
A service oriented compiler for operating systems

Ivan Aug�e

ENSIIE, 18, all�ee Jean Rostand, 91000 Evry, France

auge@ensiie.fr

Olivier Pons

CNAM Cedric, 292, rue Saint-Martin, 75003 Paris, France

olivier.pons@cnam.fr

October 14, 2008

Abstract

All tools dedicated to system administration of local area network follow the same
scheme. For each host they install an initial operating system and then update it using
a package manager. The package managers run independently on the hosts, this makes
di�cult (even impossible) to create and maintain a stable environment in which multiple
hosts coexist and cooperate. Furthermore, over time, the update process, that upgrades,
adds or suppress software, results in instability of host systems. Finally, a package corre-
sponds most often to a single software with a basic con�guration which does not match
to the network requirements.
This article presents the YaKa framework which propose an orthogonal approach to this
scheme in which the update feature almost disappears and is replaced by a very fast
installation of a new clean system. All systems required in the network are generated
all together by a compiler which has a complete view of the network. This general view
allows to describe systems as a set of abstract services. A service groups one or several
softwares and con�gures them for enabling a given functionality on one or several hosts.

1 Introduction

System administration of local area network is a task which becomes more and more di�-
cult as the number of software, their complexity and interoperability grow. The designer of
many operating systems attempts to help for this job by wrapping up standard tasks with
shell scripts and a graphical user interface. Theses tools are helpful for a single or few home
computers but fail to manage larger networks because they are close to a single system type
and their use is time expensive. More recently, tools appeared to manage local area network.
For handling a host, they follow the same scheme which consists of the installation of an
initial operating system and then of updating it using a package manager. This scheme fails
on several points.
Over time, the update process results in instability of host systems by adding, updating,
suppressing software. This is mainly due to the weakness of a few packages and to software
incompatibilities.
E�ective administration of a local area network depends not only on having functional soft-
ware on every single computer but also on their integration in the network as a whole. A
modi�cation of the system on a host may introduce new problems on other hosts and can
result in havoc on the complete network. When installing a network software, package man-
agers can not take into account how the software is installed on the other host.
For the system and network tools, there are a lot of ways to use a software and to make

1



them cooperate together. Most often a package corresponds to a single software with a basic
con�guration which does not correspond to the network requirements. This implies that the
system administrator has to spend a lot of time to understand and con�gure them.

Our point of view is that these weaknesses are inherent in the incremental update of the
standard scheme. We propose an orthogonal approach in which update almost disappears
and is replaced by a very fast installation of a new clean system. All systems required in a
network are generated all together by a compiler which has a complete view of the network.
This general view allows to describe systems as a set of abstract services. A service groups
one or several softwares and con�gures them for enabling a given functionality on one or
several hosts.

This article present YaKa, a framework illustrating this approach. It is dedicated to the
management computer sites heterogeneous both in software and hardware. It is available[4]
freely and distributed under GNU Licence. The rest of this paper is organized as follows. We
�rst give some background and summarise the problems, then we outline our framework and
give some experimental results before concluding.

2 Managing computers

2.1 De�nitions

Basic glossary

For a better understanding, we de�ne here some general words or expressions that are used
in this paper. A computer site is a set of computer in an organization, it consists of one
or several Local Area network. The system administrator is the person responsible for
maintaining and supervising the hosts of the computer site. An end-user is a person who
uses client machines to run applications. Typically, a secretary using MS-Word in an o�ce,
or a student using a network sni�er in a practical course are end-users. A computer site
consists of server and client machine. The role of servers is primarily to provide to the
client general services such as user's authentications and homes. A target operating system
is a system built on a machine for an other one. A vendor is a proprietary brand of an
operating system such as Windows and Redhat, but not Linux.

Operating system

The operating system of a computer is a set of software cooperating to form a coherent whole
in order to provide services to the end-users with a reasonable degree of comfort and privacy.
In a computer site, these programs also cooperate with softwares of other machines.

An operating system is not a static entity. Brutal halt may result in loss or corruption
of �les. Over time, softwares are updated, new ones are added, some becomes obsolete.
Similarly, computers with new operating systems are added to the computer site, others
are suppressed and some are changed (see Figure 6.a). Finally, new users arrive and others
leave. A consequence of such changes is that, over time, the operating systems tend to lose
consistency, stability and privacy.

