
A Distribution and System Compiler for Handling

Heterogeneous Computer Site

Ivan Aug�e1, Vincent Leligeour1, Olivier Pons2

1 ENSIIE, 18, all�ee Jean Rostand, 91000 Evry
(auge,leligeour)@ensiie.fr

2 CEDRIC-CNAM, 292, rue Saint-Martin, 75003 Paris
pons@cnam.fr

Abstract. This document describes YaKa, a complete solution for deploying operating sys-
tems on large computer sites. This solution proposes a compiled approach that di�ers from the
standard installation approaches which, �rst install a basic system and then update or integrate
tools one by one by running scripts on the freshly installed system.
YaKa provides a language witch allows to describe a computer site as a whole and at all levels:
host hardware, systems to install on the hosts, system description, links between host systems,
software generation. A compiler then generates automatically the systems to be installed for
each host and generates the network installation servers. The generated systems are ready to
use and fully operational on their �rst run.
This approach has major advantages. As the compiler generates all the systems of all the hosts
in a single operation, every component of a system is generated with a complete knowledge of
all the other components of the system and of the network relationship between the host and
its neighbours. This ensures the coherence of each piece of software with the other softwares of
the system and with the environment of the host.
This dramatically decreases the duration of system installation and boot, by reducing the amount
of components needing to be installed and the complexity of the startup scripts. It allows one
to group together tools for providing abstract services such as the network-user service which
links two or more tools among PAM, NFS, NIS, LDAP and SAMBA. On top of this, a compiled
approach allows to do statically a lot of veri�cations such as checking if a required executable
is present or that no dynamic library is missing on the system.
The power of the language is illustrated by its ability to describe a complete source based Linux
distribution. The e�ciency and reliability of the tool are demonstrated by its use for several years
at ENSIIE (a postgraduate school in computer science) to manage all the hosts of the teaching
network (10 servers, 100 clients with heterogeneous hardware, di�erent operating system and
software).

1 Introduction

During the past decades, the architecture of computer sites has evolved from a cen-
tralized to a distributed approach. Most sites are now composed of a large number of
workstations often with several kinds of operating systems and di�erent software con-
�gurations. Furthermore workstations tend to have heterogeneous hardware. Managing
such a site and having all the computers in the wanted con�guration is a challenge for
the system administrator.

Although a bit primitive, manual installation using standard distribution procedure
is still popular. This involves to log into each machine to copy or edit con�guration
�le or to run custom scripts. It is very time consuming, source of error and makes
it di�cult to ensure the coherence of the whole site. One of the earliest solutions to
automate the installation of a large number of machines is to use clones. This usually
requires to manually con�gure some golden-copy machine and then to replicate its �le
system on each workstation. But this solution that guarantees identical con�guration
on each host and may be convenient for clusters is not practicable on heterogeneous
sites. In both cases, updates that require to log into hosts to install and con�gure

new software are complex and time consuming. In practice this often dissuades system
administrators to perform all but critical updates.

More recently, tools appeared to help the system administrator, �rst to install and
con�gure workstations and then to manage them. Most of them are tightly integrated
in free or commercial operating systems. For the installation, they use a �le with the
answers to the questions of the standard installation procedure. Then updates are
achieved using the package manager of the operating system. Those softwares lack
of genericity. If the site is not homogeneous in term of operating systems, system
administrator needs to use several tools to perform the complete site installation. The
situation is even worse if multi-boot workstations with di�erent operating systems are
required.

Furthermore, over time, the number of system and network softwares increased
drastically and softwares became more and more complex. A few softwares o�er new
services, most of them are variant of already existing services. The system administra-
tor has to choose which software to use for a given service and then to con�gure it.
He spends more and more time to understand software and to con�gure them. This
task becomes each day harder. Existing installation tools do not assist the system
administrator in choosing which software to use and in con�guring them.

This paper presents YaKa, a framework dedicated to the management of large com-
puter sites heterogeneous both in software and hardware. It provides a language that
permits to describe the full computer sites as a whole. Then compiling these descrip-
tion, it allows to generate ready to use operating systems and then to propagate
them automatically on the complete site. the YaKa framework is freely available[4]
and distributed under GNU Licence. The rest of the article is organized as follows.
First we introduce the mechanism of site management and review some of the existing
tools. Then we introduce our solution and describe our framework. Then we discuss
the speci�city of its associated language. And Finally, before concluding, we present
and comment our experiments.

2 Managing a computer site

In the last decade, several tools have been o�ered for system management.
[10,15,8,11,9,18] perform automated installation. They generally rely on a package man-
ager such as RPM[5] (and associated tools urpmi, yum), dpkg[17](and apt-get), or in
the Microsoft world windows-update[14]. Some tools[7,6,2,1] perform automated con-
�guration. Some of these are image based, some others are package based. A few of
them can support both approaches.

2.1 Package based approach

Most package based tools follow the typical scheme described Figure 1.

Database installation They use a DHCP/BOOTP/TFTP database for booting, a
package database, a con�guration database which contains con�guration parameters
and scripts for each host. Before anything else can happen, these databases must
be up and populated. (1 Figure 1).

