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Abstract: A constrained principal component analysis, which aims at a simultaneous clustering of 
objects and a partitioning of variables is proposed. The new methodology allows to identify 
components with maximum variance, each one a linear combination of a subset of variables. All the 
subsets form a partition of variables. Simultaneously, a partition of objects is also computed 
maximizing the between cluster variance. The methodology is formulated in a semi-parametric 
least-squares framework as a quadratic mixed continuous and integer problem. An alternating least-
squares algorithm is proposed to solve the clustering and disjoint PCA. Two applications are given 
to show the features of the methodology.
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1. Introduction

The reduction and synthesis of objects and variables is one of the most used analyses for exploring 
and mining the observed data. The aim is to detect the most relevant information which allows an 
appropriate interpretation of the data. Dimensionality reduction of objects (units) is generally 
achieved by a cluster analysis methodology, and frequently by a partitioning algorithm. In this last 
case, together with an optimal partition, also a reduced set of centroids is detected, i.e., generally 
non-observable objects representing mean profiles of units belonging to clusters. The reduction of 
variables is sometimes obtained by a clustering procedure by using specific measures of proximities 
between variables, such as correlation or association measures. More frequently, variable reduction 
is provided by principal component analysis (PCA) or by a factorial technique (FA) in order to
detect non-observable dimensions (components, factors) summarizing the common information in 
the data set. 
The reduction of objects and variables can be obtained by applying the two techniques sequentially. 
This is often done by first carrying out a PCA and subsequently applying a clustering algorithm on 
the component scores of the objects, thereby using the first few components only. However, De 
Sarbo et al. (1990), De Soete & Carroll (1994), Vichi & Kiers (2001) warn against this approach, 
called "tandem analysis", because PCA or FA may identify dimensions that do not necessarily 
contribute much to perceive the clustering structure in the data and that, on the contrary, may 
obscure or mask the taxonomic information. 

In an attempt to focus on the main information in the data conveyed in a limited number of 
dimensions, De Soete & Carroll (1994) proposed a modified k-means procedure such that each 
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cluster is represented by a centroid in a low-dimensional space, chosen so that it is the closest point 
to the objects associated with the cluster at hand. Vichi and Kiers (2001) proposed a methodology 
that allows one to select the most relevant components for the classification. A representation in a 
reduced number of dimensions can be given to help the interpretation of the relationships within the 
set of variables and the set of objects. Vichi (2002) introduced a model that partitions the objects 
along a set of centroids and variables along a set of components, so as to minimize the within 
cluster deviance of components in the reduced space. Properties of the relationship between these 
methods will be discussed into more details later in this paper. Various alternative methods 
combining cluster analysis and the search for a low-dimensional representation have been also 
proposed in the multidimensional scaling or unfolding context (e.g., Heiser, 1993, De Soete and 
Heiser, 1993, Heiser and Groenen, 1997).
In this paper a new methodology is proposed to cluster objects along a set of centroids and variables 
along a set of components in order to maximize the between cluster deviance of the components in 
the reduced space. Here, we require to maximize the between variance to have a classification of the 
variables identified via components with maximal variance. An efficient alternating least-squares 
algorithm is also given. The new methodology is named Clustering and Disjoint Principal 
Component Analysis (CDPCA), because we require to find components associated to disjoint 
classes of variables.
The overview of the paper is as follows. In section 2, for convenience of the reader the notation 
common to all sections is listed. Section 3 is devoted to the discussion of the clustering and disjoint 
PCA model. In section 4 the least-squares estimation of the model given in section 3 is discussed 
and a general alternating least-squares algorithm is described. Performances of the clustering and 
disjoint PCA are evaluated in section 5 by applying the new methodology to a first data set 
describing short-term macroeconomic scenario of OECD countries and a second data set analyzing 
the socio-economic characteristics of 103 countries according to 12 variables. In section 6 some
conclusions follow.           
           
  

2. Notation
For the convenience of the reader the notation and terminology common to all sections is listed 
here.
I,J,P,Q, number of: objects, variables, clusters of objects, clusters of variables, 

respectvely;
X=[xij] (I  J) two-way two-mode (objects and variables) data matrix, describing the J-

variate profiles of I objects. The variables to be analyzed are supposed
commensurate, and therefore if they are expressed by different units of 
measurements they are standardized to have mean zero and unit variance;

E=[eij] (I  J) error matrix;
U = [uip] (I  P) binary object membership matrix defining a partition of the objects into P

clusters, where uip=1 if the ith object belongs to cluster pth; uip=0, otherwise. 
Matrix U is row stochastic, i.e., has no negative elements that sum to one per 
row, and thus, has only one nonzero element per row; 

V =[vjq]=[vq] (J  Q) binary matrix defining a partition of variables into Q clusters, where 
vjq=1 if the jth variable belongs to qth cluster, vjq=0, otherwise. Matrix V has only 
one nonzero element per row;

X (P  J) object centroids matrix [ 1x ,…, px ,…, Px ], where px represents the 

centroid in the space of the observed variables. In the case of a least-squares
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estimation, the centroid matrix has the form X =(UU)-1UX; and 

px =   Xuuu ppp  , where pu is the pth column of U;

Y (P  Q) object centroids matrix [ 1y ,…, py ,…, Py ], where py represents the 

centroid in the reduced space. In the case of a least-squares estimation, the 
centroid matrix has the form Y = (UU)-1 UXA; and py =   XAuuu ppp  , where 

pu is the pth column of U;

A=[ajq]=[aq] (J  Q) matrix of the coefficients of the linear combination, with

  0
1

2  

J

j jrjqaa , for any q and r (qr) and 1
1

2  

J

j jqa . Note that matrix A is 

columnwise orthonormal;
C=[cjq]=[cq] (J  Q) columnwise orthonormal matrix;

Y=[yiq=


J

j
ijjq xa

1

] (I  Q) component score matrix, where yiq is the value of ith object for the qth

component yq; synthesizing the common information of a subset of variables; 

The model, proposed in this paper, detects an optimal partition of variables into Q classes. For each 
class of the partition a component which is the linear combination of the variables in the class with 
maximal variance is found. Simultaneously, a partition of the units of maximal between variance is 
detected.