[6] mentions the increase of the operating system entropy over time, and proposes a
detection and correction mechanism to avoid it.

Package

A software is basically a set of sources. To make it usable on an operating system on a
given machine, it is �rst necessary to generate its objects from source (generation of package
phase), then to install these objects on the operating system (installation of package phase)

2



and �nally to con�gure it on the machine (con�guration of package phase).
The main vendors use packages to install and maintain an operating system on a machine.
For handling the packages, there are a few package formats (deb,RPM,Windows . . . ) which
are IP (Industrial Property) and which come within a package manager [5, 15, 13]
For the software developer view, a package is a complex entity. It includes objects (executable
and libraries ), con�guration �les, installation and uninstallation scripts, functional depen-
dencies with other packages. The package manager does not help him much in designing the
package of its software.
For the system administrator view, the package manager checks the package dependency,
installs the missing packages and performs automatically the phases installation of package
and con�guration of package . The generation of package phase which is done by the soft-
ware developer, is generally hidden to the system administrator. Nevertheless, especially for
software with complex con�gurations, the con�guration of package is most often reduced to
a default con�guration (see Figure 6.b) considering only the presence or absence of speci�c
software in the operating system. In this case, the system administrator must do himself the
con�guration of package .

Dependencies

To generate, install and con�gure software, one must take into account di�erent types of
dependencies. Dependencies can be local, if they only depend on software on the computer
operating system. These dependencies can be global, if they depend on other machines in
the computer site. There are 5 main types of dependencies between two softwares A and B.

Generation dependency Package A has a generation dependency on the package B when
to generate A, one must �rst generate package B. This does not imply the need of B
to use A.

Hard dependency PackageA has a hard dependency on package B when packageA can not
run without package B. The usual reasons are that A requires executable or dynamic
libraries, possibly with con�guration �les, from B. The amount of the required B is
very variable.

Soft dependency Package A has a soft dependency on the package B when package A
requires for running one or several B dynamic libraries linked within the A package
binaries (not loaded explicitly through the dlopen function).

Soft cross dependency Package A has a soft cross dependency on package B when the A
package modi�es the B package by adding one or several �les. For instance, installing
caml adds language syntax �les to emacs. We call this soft because installing emacs
with the caml language syntax �les on a system which does not contain caml is not a
problem and may even be useful.

Hard cross dependency Package A has a hard cross dependency on the package B when
the A package adds �les to the B package or modi�es already existing �les of B. For
instance installing a http-browser adds an entry in a window manager menu. We call
this hard because installing the window manager with the menu entry to the browser
on a system which does not contain the browser will result in a dead link.

2.2 Manual management

Managing operating system is today based on package. Manual management of an operating
system is dedicated to home computer and is presented Figure 1.a.
It begins with the boot of an installation system from a CD or a USB key. The installation

3



(A)

(A)

(A)

system

system

of the installed

boot

reboot
automatic

configuration

manual

configuration

operational

system

boot

installation

installation

automatic

configuration

of the installed

system

updates

packages

repository

(A)

operational

system

automatic

configuration

sytem
of the installed

boot

reboot

manual

configuration

updates

automatic

configuration

of the installed
sytem

installation

system

installation

boot

(A)

(A)

packages

repository

configurations

standard

spécific

a) Manual b) Automatic

Figure 1: Phases of a computer installation and management.

system built the target system by interacting with the user and picking up the selected
packages from a repository. The installed system is rebooted and it performs automatic
con�guration. This consists of hardware detection, and tools launching according to a set
of con�guration variables in a database on the computer. This phase may be done in two
phases (A arcs).
After the automatic con�guration phase, the operating system is operational. The user must
log in as the administrator to con�gure tools that the previous stage has not or poorly
con�gured. Later, when he wants to add or update softwares, he also needs to log in as the
administrator.

2.3 Automatic management

The system administrator of a computer site is responsible for dozens or hundreds of machines
and can not use the procedure planned for personal computer because the manual part is
source of error and it requires too much time. To assist him in this task, existing tools
[11, 14, 10, 12, 3, 7] operate on the general outline presented in �gure 1.b.