First boot A mini system is downloaded via the network using the DHCP, BOOTP
and TFTP protocols (2a Figure 1). This mini system starts an installer which �rst
detects network and hardware disks, and then gets installation parameters from the

database
packageboot

server
configuration

database

harware detection
partitioning

formating

system start
auto−configuration
[update−daemon]

creation/maintenance

of

databases

host to

install

service
configuration

install system

install parameters
installer run

core packages

setting: user, time

 zone, network, ...

packages config

reboot

service parameters

updatetools package

update parameters

1

boot installationtool packages

2c

2a

2b

3c

3a

3b

Fig. 1. Functional scheme of package based deployment tools

system start
auto−configuration
[update−daemon]

creation/maintenance

of

databases

host to

install

service
configuration

boot
server

configuration
database

install system

install parameters
installer run

reboot

service parameters

updatetools package

update parameters

1

boot installation

2c

2a

2b

3c

3a

3b

image

harware detection
partitioning

database
packages

Images and

Fig. 2. Functional scheme of image based deployment tools

con�guration database. They describe among other things the disk partitions, the
root password and the packages to install. Using these parameters (2b Figure 1)
the mini system performs several tasks. First, it builds the disk partitions and
formats. Then it downloads the core packages (the packages needed to create a
base system) from the package database and install them. Finally it con�gures the
system (timezone, network, language, mount point, disk boot, . . .).
After these steps, host speci�c packages, called tools packages (2c Figure 1) are
installed. Unlike the core packages, they are not integrated into the installer. These
packages have a default con�guration which, in most case, does not match the
requirements, so the actual con�guration is delayed. For instance, the rwall tools
package may just provide binaries, which is not really useful, or may be con�gured
by default to allow every user to send messages to any machines, which is �ne in
a home LAN but not in a computer site. Actually, in a computer site, only servers
should be able to send message to client boxes.

Next boots At every reboot, the system auto-con�gures itself (3a Figure 1).
Once the system is started, the system administrator must con�gure once (usually
at the second reboot) the services that the previous step has left uncon�gured or
incorrectly con�gured (3b Figure 1). Con�guration is performed by editing �les,
downloading and running scripts or downloading and unpacking archives. To do
that, the system administrator logs on the machine either manually or by running
remote scripts.
At this point the machine is operational. Periodically existing tools must be up-
graded or new tools must be installed (3c Figure 1). In both cases the con�guration
and package database must be updated, then the system administrator or a dae-
mon start the package manager. In the case of the installation of a new package,
the corresponding services may be con�gured as previously (3b). In the case of an
upgrade, the existing con�guration is usually kept. Note that this operation may
break the software if the new release is not compatible with some options of the
previous con�guration.

2.2 Image based approach

Image based tools presented Figure 2 follow more or less the same scheme as the
package based tools. Before starting the installation, system administrators have to
build the image and to store it in the package/image database (1 Figure 2). A mini-
system is downloaded. It starts an installer that initializes the disks, downloads the
image and then installs the boot (2 Figure 2). An image depends on the hardware
and network con�gurations amongst other things. In the worst case, a di�erent image
is needed for each host. To avoid this, a standard image could be built and adapted
after its installation on the host (3b Figure 2) This operation can be performed either
manually or by using tools such as [13,7,2]. The machine is now con�gured; its update
(3c Figure 2) is similar to the package based installation.

The main drawbacks of this method are that system administrators spend a lot
of time handling images, and that downloading images is much slower than installing
distribution packages. This method is generally used for operating systems which does
not support package installation or for bypassing restrictions of installer tools.

2.3 Existing solutions

Existing softwares di�er in database formats, access protocol and packaging tool but
these di�erences are not really relevant for our purpose and are not discussed in this
paper. The signi�cant di�erences are in the support of di�erent steps, in the way to
build the con�guration databases process and in the operating systems that can be
installed. We shortly discuss some popular tools without pretending to be exhaustive.
Fai [10] supports steps 1, 2, and impolitely 3c. The package database is a mirror of
the Debian package database and the con�guration database must be built manually.
The step 3b may be suppressed by writing scripts called "hooks", but they should be
written manually by system administrator. This system is dedicated to install Debian
operating system, but by using hooks, it is possible to install images of other operat-
ing systems. Kickstart [15,16] and jumpstart [18] are similar tools but respectively for
Redhat Linux and Solaris.
Lcfg [2] supports the steps 1, 2, 3c. The package database is a mirror of a rpm base.
The con�guration database is generated from description �les allowing system admin-
istrators to de�ne components and host pro�les. A component is a set of variables
with default values and scripts. It corresponds more or less to a package or to a simple
feature like a �le as /etc/export. A host pro�le is a set of components where default
values can be overwritten. For speci�c con�guration, the step 3b may be suppressed by
rewriting the component scripts. The generation of the con�guration database makes
it safer than the previously mentioned softwares. Nevertheless there are signi�cant
weaknesses in this framework:

{ A con�guration script has neither knowledge of the other components installed on
the operating system, nor a global view of the computer site except for a few built-in
parameters like for instance MAC addresses of the others hosts.

{ Running con�guration scripts on the host slows down the installation.
{ Bad con�gurations, such as misspelling a con�guration variable name or a command
path in a con�guration script, or a missing dynamic library are only detected upon
installation or upgrade.

Cfengine [7] proposes another approach. It only supports step 3b and have to be used
with an installer tool [12]. The con�guration database is generated from description
�les. A con�guration may be view as a set of couples (condition, action). On the host a
daemon periodically reads the con�guration and executes the actions corresponding to
the unmatched conditions. This allows to update existing tools, to install new tools and
even to monitor the host. The description language allows to de�ne abstract notions
such as a NFS client and to map them on di�erent operating systems. Nevertheless
con�guration descriptions can not easily refer to other components installed in the op-
erating system and even less to the other hosts of the computer site.
M23 [8] o�ers a web interface to manage the database installation of Debian
packages[17]. It supports the steps 1, 2, and 3c. But it does not o�er abstract services
and as a result step 3b is left to the charge of system administrators. If an adminis-
trator expects user's accounts to be handled by NFS/SAMBA/NIS, he will have to
read the documentations of these tools and to con�gure them manually. If he is not an
expert of these tools, he will spend several weeks to �nd a con�guration corresponding
to his needs. If he wants to switch from NIS to LDAP, all the con�gurations needs to
be redone.

We identi�ed the main weaknesses in existing tools for managing computer sites:

{ Except for [7] they are tool-oriented and do not provide any abstract services such
as Network users, mail hub, system message broadcasting.

