,
through the description of both its synchronous and asyn-
chronous behaviours.

4.1 Building tunable sound processing units
There are two ways to create a Processing unit : hard coding
it as a library or building it as a Processing Network thanks
to the Processing Network Editor. The Processing Network
Editor allows the user to define a typed data flow graph of
formerly defined Processing Units.

The Processing Network Editor is two-sided : one side for
Processing Unit definition itself, the other side for inter-
face elaboration. This process is convenient for modular-
ity/reusability and in heavily iterative contexts, as every
Processing Unit can provide an adapted and concise access
to its parameters that have to be tuned in common usage.

The interface part is detachable : it exists only in editing
context and is removed during run-time execution. It is
seen as an overlay, that allows to bind inputs and outputs
in reading, writing or both between engine entities and in-
terface widgets.

When a parameter (input or output) is bound to a widget
for reading, the correspondig data can be read and then dis-
played by this widget. When in writing, the widget allows
to set this value dynamically. With both access, the wid-
get displays and provides control on the parameter value
dynamically (i.e. at runtime).

4.2 Packing Sound Objects

The sound object editor provides the user with the tools he
needs to build a Sound Object from processing networks and
script. The sound emitting process is defined by IChannels
that are Processing Networks with specific properties (pro-
cessing networks of ISources and IFilters that are, theme-
selves, Processing Units with specific properties).

To match current interface paradigm and practice, the IChan-
nels interface looks like a slice and the synchronous be-
haviour for a sound object is set in a similar way than it
would have been on a mixing board. However, the more
atypical the Processing Units used, the more complex the
interface.

The sonic behaviour of the sound object is defined by a
GAFScript. The graphical interface of this sound object is
defined by binding the local and global data exposed by the
script to some widgets. This features enable the defintion of
custom interfaces the same way processing network editor
does.

S. CASE STUDY : PROCEDURAL MUSIC
FOR GAME WITH GAF

In this section we will introduce the use of GAF and espe-
cially the GAFScript syntax through an example. In this
example we will demonstrate how it is possible in GAF to
define generative musical behaviour. We chose to base the
musical behaviour on a stochastic approach. The use of
stochastic model in music has been studied for a long time
now [14] [20] but has almost never really been used in game.
Stochastic music can have several advantages. One of the
main advantage is that it allows sound designers to insert
very flexible and tunable content inside the game. Another
advantage of probabilistic approach is that it decreases the
feeling of repetition of listener without having to produce a
lot of musical data compared to a wave file based approach.
Our prototype is based on a simple scene in which the user
can move the camera around a character and listen to the
musical changes that occurs.

5.1 Musical Behaviors

The background music is made of two instruments : a string
synthesizer and drum unit. Each one as its own musical
processes that consist of a melodic (or drum elements se-
quence) process and a rythmic process. The melodic part of
the string synthesizer is generated by two first order markov
matrix and its rythmic part by a set of probability vectors.
The markov matrices describe how to get from one melodic
note to another and the probability vectors the rythm to
apply. The sequence process and rythm process of the drum
kit are entirely defined by its probility vectors. We have two
sets of data for each instrument : one for a closest camera
position and another for a farthest camera position.

The probability vectors are used to define rythmic behaviour
by determining the onset of the rythmic event. This means
that each note is sustained until the next event onset. The
components of the vectors represent the probability for one
event (or silence) to be played at each quantification step
(sixteenth note) inside a four measure grid. There is one

probability vector for each quantification step (1). The vec-
tors related to the string synthesizer have only two compo-
nents, one for enabling note playing and one for silence. The
drum vectors have five components as they are also used to
choose which drum element to play. The data for matrices
and probability vectors have not been gathered from previ-
ous musical analysis but set then adjusted after successive
tests and trials of the sound designer.