The installation of a given machine begins with a boot which downloads an installation
system via the network. The installation system fetches, in a standard con�guration repos-
itory, the target system parameters and automatically built the system. Then it reboots
the system it has just installed. This one performs automatic con�guration consisting of
hardware detection, and launching of tools according to a set of con�guration variables in
a database on the machine. This phase may be divided in two phases (A arcs Figure 1.b).
After the automatic con�guration, the operating system is operational for the software al-
ready con�gured by the previous phase. Then a robot fetches in the con�guration repository
the speci�c softwares to install or con�gure. This robot will also start periodically to update
softwares.

4



Most of computer site management tools provides as a robot, a protocol to upload �les or
run scripts from the repository. Their use requires a lot of work in the design and realization
of the con�gurations repository. De facto, system administrators often prefer to directly log
in on the computers to set the con�gurations, and only use the management tool for the
updates.

Some computer site management tools, such as [2], provide a language to describe the
computer site and a compiler to generate the repository. But this repository contains con�g-
urations scripts designed to run on the machine being installed and as a result they
do not have any information about the other operating system components nor an overview
of the computer site except for a few parameters prede�ned by the tool. As consequence,
speci�c con�gurations are not yet easy to achieve.

Finally all these tools are closely associated with a vendor and the package manager it
uses.

3 Problems of software managing

We now discuss the main problems of computer sites installation and management tools.

Automatic Installation and Management

Regarding interoperability, most tools are strongly linked to an operating system and can not
easily manage multiple systems of di�erent vendors. To avoid this problem, [9, 8] proposes a
language for describing operating systems with a directive allowing to select �les in function
of the vendor.
Regarding installations, they are not really fully automatic in the general case. In fact, they
rely on a con�guration repository, the creation and maintenance of which require a too big ef-
fort from system administrators. Installation is truly automatic only when the target system
matches the standard scheme provided by the tool. This excludes the management of speci�c
systems on client machines and the management of server operating systems. Moreover, the
tools can not manage multiple systems of the same vendor on the same machine.
Regarding updates, all the tools are based on a package manager. The package manager is a
component of the operating system. It runs on every machine and maintains a database of
the packages already installed. The package database contains information such as version
numbers and how to uninstall. In the automatic version, a robot fetches from the con�g-
urations repository the packages to install, uninstall or update and submits the works to
the package manager. This mechanism gives rise to security problems (see paragraph Safety
below) and over time, to an increase of the entropy of the operating system as mentioned in
Section 2.1. To summarize these paragraphs, a complete reliable computer site management
tool must allows:

1. to update an operating system without increasing its entropy and the entropy of the
computer site,

2. to provide tailored operating systems,

3. to automatically install multiple operating systems of the same vendor on one machine,

4. to install automatically operating systems of di�erent vendors.

Speed of the installation

After the automation of the installation, the second criterion is speed. Indeed, the reinstal-
lation of an operating system is the safest way to restore a stable state. However, if the

5



installation is too long, system administrator would prefer to manually correct the malfunc-
tion; Such manual correction on several machines of the site may increase the system entropy.
As shown Figure 1.b, the duration of an automatic package based installation of an operating
system is split into: 2 boots, 2 system initializations, the installation of packages (down-
loading and writing on disk), the con�guration of packages . For an image based automatic
installation, this duration is divided into: 2 boots, 2 system initializations and the image
installation (download and writing on disk). Among these steps only the duration of the
boots and the image installation cannot be reduced.
The use of tailored systems instead of general ones, reduces the number of packages to down-
load and decreases the duration of the installation of package .
The initialization of operating systems is long because it is done by general scripts which
spend more time detecting the initializations to do than to perform them. Using initializa-
tion scripts tailored for the operating system can reduces this time.
The con�guration of packages can be avoided if the downloaded packages are already con-
�gured for the operating system and the target machine.