{ They intensively use system updates. On the one hand this raises reliability and
security issues. On the other hand updating is performed by package manager which
installs much more packages that what is really needed and fails to automatically
con�gure complex softwares. Reliability problems are mainly due to miscon�gu-
ration and to the lack or incompatibility of dynamic libraries so the stability of
operating system decreases as the time grow. Security update are mandatory but
they must be done before operating system attacks. Package manager problems are
due to package granularity. The �ner the grain, the more dependencies decrease but
also more di�cult is the package maintenance.

{ In order to support various hardwares and softwares, they use a lot of large and
complicated scripts parametrized by a lot of variables. This may be adapted for
home systems as this allows the system to provide a graphical user interface for
system con�guration, but this notably slows down the system initialisation process.

{ They often require system administrator intervention.

3 The framework

3.1 Overview

host

installer

host

installer

host

installer

ISO
generation

LAN
description

description
distribution

installation

repository

yaka

compilation

Fig. 3. General
ow graph of YaKa framework

The YaKa framework provides a language, a compiler for this language and an in-
staller. The language allows one to fully describe a computer site, as well as a full Linux
distribution (see Section 5) or a small system suitable for an installation ramdisk. The
general
ow graph of the framework is presented Figure 3. To start with YaKa, one must
describe the computer site using the language. Then the compiler generates automat-
ically the installation repository . The later contains the boot server (DHCP/TFTP)
and the download-unit database. A download-unit is an archive �le. There are standard
and con�guration download-units. The standard download-units contain software �les
that do not depend on the system and host in contrary to the con�guration download-
units �les. To install a host, one simply asks it to boot from the network, the installer

is downloaded and installs the system fetching only the needed download-units into the
installation repository . For hosts unable to perform a network boot, the YaKa frame-
work provides a command to generate ISO images from the installation repository .
This approach results in the functional scheme presented Figure 4.

creation/maintenance

of

databases

host to

installdatabase
download−unitboot

server

installer run

1

2a

install parameters

download−units

partitioning

formating

boot installation

2b

2c

reboot

system start 3a

update

configuration unit

install system

3c

3b

Fig. 4. Functional scheme of YaKa tools

Database installation In the YaKa framework the con�guration and package
databases are replaced by a download-unit database (1 Figure 4). It is included in
the installation repository and so it is fully automatically generated. In contrary to
others installation tools, the con�guration �les are ready to use, there is no param-
eter but directly the �les the system requires. For instance the "rc.sysinit" �le, down-
loaded within a download-unit, contains the line "/sbin/loadkeys fr-latin1" if
the host has a french keyboard or "/sbin/loadkeys us" if the host has a US
keyboard. This is to compare with the "rc.sysinit" �le of the Mandriva Linux dis-
tributionwhich uses several tens of lines for the same result.

First boot The installer of the mini system does the disk partitions, it formats them
if required and then it downloads the download-units. There are neither additional
hardware detection, nor package con�guration. This is due to the ready to use

nature of the con�guration �les.
Next boots At the second boot the system is fully operational. There is no need

for the system administrator to operate as all services are already con�gured (3b
Figure 4). The only exceptions are for the few services using data that the system
administrator does not want to leave on the installation repository for security rea-
sons, such as the LDAP administrator password. Notice that the global description
allows to knows all services running on all machine without needing service discov-
ering tools such as [19].
The update step (3c Figure 1) does not exist, it is replaced by a full reinstall. Of
course this leads to a system shutdown but the unavailability time is low enough to
be supported. For instance on a 100 Mbits network, a reinstallation, from shutdown
to the login prompt, takes less than 2 minutes for a server and about 5 minutes for
a 3.3 GB Linux system.
For servers that should not be halted, YaKa provides con�guration units that can
be downloaded and installed by the system administrator on running systems. For
instance, this permits to add/suppress users or to add/suppress entries in a �rewall
easily.

YaKa also supports image installation and multiple operating systems on the same
host. The installer can be con�gured to install/reinstall one or several systems on a
host. For a system using several partitions it can be con�gured to install/reinstall one
or several partitions. This last feature is especially useful when reinstalling a system
to preserve the already existing user's home, databases,

Unlike other tools, YaKa does not perform updates on a running machine, and
does not execute con�guration script when a machine is installed. All this is replaced
by a reinstallation. This is possible because both the reinstallation and the reboot are
very fast. The reinstallation is fast because it only initializes the disks, fetches the
download-units and installs them without any transformation. The reboot is fast be-
cause the system start scripts only contain the necessary code and they only start the
required services.
Regarding reliability and security, a full reinstallation guarantees that the system
restarts in a clean state, that malicious software installations have been cleaned up
and that unknown processes have been killed. Finally, installation/reinstallation being
fully automated, system administrators can leave this task to the end-users on the
client desktops.

3.2 Compilation phases

The compilation
ow graph is presented Figure 5. The description database is a set of
Y-Packages described in YaKa language. A Y-Package is the basic element for building
operating systems, it corresponds to one or several softwares. They are compiled with
yaka-comp to generate the Y-Package binary database.
Computer site description (LAN description in Figure 5) also uses the YaKa language,
to describe the hosts of the computer site. For every host, the hardware, network param-
eters and desired systems are speci�ed. These systems are either disk images or are built
from the Y-Package. Furthermore at the end of the installation process, user archives

LAN
description

images

tarballs

bash
scripts

yaka−comp yaka−script

bash

installation
repository

N

installation
repository

1

Y−Package
description
database

binary
database

Y−Package

Fig. 5. Flow graph of YaKa compilers

can be added. This is useful to restore data such as user's home or DBMS data. The
yaka-scripts command reads the computer site description, the Y-Packages which
are referenced and then creates bash scripts. Running these scripts generates the in-

stallation repositories . A installation repository is a directory containing the DHCP,
TFTP, FTP servers with their con�guration �les and a script to start them. It also
contains a fully con�gured PXELINUX and all the download-units. For e�ciency rea-
sons, yaka-scripts �rst looks in the installation repositories (doted arrows Figure 5)
and creates only the bash scripts for the missing download-units.
Finally, LAN description supports several installation repositories . This allows to
switch from a standard installation environment to a speci�c one when needed. For
instance, a standard installation environment installs Microsoft Windows and Linux
operating systems with a multi-boot and network accounts, a speci�c installation en-
vironment installs a operating system for handling the hosts as a computing grid.