3. Clustering and disjoint PCA model

The model associated to the clustering and disjoint principal component analysis can be formally 
written as follows 

X = U Y A' + E, (1)

where Y is the matrix of order (P  Q) of centroids in the reduced space, matrix U is binary and 
row stochastic, i.e., formally

uip 0, 1, (i=1,…,I; p=1,…,P); (2)





P

p
ipu

1

1 , (i=1,…,I); (3)

and A, with rank(A)=Q ≤ J, satisfies the constraints





J

j
jqa

1

2 1 q=1, …, Q; (4)





J

j
jrjqaa

1

2 0)( q=1,…,Q-1; r=q+1,…,Q. (5)

and therefore is orthonormal.
Model (1) specifies a partition of the objects via the membership matrix U and the centroid matrix 
Y , and simultaneously a dimensionality reduction via the component loading matrix A, which 
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allows for the partition of the variables into classes each summarized by an orthonormal linear 
combination with constraints (5).
Constraints (2) and (3) specify a membership matrix U and consequently a partition for the objects. 
Constraints (4) and (5) are more restrictive than the orthogonal ones; indeed, they require that for 
any two different components qth and rth, at least one of the two component loadings ajq and ajr for a 
variable jth is equal to zero. They imply: a) A is orthonormal, i.e., AA=IQ; b) each row of A
(representing a variable) has at most a single positive loading for a component, and therefore, a
variable can contribute only to a single component; c) from b) a partition of the variables is induced.
Constraints (5) are satisfied also if for a variable jth we have ajq = 0, for q = 1,..., Q, which implies 
that the variable does not contribute to any component. Thus, this case corresponds to exclude
variable jth in the CDPCA and consequently to have in the methodology a variable selection option. 
However, if we require to use all the observed variables, CDPCA  has to satisfy the following 
additional constraint 





Q

q
jqa

1

2 0 q=1,…,Q. (6)

We now give an example that helps to understand the constraints (4) and (5), which are crucial in 
the clustering and disjoint principal component analysis.

Example 1: The following matrix A of dimension (J=8  Q=3),

satisfies constraints (4) and (5). A is orthonormal. Each row (variable) contributes to a single column
(component), i.e., has a positive weight for a single column. A can be interpreted as a membership matrix 
specifying with the positive weights a partition into three classes (class 1: variables 1, 2 and 3; class 2: 
variables 4 and 5; class 3: variables 6, 7 and 8).
Therefore, for a given matrix X of dimension (I8) written as X = [x1, x2, x3, x4, x5, x6, x7, x8], where xj is a I
dimensional vector representing a variable, a partition of variables in the following Q=3 classes x1, x2, x3, 
x4, x5, x6,x7, x8, is specified. The three components, associated to the three classes have the form:

y1 = 0.5593x1+ 0.6617x2 + 0.4994x3;
 y2 = - 0.7993x4 + 0.6010x5;
 y3 = 0.3685x6+ 0.6131x7 -0.6988x8.

3. 1 Minimization in CDPCA
From model (1), the least-squares estimators of the CDPCA are the optimal solutions of the 
following quadratic problem [P1] with respect to unknown A, U and Y ,

Comp. 1 Comp. 2 Comp. 3

Var. 1 0.5593         0         0
Var. 2 0.6617         0         0
Var. 3 0.4994         0         0

A = Var. 4          0   -0.7993         0
Var. 5          0    0.6010         0
Var. 6          0         0    0.3685
Var. 7          0         0    0.6131
Var. 8          0         0   -0.6988



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

5

F(U, Y , A) =|| X - U YA||2 =
YUA ,,

1 1

2

1 1

min







 

   

I

i

J

j

P

p

Q

q
jqpqipij ayux (7)

subject to: [P1]

U binary and row stochastic, i.e., satisfying equations (2) and (3);
and A satisfying equations (4) and (5).

It can be observed that the following decomposition holds 

||X||2 = ||X - U Y A||2 + ||U Y A'||2, (8)

where the first term of the right hand side of equation (8) is the reconstructed (by Y=XA) within
deviance of the partition given by U of the observed data X, and it is, also, the objective function of 
CDPCA. 
The decomposition can be proved, recalling that Y = X A, by showing that

||X - U Y A||2 + ||U Y A'||2 = tr[X-U X AA][ X-U X AA]+ tr[U X AA][U X AA]
= trXX - 2trU X AAX+ 2tr UU X AAX  
= trXX-2tr U X AAX+2tr UU(UU)-1UX AAX  
= trXX.

From decomposition (8), we derive that we can minimize equation (7) or alternatively, but 

equivalently, we can maximize the second term of the right hand side of (8)

||U Y A'||2, (9)

that corresponds to the reconstructed (by Y=XA) between-class deviance of the partition given by 

U of X. Finally, we can prove that

||U Y A'||2=||U X AA||2 =tr[U X AA][U X AA]= tr[U X A][U X A]'=||U X A||2.

Therefore, problem [P1] is equivalent to the maximization of the between-class deviance ||U X A||2

of the reduced space, subject to constraints (2) – (5).