Package granularity

In order to build tailored operating systems, the package hard and soft dependencies are a
critical issue. This raises the problem of package granularity. In �gure 2.a, packages B C

and D depend on A but in di�erent ways. For being able to tailor an operating system, the

A
1

A
2

A
4

3
A

B C D

A

A
1
A

2 3
AA

4

B C D

A

B C D

A) real dependency B) optimal dependency C) dependency used

Figure 2: Package granularity problems.

A package must be split into a set of sub-packages Ai as shown Figure 2.b. This approach
increases the number of packages and so the complexity of their maintenance. Furthermore
the division of A is not an intrinsic property of A, but derives from current and future
packages based on A. For these reasons, packagers do not split a software into sub-packages
as shown Figure 2.c and thereof the A package is installed each time that B, C or D are
installed on an operating system. For the C and D packages which use only pieces of A, this
a�ects the installation speed if A is big and it imports all potential vulnerabilities of A (see
Figure 6.c).

Safety

In this section, we focus on general security of computer sites. It consists of reliability,
con�dentiality and e�ciency. They depend on the choices made in the 3 main phases of the
computer site installation and maintenance.
) General infrastructure: There is 2 levels for setting the general infrastructure of a

computer site.
At the logical level, the system administrator must choose among other thing, the ser-
vices, the softwares providing them, how to balance load, how to set up redundancy for

6



services supporting it, the backup system.
At the physical level, it consists of splitting the computer site into sub-networks and of
choosing the machines with the hardware that is more adapted to the required services.
This requires great skill and experience, to be aware of the many existing software
alternatives for each service and to be aware of the compatibilities and of the incom-
patibilities between these softwares.
Finally, the main bene�t in reliability and e�ciency results directly from the general
infrastructure.

) Con�guration: All software chosen in the previous phases must be con�gured. In
the simplest case this con�guration consists of setting some con�guration variables (see
Figure 6.d), in more complex cases it consists of creating �les and setting dozens or
hundreds of variables (see Figure 6.e). Sometimes, it requires to write some scripts or
programs in order to allow some softwares to cooperate (see Figure 6.f).
Finally, the main bene�t in con�dentiality results directly from the con�guration. This
phases is the second source of bene�t in reliability and e�ciency.

) Software weakness correction: Many software have potential security vulnerabili-
ties. To reduce this risk, the �rst prevention is to install and run only the necessary
software. For these software, the system administrator must apply the security patches
provided by software distributor as soon as a vulnerability is discovered. But this should
be done before that the system has been attacked. This condition is not easy
to determine so in doubt, a complete reinstallation of the operating system is needed.
This reinstallation is not usually done by lack of automatic installation procedure.
Finally, even if it is given a lot of media coverage to the software weakness, it is quite
rare and much less important than the former phases.

Assisting the system administrators

The preceding paragraphs show the complexity of organizing and managing a computer site
as a whole. We should admit that the help supplied to the system administrators by both the
vendors and the installation tools is insu�cient. Indeed, most of packages provide binaries,
sometimes a default con�guration, which generally does not correspond to the computer site
requirement (see Figure 6.b). Similarly, for using installation tools the system administrator
must install the con�gurations of software in the con�guration repository (Figure 1.b). The
impossibility of packages to con�gure the software comes from the fact that on the one hand
some of them are complex frameworks and on the other hand that the con�guration also
depends on other machines of the computer sites.
Each system administrator has to read the documentation of these software and to experiment
them in order to clearly understand them. This learning may take several weeks to �nally
get a con�guration equivalent to the one of his colleagues on other computer sites or to an
imperfect con�guration.
A computer site management tool should enable the con�guration of such software or groups
of such software based on the computer site infrastructure.

4 Description of the YaKa framework

The YaKa framework[4] provides a language, a compiler for this language and an installer. To
start with YaKa (see Figure 3), one must describe the computer site using the language. Then
the compiler generates automatically the installation repository . The later contains the boot
server (DHCP/TFTP) and the download-unit database. A download-unit is an archive �le.
There are standard and con�guration download-units. The standard download-units contain
software �les that do not depend on the system and host in contrary to the con�guration

7



download-units �les. To install a host, one simply asks it to boot from the network, the
installer is downloaded and installs the system fetching only the needed download-units into
the installation repository . For hosts unable to perform a network boot, the YaKa framework
provides a command to generate ISO images from the installation repository .