3.3 Installation scheme

Running an installation repository starts the DHCP, TFTP and FTP servers. Figure 6
illustrates exchanges between these servers and a machine being installed.

Network boot At network boot, the bios broadcasts a DHCP/BOOTP message, the
DHCP server answers, giving an IP address and a boot program. We currently use
PXELINUX[3].

PXELINUX boot This program requests a con�guration �le from TFTP servers.
This �le describes installation options and presents a boot menu to the user. The
user selects what he wants to install. Then the program downloads via TFTP a
Linux kernel and a minimal Linux system (8 Mb) containing the installer within a
ramdisk. There is a single ramdisk in an installation repository . PXELINUX ends

B
I

O
S

L
I
L
O

I
N
S
T
A
L
L
E
R

P
X
E
L
I
N
U
X

B
I

O
S

DHCPD TFTPD YFTPD HOST
bootp broadcast

pxelinux + IP

get IP.conf
boot menu

selection
get kernel + ramdisk

start kernel on
ramdisk with
systems to install

fdisk

mkfsget tarballs and unarchive them

get images and copy them

reboot

install multi−boot

ldconfig

boot menu

Suspend netboot

installation

repository

Fig. 6. Installation scheme

by starting the Linux kernel, giving it the user selection via the kernel parameters.
After its initialisation, the Linux kernel launches directly the installer instead of the
standard /etc/init program.

Installer Using the kernel parameters and the MAC address of the network interface,
the installer �nds in a data �le present on the ramdisk the sequence of tasks to
complete the system installation. The only tasks it can perform are making disk
partitions, formatting partitions, downloading and unarchiving tarballs, download-
ing gziped �les and copying to a disk partition, creating the dynamic library cache
and installing a multi-boot loader. Then the system reboots and is fully installed
and con�gured.

Multi-boot The user chooses among the systems that are already installed.

The important point is that once the description of the computer site in the YaKa
language is created, the process requires no human intervention except for the network
boot and multi-boot menus. These two steps have a timeout that starts the system
tagged as default in the YaKa computer site description.

4 The language

The YaKa language embeds a preprocessor which transforms the program before com-
pilation. It adds support to suppress comments, for stringi�cation, to include �le and
to select whether to include a chunk of code or not.

4.1 Language summary

The main syntax elements of the language are:

Y-Variable They are string variables or sets of string variables, some are prede�ned
such as ip4 which de�nes the IP address of the �rst network interface of a given
host. They can be set and read. Others read primitives are provided, allowing to
delay variables evaluation until they reach the context of a system on a speci�c
host.

Y-Host It is de�ned as a set of Y-Variables , the variables de�ning the IP and MAC
addresses are mandatory. Hosts may be grouped to be handled more easily.

Y-Package It contains: 1) A set of Y-Variables : theses can be the con�guration
parameters of the package, such as the address of the proxy for an http browser
or generation parameters such as the version number. The con�guration variables
can have default values which can be overloaded by rede�ning them in the host
or in packages including this package. 2) A set of �les, making up the package.
They can be simple �les (binary or data) or bash scripts generating host speci�c
�les. 3) A set of sub-packages, those indicate the package dependencies. 4) One
generation/compilation script. Its function is to produce the �les required in the set
of �les. The only restriction in the script is the bash syntax. For instance, for getting
the binaries of a given software, one can choose to compile the o�cial source archive
or to run the o�cial binary installer or even to extract them from the package of
an other distribution such as Debian or Redhat

Y-Disk It is a set of partitions, a set of mounts and exports of �le systems.
Y-Download It is a couple (Y-Disk ,Y-Package) or (Y-Disk ,(partition,image)). In

the �rst format, the �les of the Y-Package are installed in the partitions de�ned in
the Y-Disk taking into account the �le system mounts de�ned in Y-Disk . In the
second format, the data of the image are written into the partition which must be
de�ned in Y-Disk .

Y-Netboot It is a set of couples (Y-Host , set of Y-Download). It corresponds to
an installation repository . The DHCP/PXELINUX server will propose a menu to
all the Y-Hosts , the items of the menu being the Y-Downloads . Then the installer
installs the Y-Download corresponding to the item the user selected.

A computer site is fully characterized by a Y-Netboot , a Y-Netboot de�nes the Y-Hosts
with their associated Y-Downloads , the Y-Downloads de�nes the Y-Package (the �les
of system) and the Y-Disk which maps the Y-Packages �les to the hardware disks.
The Y-Variables are the generic parameters of the Y-Packages , they allow to manage
host speci�city.

4.2 Language speci�city

The �les de�ned in a Y-Package can be simply copied from an existing �le or can be
generated in di�erent ways using the system and host context. An example of system
context dependency is the PAM con�guration. The PAM/login con�guration �le de-
pends on the identi�cation tool used (standard unix, NIS or LDAP). An example of
host context dependency is the con�guration of an Internet client, because it depends
on whether the computer is directly connected to the Internet or not.
Figure 7.a illustrates how the con�guration �le of a ftp client named /etc/ftp.conf

can be generated. The hs-file token indicates that the data enclosed by the RAWDATA
markers are the content of the �le and macros like YKV are expanded in the system and
host context. Here the YKV macro expands the HTTP-PROXY variable to its value or
to none if the variable is unde�ned.

F /etc/ftp.conf hs-file <<RAWDATA

...

proxy=YKV(HTTP-PROXY none)

...