Remark 1. Model (1) is the joint model associated to k-means applied on X and the principal component 
analysis applied on the matrix of centroids.
In fact, k-means applied to X corresponds to fit the model 

X = U X  + )1(E (10)  

by
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|| X - U X ||2 =
XU,

min
1 1

2

1









 

  

I

i

J

j

P

p
jppiij xux (11)

subject to: U being a binary and row-stochastic matrix,

where )1(E is the error term matrix associated to the k-means clustering.
The principal component analysis applied on the centroid matrix X corresponds to fit the model

U X = U YA+ )2(E (12)

by

|| U X - U YA||2 =
YA ,

2

1 1 1 11

min







 

   

I

i

J

j

Q

q
jqpq

P

p
ip

P

p
pjip ayuxu (13)

subject to: 

AA=IQ,  (14)

where )2(E is the error term matrix of PCA applied on U X .
Model (1) can be viewed as the simultaneous version of the procedure based on the application of k-means 

on X, followed by PCA applied on U X . In fact, including (12) into (10) and by setting )2()1( EEE 
equation (1) is derived. Equation (1) subject to U binary and row stochastic and orthonormality constraints 
(14) is the model specified by the reduced k-means, De Soete and Carroll, (1994), i.e., the quadratic problem

YUA ,,
1 1

2

1 1

min







 

   

I

i

J

j

P

p

Q

q
jqpqipij ayux

subject to

U being a binary and row-stochastic matrix.
AA=IQ.  

Remark 2. The factorial k-means model for simultaneous clustering and PCA is also linked to CDPCA. In 
fact, factorial k-means is mathematically specified as (Vichi & Kiers, 2001), 

XAA = U X AA + E  (15)

where U is the object membership matrix, X  is the centroid matrix and A is the component loading matrix 
of rank(A) ≤ J and orthonormal, i.e., AA = IQ. In factorial k-means the optimal U, X , and A are obtained 
by, 

|| YA - U Y A ||2 = || XA - U X A ||2=
YU,

min
2

1 1 1 1









 

   

I

i

Q

q

P

p

J

j
jqpjipiq axuy (16)

subject to

U being a binary and row-stochastic matrix;
AA=IQ;
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Herewith (16) corresponds to the within-class deviance of the component matrix Y = XA, and X is column 
centered, The minimization of (16) subject to constraints (2) - (5) has been discussed by Vichi (2002), who 
has introduced the specific orthonormal constraints (4) - (5).
The partitioning of the objects in factorial k-means induces the following decomposition of the total deviance 
of the component score matrix Y,

||XA||2 = ||XA - U X A||2 + ||U X A||2, (17)

where the first term on the right hand side is the within-class deviance of the partition given by U in the
reduced space - minimized by the factorial k-means- and the second term is the between-class deviance of 
the partition in the reduced space. 

Thus, from Remarks 1 and 2 we can conclude that factorial k-means minimizes the within-class 
deviance ||Y - U X A||2 of Y, induced by the partition of the objects; while the solution of CDPCA 
maximizes the between-class deviance ||U X A||2 of Y induced by the partition of the objects, as in 
the reduced k-means. Here, in CDPCA, we prefer to maximize the between-class deviance of the 
reduced space, because we are particularly interested to define factors of maximal variance to be 
used to specify the classification of the variables, and this is guaranteed only if the between-class 
deviance is maximized as in reduced k-means.
The relationships between the four methods discussed can be summarized as in the table below.

Criterion to optimize AA=IQ Constraints (4) - (5)
Maximizes between cluster deviance of reduced space Reduced k-means (DeSoete Carroll, 1994) CDPCA
Minimizes within cluster deviance of reduced space Factorial k-means (Vichi, Kiers 2001) Vichi (2002)

4. Least-squares estimation of the clustering and disjoint PCA and ALS 
algorithm

The minimization of (7) or alternatively the maximization of (9) or (9) (here we consider to 
maximize (9)) subject to constraints (2), (3), (4) and (5) can be solved by using a constrained 
alternating least-squares (ALS) approach. Each parameter matrix of CDPCA is updated in turn by 
maximizing (9) with respect to one of the parameter matrices conditionally upon the others. The 
loss function (9) increases at each step, or at least never decreases, and the algorithm stops when the 
loss increment is less than a fixed, arbitrary positive and small threshold. Since function (9) is 
bounded above, the monotonicity property of the algorithm guarantees that the sequence of function 
values converges to a stationary point, which usually turns out to be, at least, a local maximum of 
the problem. 
The three basic steps of the algorithm can be described as follows: (i) update U, given the current 
estimate of A and X , subject to the binary and row-stochastic constraints on U; then: (ii) update X ,
given current A and U; and finally (iii) update A, given U and X , subject to the constraints (4) and 
(5) on A. 
It can be observed that the orthogonality of Y is not required. This further constraint can be avoided 
since components correspond to different subsets of variables. Thus, if two components are highly 
correlated this would imply that there is no reason to have two clusters of variables and really these 
should be merged into a unique group.    
The estimation of matrices U and X , at steps (i) and (ii), are obtained by solving an assignment and 
a regression problem, respectively, as we will describe in the next section. The optimization 
problem involved at point (iii) is not standard and a sequential quadratic program (SQP) algorithm
could be used. In fact, SQP is known to solve efficiently non linear problems with continuous 
variables and non linear constraints. However, the constrained PCA problem described at point (iii), 
only apparently is a problem in continuous variables ajq. In fact, when ajq  0, for satisfying 
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constraints (5) any ajr (r=1,…,Q; rq) must be zero, thus inducing a combinatorial problem. In the 
case of mixed problems with continuous and discrete variables, SQP is not the most appropriate 
optimization algorithm, and therefore, a more efficient algorithm is required. 
Before the least-squares estimation is discussed, let us first reformulate the clustering and disjoint 
PCA in order to point out its combinatorial and continuous nature also for point (iii).
Matrix A satisfying constraints (4) and (5) is rewritten into a product of two matrices A= BV, where 
V is the variable membership matrix which specifies the partition of variables and therefore the 
combinatorial part of our constrained PCA problem, while matrix B is a (JJ) diagonal matrix that 
helps to specify the component loadings and represents the continuous part of the problem. The 
diagonal matrix B has the form 