4.1 Functional view

The functional view of the software is presented Figure 3. There are three stages. The �rst is
the description of computer site, the second is the compilation of the description to generate
the installation repositories and �nally an installation on each machine of the computer site.

host 

installer

host 

installer

host 

installer

ISO
generation

LAN
description

description
distribution

installation

repository

yaka

compilation

Figure 3: functional view of YaKa.

Description

Our description language permits to describe precisely and in a global way a full computer
site. For that, it supports several abstraction levels described below:

Computer level: A machine is a set of physical parameters (MAC address, disks, graphics
card, screen resolution, . . . ) and logical parameters (name, network address, gateways,
disk partitions, users, . . . ).

System level: At this level, the operating systems are described and bound to the ma-
chines of the computer site. A system is de�ned as an image which is a set of couple
(disk partition; file) or as a set of component called services.

Service Level: A service is an entity that extends the usual notion of package. It includes
the elements listed below. All these elements are optional.

� others services on which it has a hard dependency.

� a script to generate all �les (binaries, libraries, . . . ). In concrete terms, these �les
are obtained either by unpacking one or more tools distributed as binary code, or
by compiling one or more tools distributed as source code.

� a section listing all f ixed �les of the service to be installed on the target system.
We call f ixed �le, a �le which is copied such as to all the target system. It is a
subset of the �les generated by the previous script but other �les picked everywhere
can be added.

8



� a set of soft �les. They correspond to the service con�guration �les to be installed
on the system. They are called soft because they are generators. The �le to be
installed is the result of this generator.

Our language also supports object oriented mechanisms such as inheritance and dynamic
linking. Furthermore, as shown Figure 3, this description is divided in two parts. The
distribution groups the standard services, it can be shared by several computer sites. The
LAN description de�nes the speci�c services of the computer site and includes the description
of the computer site at the computer and system levels.

compilation

According to the description, the compiler generates the installation repositories . A instal-

lation repository contains the download-units and the servers DHCP, TFTP, FTP with their
complete con�gurations and a script to start them.

The compiler run the generators of the soft �les in the context of the target system and
machine (the generator of a soft �le presents in S systems to be installed on M machines will
be run M:N times). These generated �les correspond to the con�guration �les.

Every system on each machine is generated ready to use. For example in the gen-
eral con�guration script of a machine, we may �nd for the keyboard con�guration the line
"/sbin/loadkeys fr-latin1" or "/sbin/loadkeys us" depending on whether the key-
board is French or American. This can be compared to classic Linux distributions where
the same function is achieved by several dozen lines of script possibly reading auxiliary data
�les. A consequence is that ready to use systems start faster (a few tens of seconds) and
moreover they only start what is really necessary avoiding potential security holes.

The compiled approach permits to the soft �le generators to know a priori (a) the system
in which the service �ts, and (b) the systems of the other machines of the computer site.
This is far more e�cient than the a posteriori approach commonly used by the package
managers. Indeed, for (a) they must �nd in the �le tree if a given service exists and how it
is con�gured. For (b), the only solution is to get the information by network mechanisms
such as broadcast discovery, interrogation of centralized servers. These mechanisms (see for
example [1, 16]),complicate the structure of computer site, decrease its stability and reliability
and are potential security problems.

Within a compiled approach, all the �les of a target system with a lot of information
are present in the compiler data structure. Such information may be the �le type, the
dynamic libraries it requires and so on. This makes it possible to handle precisely all the
dependencies mentioned in 2.1 (page: 3). Especially the YaKa compiler implements the
hard cross dependency and the soft dependency. This later allows to drastically reduces the
packages dependency graph without modifying the package granularity.

Finally, the compiled approach also allows to do many static checks leading to more
reliable systems and to saves system administrators's time.

Installation

The installation repository being created and the servers being started the installation mech-
anism of a computer is as follows:

1. The user requests a network boot on the machine.

2. The DHCP-BOOTP server returns a PXELINUX boot which displays a menu describ-
ing all the systems that can be installed on this machine. One of the entries in this
menu allows to go back to the disk boot and start a system already installed.