quantification step | drum 1 | drum 2 | drum 3 | silence
1/16 0.5 0.2 0.0 0.3
2/16 0.5 0.0 0. 0.5
3/16 0.0 0.0 0.0 0.0
4/16 0.0 0.0 0.0 0.0
5/16 0.5 0.2 0.0 0.3
6/16 0.5 0.0 0. 0.5
7/16 0.0 0.0 0.0 0.0
8/16 0.0 0.0 0.0 0.0
9/16 0.5 0.2 0.0 0.3
10/16 0.5 0.0 0. 0.5
11/16 0.0 0.0 0.0 0.0
12/16 0.0 0.0 0.0 0.0
13/16 0.5 0.2 0.0 0.3
14/16 0.5 0.0 0. 0.5
15/16 0.0 0.0 0.0 0.0
16/16 0.0 0.0 0.0 0.0

Table 1: Array of probability vector of drum unit
for the farthest camera position

quantification step | drum 1 [drum 2 | drum 3 | silence
1/16 0.125 0.525 0.25 0.0
2/16 0.5 0.125 0.375 0.0
3/16 0.1 0.7 0.2 0.0
4/16 0.3 0.2 0.5 0.0
5/16 0.15 0.8 0.05 0.0
6/16 0.01 0.09 0.9 0.0
7/16 0.1 0.1 0.8 0.0
8/16 0.25 0.5 0.25 0.0
9/16 0.125 0.525 0.25 0.0
10/16 0.5 0.125 0.375 0.0
11/16 0.1 0.7 0.2 0.0
12/16 0.3 0.2 0.5 0.0
13/16 0.15 0.8 0.05 0.0
14/16 0.01 0.09 0.9 0.0
15/16 0.1 0.1 0.8 0.0
16/16 0.25 0.5 0.25 0.0

Table 2: Array of probability vector of of drum unit
for the closest camera position

When the camera moves back and forth toward the char-
acter, we hear a continous modification of the musical flux.
This modification affect both the melodic and the rythm
parts of the two instruments. This is realized through a lin-
ear interpolation of the component values of their farthest
and closest melodic matrices and their farthest and closest
rythmic vectors, with the distance between the camera and
the character as the interpolating parameter.

What we want to show here is that it is now possible and in-
teresting to use procedural techniques in the creation of au-
dio environments. Here, we jointly use a probabilitic model
for music generation and sound synthesis techniques in order
to achieve better player immersion but also avoid too high
production cost due to the static creation of highly dynamic

content. Indeed, the production of such a flexible scene only
by means of wave segments would require a lot of short wave
files and then specification of their succession. This process
can be long, tedious and costly especially in the very itera-
tive context of game production.

5.2 GAFScript Overview

We do not entirely describe the script used in this experi-
ment du to length limitation but we will extract small parts
of it to exemplify how it is used and how the GAFScript
syntax looks like.

5.2.1 Game Communication

In our example, we use the distance between the camera and
the character as the parameter of our musical model, so we
need a variable for it. The sharing of variable between the
sound object and the game system is defined by prefixing
the desired variable with the shared keyword.

soundobject sandbox08 {

// Data shared with game
shared float m_fDistance =1.0;

Figure 3: Shared variable definition

We also need three events :

e The Init event for initialisation stuff
e The StartMusic for stating the synthesizer process

e The StartDrum for starting the drum process

The events are declared simply by defining a method for the
sound object inside the script (figure ??). This variable and
these events can then be used inside the game code using a
C++ generated header file created during script complation
and that contain all the necessary informations (figure 4)to
call events or to set shared variables.

The first thing to be done in GAFScript is the declaration
of the various data that will be needed to define the musical
behaviour of the currently constructed sound object (figure
?7?). There are specific keywords to declare pipeline objects
: source , filter and channel.

// Pipeline objects
source m_oSynth
source m_oDrum
channel m_oChannel;
channel m_oDrumChannel;

"StringSynth.gpo";
"Takim.gpo";

namespace sandbox08 {
namespace INPUT_EVENT {
const PlayAll::uint32 Init = 0 ;
const PlayAll::uint32 StartDrum = 2 ;

const PlayAll::uint32 StartMusic =1 ;
}

namespace SHARED_VARS {
const PlayAll::uint32 m_fDistance = 18 ;

}

Figure 4: Generated C++4 file.