B =  










)()(
1

q

Q

q
q diagdiag cv , (18)

where the notation diag(a) specifies a diagonal matrix with diagonal equal to the vector a and
cq=[c1q, …,cjq,…, cJq] is a J dimensional normalized vector used to find the qth component loading.
From equation (18) it can be observed that when the vq (q=1,…,Q) are known (i.e., the partition of 
the variables is known), the loadings cjq > 0 are those for variables j such that vjq=1. For each 
variable j such that vjq=0, the product vjqcjq is always null and therefore, without loss of generality, 
cjq can be set equal to zero. Thus, matrix C = [c1,…,cq,…,cQ] is a (J  Q) orthonormal matrix for 
construction, that is CC=IQ and, furthermore, it satisfies constraints (4) and (5). Finally, tr(BB)=Q.
An example can help to understand the reparametrization of the matrix A. 

Example 2: The product of the following matrices

gives the matrix 
                    c1  c2  c3

1 0 0 0 0 0 0 0 c11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c13 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 c21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c23 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 c31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c33 0 0 0 0 0

BV= 0 0 0 0 0 0 0 0  0 0 0 c41 0 0 0 0 + 0 0 0 1 0 0 0 0  0 0 0 c42 0 0 0 0 + 0 0 0 0 0 0 0 0  0 0 0 c43 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 c51 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 c52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c53 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 c61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c62 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 c63 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 c71 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c72 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 c73 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 c82 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 c83

B  V

c11 0 0 0 0 0 0 0 1 0 0
0 c21 0 0 0 0 0 0 1 0 0
0 0 c31 0 0 0 0 0  1 0 0

   = 0 0 0 c42 0 0 0 0 0 1 0
0 0 0 0 c52 0 0 0 0 1 0
0 0 0 0 0 c63 0 0 0 0 1
0 0 0 0 0 0 c73 0 0 0 1
0 0 0 0 0 0 0 c83 0 0 1

c11 0 0
c21 0 0
c31 0 0
0 c42 0
0 c52 0
0 0 c63

0 0 c73

0 0 c83
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which is by construction orthonormal, i.e., CC=IQ . Furthermore, C satisfies also the constraints (5), i.e., 





J

j
jrjqcc

1

2 0)( ,q=1,…,2; r=q+1, …, 3. If   c11 =0.5593 , c21 =0.6617, c31 =0.4994, c42 =-0.7993, c52 =0.6010, 

c63 =0.3685, c63 =6131, c63 =-0.6988, the above matrix BV is equal to matrix A in example 1. 

The reparameterization (18) splits the estimation of the matrix A into two parts: the membership 
matrix V for the partition of the variables and the component loadings cq to specify the diagonal 
matrix B as indicated in (18).
Let us now describe the estimation of the parameters of CDPCA. 
The sum of squares estimation problem (9) to be maximized can be rewritten,

F(B, X ,U,V) = ||U X BV||2 = tr(V'B' X 'U'U X BV) =

= tr[V'














)()(
1

q

Q

q
q diagdiag cv X 'U'U X 











)()(
1

q

Q

q
q diagdiag cv V] =

=  
  








P

p

Q

q

I

i
ip

J

j
pjjqjq uxcv

1 1 1

2

1

, (19)

subject to 

uip 0, 1, (i=1,…,I; p=1,…,P); (20)





P

p
jpu

1

1, (i=1,…,I); (21)

vjq 0, 1, (j=1,…,J; q=1,…,Q); (22)





Q

q
jqv

1

1, (j=1,…,J); (23)





J

j
jqc

1

2 1 q=1, …, Q; (24)





J

j
jrjqcc

1

0 q=1,…,Q-1; r=q+1,…,Q. (25)

Thus, the clustering and disjoint principal component analysis -defined by maximizing (9) or (9) 
subject to constraints (2) - (5)- has been reformulated into the equivalent problem to maximize (19) 
with respect to binary variables uip,  vjq and real variables cjq, subject to (20) – (25).
Equation (19) can be simplified by rewriting,

F(C, X ,U,V) = 


Q

q

tr
1

[V'diag(cq) diag(vq) X 'U'U X diag(vq) diag(cq)V] +

+ 





Q

q

Q

qr
r

tr
1 1

[ V'diag(cq) diag(vq) X 'U'U X diag(vr) diag(cr)V], (26)

and by observing that the second term of (26) vanishes, because for each r and q with (rq),

diag(vq) diag(cq) VV' diag(cr) diag(vr) = 0,
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is a (J  J) null matrix, when constraints (22) (23) and (25) are satisfied.