9



3. The user selects the system(s) to be installed.

4. Using TFTP the PXELINUX boot downloads from the installation repository, a Linux
kernel and a minimal Linux system in a ramdisk. Then it starts the minimal system
giving as kernel parameter the names of the systems to be installed.

5. The minimal system starts the YaKa installer instead of the standard init program.

6. The YaKa installer performs the following operations:

� It gets in the kernel parameters the names of systems to be installed.

� Using these names and the MAC address, it searches for the con�guration of the
machine and for the tasks to be done to install each system. This is done by reading
in the ramdisk, a �le describing all systems of all machines of the computer site,

� It initializes the machine (network, disks).

� For the systems based on services, the installer downloads the download-units
from the repository via FTP and unpacks them on the disk. For the image based
systems, it downloads the images and writes them unchanged on the disk.

� it installs a multi-boot.

� it reboots.

7. The user selects the wanted system in the multi-boot menu.

The YaKa installation is very fast because it requires only downloading and writing on the
disks the download-units. Unlike the installation tools based on package, no treatment such
as software con�guration is required. Moreover, being really totally automatic, installation
and reinstallation can be done by an end-user.

4.2 Service

The service is the innovative concept of YaKa. The idea is to de�ne a function independently
of the software it uses and of the machines where they run. It is illustrated on the example
of the email service.

The basic function of email is to enable a human or software agent to send messages
in mailboxes. As illustrated in �gure 4.a this function can be more or less complex. The
simplest case (on the left hand in the �gure) is a single machine which contains only users
and mailboxes. It is mainly used for the administration of the machine. The complete
function (on the right hand in the �gure) is more for human agent. It provides to the users a
mailbox. It allows them to send messages to the other users of computer site and to external
mailboxes, and to receives in their mailboxes messages from the local users and from the
external world. Today, because of spam and viruses, incoming messages must be �ltered,
marked and undesirable messages must be suppressed.

Figure 4.b presents the general scheme of the email management. From outside to inside,
the front-end receives the messages, applies �lters and transmits them to the switch. This
one applies more complex �lters and forwards the messages to the deliveries. Theses last
daemons can still apply �lters before writing messages in the user's mailboxes.
From inside to outside, outgoing(s) retrieves all messages from the inside and sends them
to the external world or to the switch depending on the message recipient.

In Figure 4.c, �lled ovals represent the basic services. They services, Except �lters, they
inherit of the same internal service because it is the same software but con�gured di�erently.
By inheriting from these services, The components sys-front-end, sys-switch, sys-delivery and

10



machine

internet internet

LAN

a) general function

front−end switch

delivery

delivery

outging

internet

internet

b) processing chain

filter−1 filter−2 filter−3front−end relay deliveryoutgoing

sys−outgoing sys−frontend sys−switch

mail−tool

sys−mailhubsys−delivery

c) services and systems

Figure 4: Service and package.

11



sys-outgoing are built by inheriting these basic services and they are the email part of systems
running on the servers presented Figure 4.b.
We can combine the email services to get all possible pattern such as sys-mailhub which
brings together all features on the same machine.

This example illustrates the concept of service that separates the notion of a software
tool from that of package. Indeed, the services delivery and outgoing are the same mail
software but con�gured di�erently, the service front-end groups �lters and a mail software.
This software is con�gured to use �lters and only propagate messages from the outside to the
inside.

The compiled approach greatly facilitates the implementation of the concept of service
because it allows us to have all the needed information to generate the con�guration �les.
Finally, the global approach gives a knowledge of the services of all machines, and it permits
to increase the coherence of the computer site. For example, email browser services can be
automatically con�gured by looking for the machines providing the delivery and outgoing

service.

5 Experimental results

To prove the validity of the approach, we developed a consistent Linux distribution, we de-
scribed the computer site of the ENSIIE teaching network (a postgraduate school in computer
science), and we deployed it in 2005. It is still used in production today.

The ENSIIE teaching network consists of 400 users, 150 machines (a dozen servers, the
others being self-Service computers for students), dozen of operating systems (Windows,
QNX, YaKa-Linux).
In this example, the YaKa compiler running on a PC P4-3GHz, takes about 6 minutes to
generate the installation repositories that contains 1449 YaKa-Linux systems, 78 Windows
and QNX systems.