Then the musical data and objects can be declared in order
to be used in the subsequent parts of the script. Each data
type is build by deriving the IObject so that each script
object makes direct call to C++ code to be as efficient as
possible. All the needed memory is allocated at compilation
time so that no memory allocation occurs during run-time.

// Data for music generation

integer m_IntResult;
MarkovInterpolator m_oMarkovInterp;
ProbVecInterpolator m_oVecInterpolator;
ProbVector m_oProbVecl;
ProbVector m_oProbVec?2;
ProbVector m_oVecResult;

MarkovMatrix< integer > m_oMM1;
MarkovMatrix< integer > m_oMM2;
MarkovMatrix< integer > m_oMMResult;

Figure 5: Musical data declaration

The definition of the sound object response (figure ?7) is
made by declaring and defining an event. The instructions
in the scope of the event StartMusic are executed when the
sound object receives this event. Each method is a separated
thread on the GAFScript virtual machine so they can be
used to define concurrent musical processes.

event StartMusic()

//Set matriz input vector
m_oMMResult.SetInput (0);

while(true)

//Interpolate between markov matrices with cam
//to character distance as parameter
m_oMarkovInterp.Interpolate(m_oMM1,
m_oMM2,
m_fDistance,
m_oMMResult) ;
m_oVecInterpolator.Interpolate(m_oProbVecl,
m_oProbVec2,
m_fDistance,
m_oVecResult) ;
//Choose next midi note accordingly to past events
m_IntResult = m_oMMResult.ChooseNext() ;
m_IntResult = m_IntResult 40;
m_oMidiResult.NoteOn(m_IntResult, 90);
m_oSynth.SetMidiIn(m_oMidiResult);
next = m_oVecResult.ChooseNext();
m_oMidiResult.NoteOff (m_IntResult, 127);

m_oSynth.SetMidiIn(m_oMidiResult);

6. CONCLUSION

We demonstrate here that the generative approach can be
very interesting when sound designer need some continous
mapping between the action that takes place and the musi-
cal flux. But this is just a first emprical step and there is a
need to conduct further experiments and analysis on player
satisfaction. We also think that it will be easier for sound
designer to set data of the generating elements in a simpler
way. For example by providing a few example by some midi
segments that will be used to extract data to feed the ma-
trices. We also intuitively think that the realization of a
prototype with more musical processes can achieve better
immersion result. Actually, we only genererate and adapt
two musical parameters, namely rythm and pitch, with only
one model parameter, the camera to character distance. We
expect a more interesting result with more complex scene
and more complex gameplay. An implemantation of GAF
is currently realized as part of the PLAY All middleware
project. PLAY ALL use GAF LLE and HLE as part of its
engine and the sound object editors as PLAY ALL level ed-
itor plugin for enabling sound integration. This project is
leaded by a consortium of french game developers (Dark-
works, Kylotonn, White Birds Productions et Wizarbox)
and french research laboratories such as CNAM/CEDRIC,
ENST, LIP6 and LIRIS.

We plan to use this gaming plateform as a base to develop
our research in CEDRIC (CNAM Computer Science Lab-
oratory, FRANCE) on sound in video game and other in-
teractive media and also for our game audio teachings in
ENJMIN (Graduate School of Games and Interactive Me-
dia, FRANCE).

7. REFERENCES

[1] Interactive xmf specification. IASIG: The Interactive
Audio Special Interest Group, February 2007.

[2] The unreal engine documentation site, 2007.

[3] X. Amatriain. An Object-Oriented Metamodel for
Digital Signal Processing with a focus on Audio and
Music. PhD thesis, Pompeu Fabra University, 2004.

[4] Audiokinetic. Wwise Sound Engine SDK, 2006.

[5] J. Beran. Statistics in Musicology. Chapman &
Hall/CRC, 2003.

[6] S. N. Cecile Le Prado. Listen lisboa: Scripting
languages for interactive musical installations. In
SMCO7 Proceeding, 2007.

[7] M. Chion. L’audio-Vision : Son et image au cinéma.
Armand Colin, 1994.

[8] R. Dannenberg. Current Research in Computer Music,
chapter Real-Time Scheduling and Computer
Accompaniment. MIT Press, 1989.