RAWDATA

F /etc/issue hs-bash <<RAWDATA

name=standard

if yakaget -pkg funny ;

then name=funny ; fi

echo "system $name "

echo "generated the $(date)"

echo "by $(hostname)"

RAWDATA
a) using basic �ltering b) using bash script

F /bin/dummy hs-bash <<RAWDATA

cc -DDUMMY=YKV(DUMMY-VAR) dummy.c

cat a.out

rm a.out

RAWDATA
c) using bash script

Fig. 7. Con�guration �le generation

Figure 7.b illustrates how the /etc/issue �le can be generated using a bash script.
The hs-bash token indicates that the data enclosed by the RAWDATA markers is a bash
script. This script is run in the system and host context. The data the script writes
on the standard output stream become the content of the /etc/issue �le. In such a
script, the yakaget command allows to fetch information from the system and host
context. In the current example, the "yakaget -pkg funny" command checks if the
system being built contains the funny Y-Package, date and hostname are the usual
Unix commands.
In the last example (Figure 7.c), we create in the target system, the �le /bin/dummy

which contains the executable generated by compiling the dummy.c �le. In this compi-
lation the DUMMY cpp macro can be set to di�erent values in every host by setting the
DUMMY-VAR variable. So every host can have a di�erent binary.
These examples show the power of the YaKa script features: 1) It's an easy way to
adapt �les to a given system of a given host in function of the information available
in the system and host context. The main information kinds are: checking if a variable
is de�ned, getting the value of a variable, checking if the system contains a given �le,
checking if the system being built contains a given Y-Package, getting the path of all
directories of a given base name, getting all the hosts of a given network address. 2)
Since we do not run script on installed host, we have not to install the tools used by
the script on the host system. In the opposite to other tools, in the last example a C
compiler and the �le dummy.c have not to be present on the target system.

In a package oriented tools there are several dependency types, both in package
generation and in package installation.

Generation dependency Package A has a generation dependency on the package B
when to generate A, one must �rst generate package B. This does not imply the
need of B to use A.

Hard dependency Package A has a hard dependency on package B when package A
can not run without package B. The usual reasons are that A requires executables
or dynamic libraries, possibly with con�guration �les, from B. The amount of the
required B is very variable.

Soft dependency Package A has a soft dependency on the package B when package A
requires for running one or several B dynamic libraries linked within the A package
binaries (not loaded explicitly through the dlopen function).

Soft cross dependency Package A has a soft cross dependency on package B when
the A package modi�es the B package by adding one or several �les. For instance,
installing caml adds language syntax �les to emacs. We call this soft because in-
stalling emacs with the caml language syntax �les on a system which does not
contain caml is not a problem and may even be useful.

Hard cross dependency Package A has a hard cross dependency on the package B
when the A package adds �les to the B package or modi�es already existing �les of
B. For instance installing a http-broswer adds an entry in a window manager menu.
We call this hard because installing the window manager with the menu entry to
the broswer on a system which does not contain the browser will result in a dead
link.

For generation dependencies, the language provides the "<read> package-name" prim-
itive. For the hard dependency, the language provides the "use package-name" prim-
itive which adds all the �le of the name Y-Package. Furthermore YaKa o�ers the
possibility to add only some �les of a Y-Package to another Y-Package. For instance,
a client system using Samba for handling user accounts, does not need the full Samba
software but only the smb.conf �le and the smbpasswd command. These �les can be
picked from the Samba package. Such a precise selection is not possible with most of
the existing installers because the inside of package is not available whereas with YaKa
all the information of all Y-Package resides in the compiler memory.
For the soft dependency, when generating a system, the compiler searches for the
missing dynamic libraries. It searches them in the existing Y-Packages and adds au-
tomatically the missing libraries to the generated system and noti�es the user about
those it has not found. This allows to suppress a lot of hard dependency that other
tools have. It is also especially useful when taking a piece of a package. In the former
example (user's account handling with Samba), one does not have to worry about the
dynamic libraries needed by the smbpasswd command.
For the soft cross dependency YaKa works as the others tools, the �les of a package
dedicated to an other package are installed even if the other package is not present on
the system.
For the hard cross dependency, the built-in yakaget command allows a Y-Package

to take in account the existence of another Y-Package or of a �le in the gener-
ated system. Furthermore the set of variables allows to distribute among the Y-

Packages a given information. For instance in the Y-Package firefox we have
the primitive "VLV MainMenu="firefox@firefox.png@/usr/bin/firefox"" which
de�ne a window manager menu entry, labeled �refox, with icon firefox.png,
with binary /usr/bin/firefox. In the Y-Package acroread we have similarly
"VLV MainMenu="accroread@accroread.xpm@/bin/accroread"". In a system con-
taining the firefox and the accroread Y-Packages the MainMenu variable will con-
tains the two values, in a system where accroread is not present the corresponding
entry will not be present in the MainMenu variable. So, all window managers can use

the MainMenu set of variables to create a main menu adapted to the generated system.

When describing a package or when con�guring a computer site a lot of errors are
possible, the YaKa language and the compiler provide several features to avoid them.

mistakes in variable handling The package designer de�nes variables for con�gur-
ing the packages that the system administrator must set. Classic mistakes are 1)
the system administrator uses a con�guration variable for his own need and so over-
writes its default value, 2) he wants to set it but misspells its name, 3) he forget to
initialize a mandatory variable.
The language de�nes and types the con�guration variables of a package as in
"define VLV MainMenu" which types MainMenu as a set. The other types are CFV
for con�guration variables and ENV for environment variables. When such a vari-
able is de�ned, the variable name becomes case insensitive and variables must be
assigned using the type token (eg: VLV MainMenu = ... ;) avoiding mistake (1)
and assigning a variable which has not been de�ned as a con�guration variable with
a type token (eg: VLV MainMenu = ... ;) generates an error avoiding mistake (2).
To avoid the mistake (3), the "yakaget -vov varname" command allows to re-
trieve the value of the varname variable in the system and host context. By default
it generates a fatal error if the variable is unde�ned in the given context.

misspelling �le name The package designer often has to write scripts. Those ref-
erence �les, the most common errors being misspelling the �le or referencing an
non-existent �le or for binaries a bad executable search path. The YKG(str) macro
detects these errors at compilation time. This macro searches for �le paths ended by
str and expands to the absolute path of the �le. The expansion is done in system
and host context. If the built system does not contain such a �le, a fatal error is
raised, if several �les match the shortest path is selected and an error message is
printed. So the line starting the ftp server may be written in the system startup
script "YKG(n/in.proftpd) -c YKG(proftpd.conf)" which will generally expand
to "/usr/sbin/in.proftpd -c /etc/proftpd.conf"
This macro can also be used in variable setting, the previous setting of the MainMenu
variable may be written to enforce reliability:
"VLV MainMenu="firefox@YKG(cons/firefox.png)@YKG(in/firefox)""

forgetting dynamic library When building a system, the compiler indicates the
missing dynamic libraries. Options allow to print the executables or the dynamic
libraries requiring them.

multiple de�nition of �le Sometimes di�erent packages create di�erent �les under
the same path. The installation order of download-units will result in di�erent
system. The compiler automatically detects such inconsistencies and generates an
error.