4.1 Update of C and B

The maximization of (26), when X̂ , Û , V̂  are estimated, involves the maximization with respect to 
cq q=1,…,Q of Q independent sub-problems of PCA. In fact, for each column cq of C, (q=1,…,Q) it 
is necessary to solve,

F(cq, X̂ , Û , V̂ ) = tr[ Vˆ diag(cq) diag( qv̂ ) X̂ UU ˆˆ  X̂ diag( qv̂ ) diag(cq) V̂ ] (27)

subject to





J

j
jqc

1

2 1 q=1, …, Q; (28)





J

j
jrjqcc

1

0 q=1,…,Q-1; r=q+1,…,Q. (29)

Now, matrix diag(cq) V̂  is a (J  Q) matrix with the qth column equal to cq, while all the other 
columns are formed by null elements. Therefore, the vector cq that maximizes (27) is the 

eigenvector associated to the largest eigenvalue of the matrix diag( qv̂ ) X̂ UU ˆˆ  X̂ diag( qv̂ ). 

The update of B is given by (18), that is, B = 










)ˆ()ˆ(
1

q

Q

q
q diagdiag cv .

4.2. Update of V

The maximization of F( Ĉ , X̂ , Û ,V) with respect to V, when Ĉ , X̂  and Û  are fixed, is obtained for 
each j (j =1,…,J) by computing 

vjq = 1     if          F( qĉ , Û , X̂ , [vjq]) = maxF( rĉ , Û , X̂ , [vjr=1]): r=1,..Q; (rq) (30)

vjq = 0     otherwise.

When vjr is fixed equal to 1, cr is accordingly updated following the procedure described above, to 
maximize (26) with respect to cr. Therefore, the update of V induces the consequent update of the 
columns of C.   

4.3 Update of X

The maximization of (19), with respect to X when B̂ , Û , V̂  are fixed is equivalent to the 
minimization,

||X VB ˆˆ - VBXU ˆˆˆ ||2, (31)
  
as it can be seen from the decomposition (17) by setting A=BV. The minimization of (31) 
corresponds to the solution of the multivariate regression problem,
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X = ( UU ˆˆ  )-1 ÛX. (32)

4.4. Update of U

The maximization of F( B̂ , X̂ ,U, V̂ ) with respect to U, when B̂ , X̂  and V̂  are estimated, by 
considering (31), is equivalent to the minimization 

||X VB ˆˆ - U X̂ VB ˆˆ ||2 = ip

I

i

P

p
pi u

2

1 1

ˆˆˆˆˆ
 

 xBVxBV , (33)

which involves the minimization of I sub-problems of clustering, (i=1,…,I),

ip

P

p
pi u

2

1

ˆˆˆˆˆ


 xBVxBV , (34)

subject to

uip 0, 1, (i=1,…,I; p=1,…,P); (35)





P

p
ipu

1

1. (i=1,…,I). (36)

Problem (34) subject to (35) and (36) is an assignment problem solved in linear time by fixing,

uip = 1 if
2

ˆˆˆˆˆ
pi xBVxBV   = min

2
ˆˆˆˆˆ

si xBVxBV  : s=1,…,P; sp, (37)

uip = 0 otherwise.

We are now in position to state an alternating least-squares algorithm.

Remark 3. Let us include the reparameterization of the matrix A into model (1) and suppose that the matrix 
B=IJ , i.e., B is the identity matrix of order J, thus model (1) writes

X = U Y V' + E, (38)

which implies that all the variables have the same loadings equal to 1. The CDPCA degenerates into the 
double k-means (Vichi, 2000), that specifies a  partition, both for objects and variables, in P classes and Q
classes, respectively. Thus we can conclude that double k-means is a relevant case of the more general 
CDPCA. In double k-means both objects and variables are synthesized by mean profiles of objects belonging 
to the object class and mean profiles for variables belonging to the variable class. In CDPCA there is an 
asymmetric treatment of the two modes of the data matrix. Objects are synthesized by mean profiles of
clusters, while components are synthesized by linear combinations.

4.5. An Alternating Least-Squares algorithm for clustering and disjoint PCA
The constrained problem of maximizing (9) or (9) can be solved by using an alternating least-
squares (ALS) algorithm, which alternates four steps: update V (allocation of variables) and B (the 
PCA step) update the centroid matrix X  and finally update U (the allocation of objects).
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Initialization . Initial values are chosen for U and V. Such values can be chosen randomly or in a 
rational way (e.g., based on the k-means clustering solution applied on matrix X and X') 
and, in both cases, they should satisfy the constraints on U and V. For X  formula (32) is 
used.

Step 1. B is updated, given the current X̂ , Û , V̂ by maximizing F( B, Û , X̂ , V̂ ) over each column 
cq of C. The vector cq is the eigenvector associated to the largest eigenvalue of the matrix 

diag(vq) X̂ ' Û ' Û X̂ diag(vq).  In addition, a rotation of this solution can be also chosen, 
because it does not affect the scalar products. To update B formula (18) is used.

Step 2. V is updated, given the current estimate of B̂ , X̂  and Û . This problem is sequentially 
solved for the different rows of V by taking 

vjq=1, if  F( qĉ , Û , X̂ ,[vjq]) = maxF( rĉ , Û , X̂ , [vjr=1]): r=1,..Q; (rq)or vjq=0 otherwise.

Step 3. U is updated, given the current B̂ , X̂ and V̂ . This problem is solved for the different rows 
of U by taking

uip = 1, if 
2

ˆˆˆˆˆ
pi xBVxBV   = min

2
ˆˆˆˆˆ

si xBVxBV  : s=1,…,P; sp or uip = 0 otherwise.

Step 4. X  is updated, given B̂ , Û  and V̂  by: X = ( Û ' Û )-1 Û 'X.

Stopping rule. The function value F(B̂ , X̂ , Û , V̂ ) is computed for the current values of B̂ , X̂ , Û and 

V̂ . When such updated values have increased considerably (more than an arbitrary small 
convergence tolerance value) the function value, B, X , U and V are updated once more 
according to Steps 1 - 4. Otherwise, the process is considered to have converged. 