[9] D. P. K. P. S. W. David S. Ebert, F. Kenton Musgrav.
Texturing and Modeling: A Procedural Approach.
Morgan Kaufmann, 1998.

[10] D. Y. et al. Real-time rendering of aerodynamic sound
using sound textures based on computational fluid
dynamics. ACM TOG 2003, Volume 22(Issue
3):732-740, 2003.

[11]
[12]

[13]

[14]

[15]

[30]

[31]

N. Fournel.

C. A. Gareth Loy. Programming languages for
computer music synthesis, performance, and
composition. ACM Computing Surveys, 17:235-265,
1985.

M. Guerino. The Topos of Music : Geometric Logic of
Concepts, Theory, and Performance. Birkhduser
Verlag, Basel, 2002.

X. Iannis. Musiques formelles. La revue musicale,
volumes 253 et 254:232 pp, 1963.

D. L. James, J. Barbi¢, and D. K. Pai. Precomputed
acoustic transfer: Output-sensitive, accurate sound
generation for geometrically complex vibration
sources. ACM Transactions on Graphics (SIGGRAPH
2006), 25(3), Aug. 2006.

K. P. G. Kees van den Doel and P. D. K. Foley
automatic : Physically-based sound effects for
interactive simulation and animation. In SIGGRAPH
2001, page 7. ACM Press, 2001.

C. Labs. IPS Tutorial, 2005.

D. Manolescu. A data flow pattern language, 1997.

E. R. Miranda. Computer Sound Design : Synthesis
Techniques and Programming. Focal Press, 2002.

J. A. Moorer. Music and computer composition.
Commun. ACM, 15(2):104-113, 1972.

A. Moreno. Méthodes algébriques en musique et
musicologie du XXe siécle : aspects théoriques,
analytiques et compositionnels. PhD thesis, EHESS,
2003.

C. L. P. M. E. O. Veneri, S. Natkin. A game audio
technology overview. In Proceedings of the Sound and
Music Computing Conference, 2006.

C. M. G. O’Brien James F., Chen SHhen.
Synthesizing sounds from rigid-body simulations.
pages 175-181, San Antonio, Texas,, 2002. ACM Press.
F. Pachet, G. Ramalho, and J. Carrive. Representing
temporal musical objects and reasoning in the MusES
system. Journal of New Music Research, 5(3):252-275,
1996.

perry R. Cook. Modeling bill’s gait: Analysis and
parametric synthesis of walking sounds. In Proceedings
Audio Engineering Society 22 Conference on Virtual,
Synthetic and Entertainment Audio, 2002.

C. Reynolds. Big fast crowds on ps3. In Proceedings of
the 2006 Sandbox Symposium, 2006.

J. E. L. Richard Corbett, Kees van den Doel and

W. Heidrich. Timbrefields : 3d interactive sound
models for real-time audio. Presence: Teleoperators
and Virtual Environments, to be published, 2007.

C. Rueda and F. D. Valencia. Formalizing timed
musical processes with a temporal concurrent
constraint programming calculus.

T. Smyth and J. III. The sounds of the avian syrinx—
are the really flute-like? In Proceedings of DAFX
2002, International Conference on Digital Audio
Effects, 2002.

C. P. Truchet C. Musical constraint satisfaction
problems solved with adaptive search. Soft Computing,
vol 8(nf9), 2004.

N. Tsingos, E. Gallo, and G. Drettakis. Perceptual
audio rendering of complex virtual environments,

(32]

33]

(34]

(35]

2003.

K. van den Doel. Physically-based models for liquid
sounds. ACM Transactions on Applied Perception,
2:534-54, 2005.

G. Wang and P. R. Cook. Chuck: A concurrent,
on-the-fly, audio programming language. In ICMC
2003, 2003.

7. Whalen. Play along : An approach to videogame
music, november 2004.

T. Y. Yoshinori Dobashi. Synthesizing sound from
turbulent field using sound textures for interactive
fluid simulation. In FEUROGRAPHICS 2004, 2004.