To speed up the installation, it is possible to delay the download of tools at the
�rst use using a feature we call the YaKa �le system 3. It consists in mounting via
the network an image of the real �le system and to replace some local regular �les
by symbolic links to the �les of the network �le system. Figure 8.a shows the two �le
systems, circles being directories, black square being ordinary �les and white square
being symbolic links to the network �le system.
From the user point of view, YaKa �le system is completely similar to a local �le system

3 We call it �le system even if it is not one but we have not found a right nomenclature.

A

BC

C

A

BC

root

D

NFS mount

NFS serverInstalled machine

root

D

NFS mount

NFS serverInstalled machine

A

B

(a) Links between file systems before using A

root

D

NFS mount

NFS serverInstalled machine

(b) Requiring A and B

(c) Links between file systems after using A and B

Fig. 8. Principle of YaKa �le system

except a time overhead due to the network. But it di�ers from a classic network �le
system: the �rst time an user runs an application (concretely he accesses a set of �les, A
and B Figure 8.b), the system gets them via the network, then a daemon scanning for
accessed symbolic links replaces them by the real �le (Figure 8.c), so the subsequent
runs of the application are done locally. Notice that the YaKa �le system does not
require any kernel patch.
The language integrates primitives for handling the YaKa �le system. Firstly in the
Y-Package syntax element, the package developer has to specify �les that can support
the YaKa �le system. Secondly the system administrator must enable the YaKa �le
system in a Y-Download element (presented above) with the next primitives:

yfs-dir: <dir0> <dir1> ... ;

yfs-serv: <Download-S> <Host-S> <path-S> ;

Let's assume that Download-C is the Y-Download having these primitives. All the
hosts loading Download-C will have YaKa �le system support for the directories diri,
this means that the �les of these directories will be replaced by symbolic links if the
package developer has allowed it. The symbolic link destination, the NFS mount of
Host-S:path-S directory and the YaKa �le system daemon start are automatically set.
The second primitive indicates that the system Download-S downloaded by the host
Host-S will have the �le system image of the Download-C in the path-S directory. The
NFS server is started automatically. This automatic generation grants the coherence
of links, mount and export of the network �le system.

5 Results

The language is powerful enough to describe a full source based distribution. The dis-
tribution contains several hundreds of Y-Packages . The leaf Y-Package contains: base
system utilities (PAM, LDAP, NIS, SAMBA, SSH, CRON, APPACHE, MYSQL, CVS,
FTP, LPR, FOOMATIC, FIREWALL, VIM, EMACS, . . .), 3 X11 supports (XORG
standard, XORG ATI, XORG NVIDIA), 8 window-managers and KDE, languages
(C, C++, Java, Caml, Python, Perl, . . .), classical web and multimedia tools (THUN-
DERBIRD, FIREFOX, OPERA, MPLAYER, XMMS, XCHAT, OPENOFFICE, TEX,
. . .), various other tools (AUTOMAKE/CONF, MAKE, FLEX/BISON, GNUPLOT,
SCILAB, . . .), games.
The distribution also integrates higher level Y-Packages . They o�er services as ba-
sic monitoring, disk rescue, disk synchronisation, auto remount of network disks, and
multi-user screens (independent keyboard/mouse/screen on the same machine).
The distribution de�nes also top Y-Packages which are base to describe target sys-
tems. The most signi�cant ones are the pkg-std Y-Package which regroups most of
the Y-Packages in their development version, the pkg-gpt which is dedicated to gen-
eral purpose teaching, the pkg-serv which is very small and dedicated to servers, the
pkg-o�ce which is dedicated to o�ce work and is con�gured to look like Microsoft
Windows.
The distribution has been designed to be "service oriented". For instance, to handle
mails we have the following Y-Packages : a Y-Package mailhub-frontend which receives
and �lters the mails from the external world, a Y-Package mailhub-delivery which de-
livers the mails into the user's mailbox and a mailhub-out which receives the incoming
mail from the computer site to the external world. In a system including these 3 Y-

Packages , a single smtp server will perform the 3 services. If a system includes only

the �rst service and 3 other systems include only the delivery service, you get a single
smtp server which �lters quickly the incoming mails and dispatch them to the others
delivery servers.
All services con�gure themselves taking into account the variables and the host and sys-
tem context. For instance, to switch from a computer site based on NIS/NFS for Unix
and SAMBA for Microsoft Windows (with synchronized NIS and SAMBA databases)
to one based on LDAP, there are just to change 5 variables.

YaKa is a concise language, it allow to describe in about 150 lines a computer site
containing: 1 machine with a master LDAP server and a SAMBA account server, 1
machine with a slave LDAP server and a NFS and SAMBA home server and 2 clients
having a multiboot (unix-yaka and a windows image).
The language can also describe large computer site as the teaching LAN of the EN-
SIIE. The class rooms have more than 100 desktops with heterogeneous hardwares and
supporting several operating systems:

1. A YaKa/Linux based on the pkg-gpt top Y-Package for everyday use.
2. A YaKa/Linux similar to the former but with network restriction to avoid plagiarism

during laboratory classes.
3. Several Microsoft Windows.
4. Automatic examination systems, one for programming test, one for middleware test

and one for lex and yacc test.
5. Practice versions of the former systems to allows student to prepare for the exams.
6. Several systems dedicated to system, network, LAN administration courses. They

allow students to be root, they may be uninitialized for LAN administration practi-
cals, they may have special Linux kernels and speci�c tools like iproute2 for network
teaching.