The algorithm monotonically increases the objective function and, since function F(B, X ,U,V) is 
bounded above by the total variance of X, it will converge to a stationary point which can be 
expected to be at least a local maximum. To increase the chance of finding the global maximum, the 
algorithm should be run several times, with different initial estimates for V. In our experiences we 
observed that at least 30 runs are necessary.

5. Application of Clustering and Disjoint PCA

The clustering and disjoint PCA has been applied to two real data sets to show the performances of 
the new methodology. The first data set describes the short-term scenario of the OECD countries 
analyzed also with factorial k-means The second data set takes into account the socio and 
macroeconomic performances of national economies of 103 countries.

5.1.  SHORT-TERM MACROECONOMIC SCENARIO OF OECD COUNTRIES
The short-term scenario (September 1999) on macroeconomic performance of national economies 
of twenty countries, members of the Organization for Economic Co-operation and Development 
(OECD) has been analyzed in Vichi & Kiers, (2001) to test the ability of the factorial k-means 
analysis in identifying classes of similar economies and  help to understand the relationships within 
the set of observed economic indicators. Six main economic indicators were considered: Gross 
Domestic Product (GDP), Leading Indicator (LI), Unemployment Rate (UR), Interest Rate (IR), 
Trade Balance (TB), Net National Savings (NNS). Variables were standardized by unit variance.
A tandem analysis was carried out computing the first two principal components and classifying 
countries on the basis of first two objects scores. The results are shown in Figure 1a. The first two 
components explain 29% and 24% of the total variance. The first PCA dimension is characterized 
mainly by net national savings (21%), gross domestic product (18%), unemployment rate (14%), (in 
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fact, the other three variables explain 4%), while 43% is due to the interrelations (sum of the 
covariances) among the six variables. The second PCA dimension is characterized by interest rate 
(34%) and trade balance (22%) and unemployment rate (9%), (the remaining three variables explain 
4%), while 31% is due to interrelations among the six variables. Note that unemployment rate 
characterizes both dimensions. The k-means algorithm was run on the first two PCA starting from 
random partitions. It was necessary to run k-means for a large number of initial random starts for 
the presence of several local optima (Running 10000 times k-means found the present optimal 
solution after 4650 runs). Clusters of countries, in Figure 1a, are highlighted by dotted ellipses. The 
between cluster deviance of the optimal solution was equal to 39.91% of the total deviance.  
The results of the CDPCA are reported in Figure 1b, by considering a biplot representation
(Gabriel, 1971). The three clusters of countries are also highlighted by three dotted ellipses, while
the two clusters of variables are represented by the two dotted orthogonal axes. The CDPCA was 
run 500 times to increase the chance to find the global optimal solution. This optimal solution was 
found 5 times in the 500 runs. In the best solution the algorithm converged after between 5 and 6
iterations of the steps 1 – 4 (with convergence tolerance value equal to 10-5). The two components 
of the clustering and disjoint PCA explain almost the same part of variance explained by the PCA 
(27% and 22%, respectively). 
The first component of the disjoint PCA is characterized mainly by net national savings (37%), 
unemployment rate (15%) and gross domestic product (9%); while 39% contribution is due to 
interrelations among GDP, UR and NNS. Note that in CDPCA unemployment rate explains the first 
component only differently from PCA. The second disjoint PCA component is characterized by
interest rate (37%), trade balance (35%) and only slightly by leading indicator (4%), while 24% 
contribution is due to interrelations among IR, LI and TB.
Therefore, the components of the PCA are almost the same of the disjoint PCA both in terms of 
variance explained and of variables most contributing to specify the components; however, the 
disjoint PCA clearly shows more homogeneous clusters (between cluster deviance of CDPCA is 
||U Y ||2/||Y||2=78% of total deviance, while between cluster deviance of the tandem analysis is about 
40% of the total deviance only). 
Recalling results of Factorial k-means (FKM) (Vichi, Kiers, 2001) the first component is specified 
by the main contribution of TB, IR, NNS, LI; while the second component is mainly characterized 
by GDP, and in part IR. Finally, UR contributes equally to both components. Comparing these 
results with CDPCA it can be observed that there are variables such UR and IR for FKM that can 
contribute to both components, as it happens with LI and UR for PCA (in tandem analysis). This
ambiguity in the explanation of components causes difficulties in their interpretation and
description due to overlap of the same variables in explaining different factors. Of course, 
differences of components of FKM with respect to CDPCA and tandem analysis, produces some 
differences in the classification of countries with respect to FKM and tandem analysis.
The choice of the number of clusters for objects can be guided by the indices introduced in 
clustering literature. In a study comparing different indices Milligan and Cooper (1985) suggested 
to use the ratio of the between and within deviances, each one divided by their respective degree of 
freedom. For variables the number of clusters should be smaller or equal to the maximum number 
of eigenvalues since more clusters than latent variables are expected.
By examining the clusters of variables in our example it can be observed that none of the two have 
more than one eigenvalue greater than one. Therefore, CDPCA has found two clusters of variables 
each one explained by a subset of variables expressing a component variable only. On the other 
hand if three clusters of variables are required the best solution of CDPCA (over 500 random starts) 
divides the first group of variables leaving GDP alone.
It has been already noted that CDPCA produces components that not need to be orthogonal; 
however when the number of clusters for the variables is correctly chosen the correlation between 
components is frequently small. In this case study the correlation between component 1 and 2 is -
0.0011. 
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Figure 1: a) tandem analysis; b) clustering and disjoint PCA.