Let us resume this experience in respect of the problems presented section 3 (page 5).

Automatic Installation and Management

The installation of operating systems on a machine is 100% automatic since installation

repositories and the minimal installation system are created by the YaKa compiler. At
ENSIIE, installing speci�c operating systems or reinstalling standard ones are left to end-
user.

1. The tool provides a sustainable solution for software update breaking with the online
software update. It prefers a full reinstallation of a stable system previously updated.

2. The tool can easily produce tailored YaKa-Linux operating systems. The smallest is
the minimal installation system which is also described in the YaKa language. At
the ENSIIE, we have described speci�c systems such as one dedicated to server, one
dedicated to development, one dedicated to o�ce work, one dedicated to system and
network teaching (expurgated of standard software such as word processors, enriched by
speci�c tools such as network sni�er and with an unprotected administrator account).

3 & 4 The tool allows to install any number of systems. The YaKa-Linux systems being
downloaded via a package approach and the systems of others vendors via images.

12



Speed of the installation

The speed of installation based on package is due to several factors: 1) the possibility to
install tailored operating system reduces the amount of data to download, 2) the system
start-up script being also tailored, no time is spent for detecting what should be initialized,
3) �nally, the packages being con�gured by the compiler, there is no longer any con�guration
of packages during the installation.
For the 10baseT network presented Figure 5 and for about twenty machines, the duration
from the time one switches on the computer until the "login" prompt appears, is less than 2

desktop

desktop

desktop

desktop
NFS

server

server
installation

100 mb/s

1 gb/s 1 gb/s

1 gb/s 1 gb/s

switch

switch

switch

Figure 5: 10baseT 1Gb/100Mb Network.

minutes for the system dedicated to network teaching and, 5 minutes for the system dedicated
to o�ce work. and to o�ce work.

Package granularity

The compiler implementing the soft dependency allows to suppress a lot of hard dependency.
With the global approach a package designer can add only some piece of a package to an other,
this allows also to suppress a lot of hard dependency. These to features reduces drastically
the complexity of the package dependency graph.

Safety & Assisting the system administrators

The service concept breaks the traditional association between package and software. The
compiler allows to con�gure services taking into account other services running in the same
system or in other system of the computer site.
The functional abstraction of the services, allows to use complex software or a group of
software without having to worry about the details of their con�gurations. This solves a
lot of security problems. This abstraction provides service library that are really helpful to
system administrators.

6 Conclusion

The approach proposed by YaKa and validated by its use in production at ENSIIE is a good
solution to the problems of computer site installation and management. This approach is
based on two innovations:
) A language which allows to describe a computer site as a whole and at all levels:

the machine hardware, the operating systems to install on the machines, the system
description as image or as a set of services, the service generation.

) A compiler generating ready to use operating systems. This is the opposite of the in-
stallation and management tools based on a package manager running on each machine.

Compared with other tools, these innovations provide especially the following advantages:
The compiled approach allows to perform a lot of static veri�cations on the generated oper-
ating systems. The global view of the computer site allows to de�ne a service as an inter-

13



a) Adding a slave DNS server requires to change the DNS con�gura-
tion (eg: the /etc/resolv.conf �le for Unix) of all machines of the
computer site.

b) The package of rwall tools may just provide binaries, which is not
really useful, or may be con�gured by default to allow every user to
send messages to any machines, which is �ne in a home LAN but not
in a computer site. Actually, in a computer site, only servers should
be able to send message to client boxes.

c) For example installing the small converter a2ps in Mandriva re-
quires among other things a full installation of the graph visualiza-
tion suite (graphviz) and of the powerful image management suite
(ImageMagick).

d) The con�guration of the common less GNU command requires only
to have the LESSCHARSET environment variable set to the right
character set.

e) The con�guration of the SAMBA software requires several con�gu-
ration �les the main of which beeing the smb.conf �le having several
hundreds of variables. Furthermore, when authentication and home
servers are not placed on same host, SAMBA must be con�gured on
every server in a di�erent way.

f) To ensure a reliable synchronization of a SAMBA and NIS password
database, a small program is to be written. This is invoked by the
SAMBA framework when a user changes its password and its role
is to change the NIS database too.