The standard con�guration of theses machines is a multi-boot with 4 entries, one entry
is shared by operating systems that are periodically used. Everybody can install or
reinstall one system among 8. For handling the clients and other purposes there are
two YaKa servers, three NFS and SAMBA home servers with a �rewall at MAC address
level, two DNS, synchronized NIS and SAMBA account servers, an http proxy server,
two rescue server, an administration mail server, a project submission server, a http,
cvs, anonymous ftp, bug tracker servers. All these servers run also a YaKa distribution
and are handled by YaKa.

The ENSIIE computer site description takes about 3000 lines including a small
on-line user documentation for 144 hosts, 1449 UNIX systems, 78 WINDOWS systems
and 8 installation repositories .
On a P4-3GHzcomputer, the full generation of the distribution (yaka-comp Figure 5)
requires 1 day, the standard generation using some pre-compiled Y-Packages (boot-
strap, OpenO�ce, KDE, . . .) needs 6 hours. This generation is only required once.
Once the distribution is built, the �rst generation of the installation repositories takes
43 minutes decomposed in 8 minutes for the compilation (yaka-script Figure 5) and
35 minutes for generating the download units (bash Figure 5). Subsequent light up-
dates such as adding or suppressing an host, changing a host con�guration spend 6.25
minutes (3.25 minutes for compilation and 3 minutes for the installation repositories).
Subsequent updates such as adding a new software requires 11.75 minutes (3.25 min-
utes for compilation and 8.5 minutes for the installation repositories) plus the time to
generate the software (yaka-comp Figure 5).

desktop

desktop

desktop

desktop
NFS

server

server
installation

100 mb/s

1 gb/s 1 gb/s

1 gb/s 1 gb/s

switch

switch

switch

Fig. 9. Network used for experiments

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30

se
co

nd

desktop number

average
max
min

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30

se
co

nd

desktop number

desktop 1
desktop 2
desktop 3

(a) for N host (b) for a given host among N

Fig. 10. Duration of an installation

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30

se
co

nd

desktop number

average
max
min

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30

se
co

nd

desktop number

desktop 1
desktop 2
desktop 3

average

(a) for N host (b) for a given host among N

Fig. 11. Duration of an installation with YaKa �le system

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30
se

co
nd

desktop number

first run without YFS
second run without YFS

first run with YFS
second run with YFS

third run with YFS
fourth run with YFS

Fig. 12. Time overhead of the YaKa �le system

We tested the download speed on the LAN presented Figure 9. In all these tests
we have used a Linux system of 1.5 gb containing among other thing X11, ICEWM,
FIREFOX and OPENOFFICE, and each test was started simultaneously on all the
desktops.
Figure 10.a gives the time required to install N hosts. The measured duration is com-
posed of shutdown time plus the network boot plus the installation time plus its shut-
down plus the second network boot and plus the installed system startup until the
login prompts on the Linux consoles. The curves show that the installation duration
varies in ratio from 1 to 2.5. This is essentially due to bad network connectivity and
disk weaknesses. The variations of the left part of the graphs are not signi�cant. The
average and minimal curves show that the network starts to slow the installation at
about 16 hosts, this is con�rmed by Figure 10.b which gives the duration for installing
the same host depending of the number of hosts that are installed simultaneously. It
is more than the expected 10 given by the bitrate ratio of the switch line bitrates
(1000=100 mb=s). In fact the deskstops alternate downloading and writing on the disk
and they do not use all the 100 mb/s available. So 20 desktop are installed in about 5
minutes. To keep this performance with more hosts, it is possible to run several instal-
lation repositories to distribute the load or use the YaKa �le system.
Figure 11.a gives the duration using YaKa �le system for installing N hosts and Fig-
ure 11.b gives the duration for installing the same host. The average curve starts near
25 hosts to grow up slowly. A single installation repository installs 30 desktops in about
2 minutes. It is three times more than the expected 10. That is essentially due to about
50% of time is now spent in bios and system start.
The last experiment is to start simultaneously on all the hosts X11, ICEWM, FIREFOX
(getting a page) and OPENOFFICE (opening a document) and to time when FIRE-
FOX and OPENOFFICE are fully started (page and document are on the screen). The
results are presented Figure 12, they show that YaKa �le system becomes quickly sim-
ilar to the local �le system. The overhead of 40 seconds for 30 hosts that will probably
grows exponentially is not critical. Indeed it assumes that 30 humans starts a YaKa
�le system application in less than 15 seconds, this is not a common situation.

6 Conclusion

YaKa is mature and it is intensively used at ENSIIE, it provides
exibility, saves system
administrator time and has really made our computer site software homogeneous.

The complexity of system generation is given by the formula
P

N

i=1
Si where N is

the number of machines, Si is number of systems of ith machine. This is round to
N:S where S the average number of systems by machine. At ENSIIE the complexity is
100:10 = 1000 (M =100 and S =10). By extrapolating the ENSIIE experiment, it is
possible to manage in a centralized way similarly computer sites up to ten times larger
(to a complexity of 10000) before the generation time becomes prohibitive. Indeed it is
possible to handle 500 machines with 20 systems on each machine or a super computer
farm of 10000 hosts. Another limitation is the number of hosts that must be loaded
simultaneously. It can be solved by using the YaKa �le system and/or by using several
synchronized installation repositories . For instance at ENSIIE, we use 2 installation

repositories which allow to load 60 machines simultaneously in good conditions.

The YaKa innovation is that all systems are generated fully ready to use. Unlike
others installation system tools, no work is performed once the system is downloaded
on the machines. The YaKa experiments prove that this approach is valid even for a
large number of systems. The main advantage of this approach is a very fast installation
which allows to easily switch from a system to another and which increases security by
allowing to restore an uncorrupted system.