Table 1: Component loadings for PCA and CDPCA 
PCA loadings
Component 1

PCA loadings
Component 2

CDPCA loadings 
Component 1

CDPCA loadings 
Component 2

Gross Domestic Product (GDP)     0.5669     0.0650     0.3831          0
Interest Rate (IR)     0.1745     0.6956          0     0.6972
Leading Indicator (LI)     0.1922     0.2289          0    -0.2287
Unemployment Rate (UR)     0.4893    -0.3668     0.4978          0
Net National Savings (NNS)    -0.6069    0.0923    -0.7781          0
Trade Balance (TB)    -0.0592    -0.5625          0    -0.6794

a) Tandem analysis: k-means clustering (k=3) computed on the first two principal components (10000 random start for 
k-means). Points without labels represent the centroid of clusters. Clusters of countries are highlighted by ellipses.

                               
b) Clustering and Disjoint PCA. Points without labels represent centroids of clusters. Clusters of countries are 

highlighted by ellipses. Each class of variables is highlighted by a dotted axis. It is clear that axes are orthogonal.
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5.2 MACRO ECONOMIC WORLD PERFORMACE IN 2000.

The socio and macroeconomic performance of national economies of 103 countries has been used
to test the ability of the clustering and disjoint PCA to identify clusters of homogeneous countries 
and classes of variables formed along components of maximum variance. Countries performances 
were evaluated according to 12 basic indicators of: demography and fertility, health, education, 
urbanization and economy; they refer to the year 2000. Most indicators are drawn from national 
sources of regular administrative files and collected together by international institutions. In 
particular most of these indicators are from World Bank (World development indicators and World 
development report). For unemployment rate the files of I.L.O. and F.A.O. have been used. 
Indicators and countries are shown in Tables 2 and 3.

Table 2: List of variables used in the analysis (year 2000)
Demography and Fertility 
Crude Birth Rate (per 1.000 people), (CRB)
Crude Death Rate (per 1.000 people), (CDR)

Health 
Infant Mortality Rate (per 1.000 live birth), (IMR)
Life Expectancy at Birth (years), (LEB)
Education
Adult Illiteracy Rate (% of people ages 15 and over), (AIR)
Urbanization
Urban Population (% of total population), (UP)
Rural Population Density (people per sq. km. of arable land), (RPD)
Economic (basic),
Gross Domestic Product per Capita (at PPP at 1996 prices US$), (GDP)
Exports Goods and Services (% of GDP), (EXP)
Imports Goods and Services (% of GDP), (IMP)
Unemployment Rate (% of total labor force), (UR)
Economically Active Population Rate (% of population), (EAP)

Table 3: Alphabetical list of 103 countries used in the analysis with the labels used in Figures 2 and 3.
Afghanistan (AFG), Argentina (ARG), Armenia (ARM), Australia (AUS), Austria (AUT), Azerbaijan (AZE),
Bahrain  (BHR), Bangladesh  (BGD), Barbados  (BRB), Belarus  (BLR), Belgium  (BEL), Bolivia  (BOL), Bosnia and Herzegovina 

(BIH), Botswana (BWA),  Brazil  (BRA), Bulgaria  (BGR), Burkina Faso (BFA), Burundi (BDI),
Cambodia (KHM), Cameroon (CMR), Canada (CAN), Central African Rep. (CAF), Chile (CHL), China (CHN), Colombia  (COL), 

Costa Rica  (CRI), Croatia  (HRV), Cuba (CUB), Czech Repub. (CZE), 
Denmark (DNK), Dominican R.  (DOM), 
Ecuador (ECU), Egypt, Arab R. (EGY), El Salvador (SLV),Estonia (EST), Ethiopia (ETH),
Finland (FIN), France (FRA),
Gabon (GAB), Georgia (GEO), Germany (DEU), Greece (GRC), Guatemala (GTM),
Haiti (HTI), Honduras  (HND), Hong Kong  (HKG), Hungary  (HUN),
Iceland (ISL), India   (IND), Indonesia  (IDN), Iran, Islam Re. (IRN), Ireland (IRL), Israel   (ISR), Italy (ITA),
Japan (JPN), Jordan (JOR),
Kenya (KEN), korea, Dem. Rep   (PRK), Korea, Rep.  (KOR), Kuwait   (KWT),
Latvia (LVA), Lebanon  (LBN), Liberia  (LBR), Libya (LBY), Lithuania (LTU), Malaysia  (MYS), Mexico (MEX), Morocco  

(MAR), 
Netherlands (NLD), New Zealand (NZL), Nicaragua (NIC), Nigeria (NGA), Norway (NOR),
Pakistan (PAK), Panama (PAN), Paraguay (PRY), Peru (PER), Philippines  (PHL), Poland (POL), Portugal (PRT),
Romania (ROM), Russia   (RUS),
Saudi Arabia (SAU), Senegal (SEN), Singapore  (SGP), South Africa (ZAF), Spain (ESP), Sweden   (SWE), Switzerland  (CHE), 

Syrian Arab R.   (SYR),
Tanzania (TZA), Thailand  (THA), Turkey   (TUR),
Uganda (UGA), Ukraine  (UKR), United Arab Emirates  (ARE), United Kingdom   (GBR), United States (USA), Uruguay (URY), 

Uzbekistan  (UZB),
Venezuela (VEN), Vietnam (VNM),
Zambia (ZMB),
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Variables have been column standardized to take into account different scale measurements. First, 
PCA has been applied on the (103  12) matrix of standardized variables. Three components have 
been retained corresponding to eigenvalues larger than 1, which account for 73.94% of the total 
variance. The component loading matrix, after varimax rotation is reported in Table 4 (a). It can be 
observed that even after rotation some variables have loadings larger than 0.1. The highest values 
are highlighted in black, while values larger than 0.1 in grey. 