Figure 6: List of concrete examples.

software and inter-machine entity. Finally, the generated systems that are ready to use, start
very quickly.

At the ENSIIE, the YaKa experience is now extended in three directions. The �rst is to
improve the computer site description language and to improve the YaKa-Linux distribution
with new services. The second is to de�ne services over a major Linux binaries distributions
(Redhat, Debian, . . . ). Finally, the last one is to achieve a general public installation by the
Web.

References

[1] Paul Anderson, Patrick Goldsack, and Jim Paterson. Smartfrog meets lcfg: Autonomous
recon�guration with central policy control. In LISA '03: Proceedings of the 17th USENIX

conference on System administration, pages 213{222, Berkeley, CA, USA, 2003. USENIX
Association.

[2] Paul Anderson and Alastair Scobie. Large scale linux con�guration with lcfg. In ALS'00:

Proceedings of the 4th conference on 4th Annual Linux Showcase & Conference, Atlanta,
pages 42{42, Berkeley, CA, USA, 2000. USENIX Association.

14



[3] Paul Anderson and Alastair Scobie. LCFG: The Next Generation. In UKUUG Winter

Conference. UKUUG, 2002.

[4] Ivan Aug�e. Yaka: An environment for describing and installing site wide systems. http:
//yaka.ensiie.fr/.

[5] Ed Bailey. Maximum RPM. Sams, Indianapolis, IN, USA, 1997.

[6] M. Burgess. Computer immunology. Proceedings of the Twelth Systems Admin-

istration Conference (LISA XII) (USENIX Association: Berkeley, CA), page 283,
1998. http://www.usenix.org/publications/library/proceedings/lisa98/full

papers/burgess/burgess.pdf.

[7] Mark Burgess. A control theory perspective on con�guration management and cfengine.
SIGBED Rev., 3(2):12{16, 2006.

[8] Luke Kanies. Puppet: Next-generation con�guration management. ;login: the USENIX
Association newsletter, 31(1), February 2006.

[9] Luke Kanies. puppet. Technical report, reductive labs, 2007. http://reductivelabs.com/.

[10] Paul Anthony Kasper and Alan L. McClellan. Automating Solaris installations: a custom

JumpStart guide. SunSoft Press, Mountain View, CA, USA, 1995.

[11] Thomas Lange. Fai - fully automatic installation. http://www.informatik.uni-koeln.
de/fai/.

[12] Microsoft. sysprep microsift report. http://support.microsoft.com/default.aspx?
scid=kb;en-us;302577.

[13] Microsoft. Windows Installer. http://msdn.microsoft.com/en-us/library/

aa372866.aspx.

[14] Redhat. kickstart installation. http://www.redhat.com/docs/manuals/linux/

RHL-9-Manual/custom-guide/ch-kickstart2.html.

[15] G. Noronha Silva. Apt howto. Technical report, Debian, 2004.
http://www.debian.org/doc/manuals/apt-howto/index.en.html.

[16] Weibin Zhao and Henning Schulzrinne. Enhancing service location protocol for e�ciency,
scalabiliy and advanced discovery. J. Syst. Softw., 75(1-2):193{204, 2005.

15

http://yaka.ensiie.fr/
http://yaka.ensiie.fr/
http://www.usenix.org/publications/library/proceedings/lisa98/full_papers/burgess/burgess.pdf
http://www.usenix.org/publications/library/proceedings/lisa98/full_papers/burgess/burgess.pdf
http://www.informatik.uni-koeln.de/fai/
http://www.informatik.uni-koeln.de/fai/
http://support.microsoft.com/default.aspx?scid=kb;en-us;302577
http://support.microsoft.com/default.aspx?scid=kb;en-us;302577
http://msdn.microsoft.com/en-us/library/aa372866.aspx
http://msdn.microsoft.com/en-us/library/aa372866.aspx
http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/custom-guide/ch-kickstart2.html
http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/custom-guide/ch-kickstart2.html

	Introduction
	Managing computers
	Definitions
	Manual management
	Automatic management

	Problems of software managing
	Description of the YaKa framework
	Functional view
	Service

	Experimental results
	Conclusion