YaKa comes with an innovating language allowing to describe and manage a com-
puter site as a whole at all the levels: host hardware, systems of hosts, system de-
scription, links between hosts, software generation and installation. It allows also to
de�ne services in an abstract manner. Furthermore, the compiled approach o�ers to the
system administrator a lot of static controls. So the system administrator can correct
errors at compile time before any installation.
The language is powerful enough to describe a complete distribution. A distribution
can be built using an existing binary distribution such as RedHat RPM[5] instead of
source archives as we did. For that, only �les are taken from the binary distribution,
and con�guration is done with the YaKa mechanisms. The YaKa compiler by adding
automatically the dynamic libraries decreases the package dependencies of the initial
binary distribution.

For people intending to experiment YaKa, it is interoperable with existing systems
and other installation tools. Indeed for an existing computer site, it is possible to
restrict the use of YaKa to a host sub-set, the others being simply declared in order to
introduce it incrementally. When in 2004, we migrated the ENSIIE teaching network
to YaKa, we started with one practical room, then the second one, then all the other
rooms, then the user's account servers, and �nally we split the single user's home server
on 3 servers. The complete migration took about one and half year. This migration
was quite long for security reasons, YaKa was under development.

Most computer sites we know of are either misscon�gured or use obsolete system
tools. For instance, half of them have the basic NFS tool wrongly con�gured. The main
reason is that system administrators can not be expert in all basic system tools and
standard distributions and/or installation tools provide only binaries and a default
con�guration. In fact often system administrators stop to con�gure a system tool as
soon as it works. YaKa can help to change this situation. As YaKa o�ers the notion
of services, a promising perspective is to build a generic layer describing computer site

over the YaKa language. We think that a few templates designed by specialists are
su�cient enough to describe most of the existing computer sites. A standard system
administrator will just instantiate the template matching his site to have all system
tools well con�gured.

References

1. Paul Anderson, Patrick Goldsack, and Jim Paterson. Smartfrog meets lcfg: Autonomous recon�gura-
tion with central policy control. In LISA '03: Proceedings of the 17th USENIX conference on System

administration, pages 213{222, Berkeley, CA, USA, 2003. USENIX Association.
2. Paul Anderson and Alastair Scobie. LCFG: The Next Generation. In UKUUG Winter Conference.

UKUUG, 2002.
3. H. Peter Anvin. PXELinux. http://syslinux.zytor.com/pxe.php.
4. Ivan Aug�e. Yaka: An environment for describing and installing site wide systems. http://yaka.ensiie.

fr/.
5. Ed Bailey. Maximum RPM. Sams, Indianapolis, IN, USA, 1997.
6. Mark Burgess. A control theory perspective on con�guration management and cfengine. SIGBED Rev.,

3(2):12{16, 2006.
7. Mark Burgess and Ricky Ralston. Distributed resource administration using cfengine. Softw. Pract.

Exper., 27(9):1083{1101, 1997.
8. Hauke Goos-Habermann. m23 manual, 2008. http://m23.sourceforge.net/docs/manual/html/en/

manual.html.
9. Paul Anthony Kasper and Alan L. McClellan. Automating Solaris installations: a custom JumpStart

guide. SunSoft Press, Mountain View, CA, USA, 1995.
10. Thomas Lange. Fai - fully automatic installation. http://www.informatik.uni-koeln.de/fai/.
11. Mandriva. Mandriva pulse web page. http://www.mandriva.com/enterprise/en/products/pulse-2-0-the-

industry-leading-and-open-source-technology-for-large-windows-and-linux-de.
12. Jeremy Mates. Kickstart & cfengine. http://sial.org/talks/kickstart-cfengine/ks-cf-mod.pdf,

April 2005.
13. Microsoft. sysprep microsift report. http://support.microsoft.com/default.aspx?scid=kb;en-us;

302577.
14. Microsoft. Windows Installer. http://msdn.microsoft.com/en-us/library/aa372866.aspx.
15. Redhat. kickstart installation. http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/

custom-guide/ch-kickstart2.html.
16. Brett Schwarz. Hacking red hat kickstart. Linux J., 2003(108):8, 2003.
17. G. Noronha Silva. Apt howto. Technical report, Debian, 2004. http://www.debian.org/doc/manuals/apt-

howto/index.en.html.
18. Peter van der Weerd. Building a Jumpstart server for Solaris. Sys Admin: The Journal for UNIX Systems

Administrators, 9(5):8, 10, 12, 14, May 2000.
19. Weibin Zhao and Henning Schulzrinne. Enhancing service location protocol for e�ciency, scalabiliy and

advanced discovery. J. Syst. Softw., 75(1-2):193{204, 2005.

http://syslinux.zytor.com/pxe.php
http://yaka.ensiie.fr/
http://yaka.ensiie.fr/
http://m23.sourceforge.net/docs/manual/html/en/manual.html
http://m23.sourceforge.net/docs/manual/html/en/manual.html
http://www.informatik.uni-koeln.de/fai/
http://sial.org/talks/kickstart-cfengine/ks-cf-mod.pdf
http://support.microsoft.com/default.aspx?scid=kb;en-us;302577
http://support.microsoft.com/default.aspx?scid=kb;en-us;302577
http://msdn.microsoft.com/en-us/library/aa372866.aspx
http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/custom-guide/ch-kickstart2.html
http://www.redhat.com/docs/manuals/linux/RHL-9-Manual/custom-guide/ch-kickstart2.html

	A Distribution and System Compiler for Handling Heterogeneous Computer Site
	Ivan Augé, Vincent Leligeour , Olivier Pons
	Introduction
	Managing a computer site
	Package based approach
	Image based approach
	Existing solutions

	The framework
	Overview
	Compilation phases
	Installation scheme

	The language
	Language summary
	Language specificity

	Results
	Conclusion