Table 4 (a), (b) Component loadings of the PCA and CDPCA on
the 103 countries  12 macroeconomic variables

a)                PCA b)              CDPCA
Variables Comp. 1

44.44%
Comp. 2
14.99%

Comp. 3
12.36%

Comp. 1
34.50%

Comp. 2
14.00%

Comp. 3
9.49%

Crude Birth Rate (CBR)    -0.3814    -0.0182     0.2242     0.4304          0          0
Crude Death Rate (CDR)    -0.2952     0.1121    -0.4409     0.3293          0          0
Infant Mortality Rate (IMR)    -0.4258     0.0318    -0.0233     0.4596          0          0
Life Expectancy at Birth (LEB)     0.4351    -0.0054     0.1051    -0.4619          0          0
Adult Illiteracy Rate (AIR)    -0.3720    -0.0589     0.1623     0.3933          0          0
Urban Population (UP)     0.3788     0.0049     0.1552    -0.3564          0          0
Rural Population Density (RPD)    -0.1264    -0.4803    -0.0019 0 0.3655                  0    
Gross Domestic Product per Capita (DGP)     0.3051    -0.0002    -0.1917          0          0     0.8040
Unemployment Rate (UR)    -0.0322     0.0562     0.3988          0          0    -0.3160
Economically Active Population Rate (EAP)     0.0377    -0.0344    -0.7051          0          0     0.5038
Imports Goods and Services (IMP)     0.0076    -0.6233    -0.0098          0     0.6473          0
Exports Goods and Services (EXP)     0.0577    -0.5992    -0.0165          0     0.6689          0

The analysis of clustering and disjoint PCA has been repeated by fixing the number of clusters for 
variables equal to Q=3, to compare this solution with the one given by PCA, while the number of 
clusters of units have been set to vary from 5 to 12. The results are reported in Table 5. Each time 
the analysis was repeated 30 times by starting with different random initial partitions both for 
variables and clusters and retaining the best solution. This multistart strategy is necessary to avoid 
that the algorithm stops into a local maximum of the problem. It can be observed that the larger 
increase of the accounted variance can be observed between 6 and 7 clusters, then stabilizes 
between 0.59 and 0.60, for a larger number of clusters of countries. Therefore, the solution with 7 
clusters for the objects has been considered the most parsimonious, even accounting for a relevant 
part of the total variance. This strategy of choice has been introduced by Cattell, (1966) for 
choosing the number of factors, in a factorial analysis.  

Table 5: Explained between variance (10) for different values of
P = 5, 6, 7, 8, 9, 10, 11, 12 and Q=3.

# classes
Objects

# classes
variables

Explained
Variance

5 3 0.5389
6 3 0.5586
7 3 0.5799
8 3 0.5874
9 3 0.5929
10 3 0.5988
11 3 0.6016
12 3 0.6049
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The component loading matrix of the clustering and disjoint PCA is reported in Table 4 (b). The 
first component explains 34.50% of the total variance and it is characterized by demographic, 
health, education and urbanization variables. It represents a socio-demographic dimension. The 
second and third components represent two economic dimensions. 

The classification of the countries is shown in table 6

Table 6: Partition of the 103 countries in 7 clusters according còustering and disjoint PCA.
Cluster 1 8 Afghanistan, Burkina Faso, Burundi, Central African Rep., Ethiopia, Liberia,               

Uganda, Zambia
Cluster 2 13 Bangladesh, Botswana, Cambodia, Cameroon, Gabon, Haiti, Kenya, India, 

Nigeria, Pakistan, Senegal, South Africa, Tanzania
Cluster 3 21 Australia, Austria, Canada, Denmark, Finland, France, Germany, Kuwait, 

Korea, Rep.,Iceland, Israel, Italy, Japan, Netherlands, New Zealand, Norway, 
Portugal, Sweden, Switzerland, United Kingdom, United States

Cluster 4 2 Hong Kong, Singapore
Cluster 5 15 Bahrain, Belgium, Barbados, Belarus, Bulgaria, Czech Repub., Etonia, 

Hungary, Ireland, Malaysia, Panama, Thailand, Ukraine, United Arab 
Emirates, Vietnam

Cluster 6 25 Argentina, Chile, Costa Rica, Lebanon, Mexico, Peru, Venezuela, China, 
Croatia, Georgia, Latvia, Lithuania, Poland, Russia, Greece, Spain, Armenia, 
Azerbaijan, Brazil, Colombia, Cuba, Korea Dem. Rep, Romania, Turkey, 
Uruguay

Cluster 7 19 Arab R., Bolivia, Bosnia and Herzegovina, Dominican R., Ecuador, Egypt,  El 
Salvador, Guatemala, Honduras, Indonesia, Iran, Islam Re., Jordan, Libya, 
Morocco, Nicaragua, Paraguay, Philippines, Saudi Arabia, Syrian Arab R.,  
Uzbekistan

The plot of the countries in the first two components plane is shown in Figure 2; while in Figure 3
the plot of the first and third component is displayed.
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Figure 2: Macroeconomic Performance of World 2000. Plot of the component 1 (Socio-
Economic) Vs component 2 (Import-Export) of CDPCA. Points with the number represent 
centroids of clusters. Clusters of countries are highlighted by ellipses.

NB Cluster 4 formed by Singapore and Hong Kong, with centroid (-2.4; 7.2), for readability of the plot was not included in the Fig.   

Figure 3: Plot of the component 1 (Socio-Economic) vs component 3 (GDP, Active population 
& Unemployment rate). Points with the number represent the centroids of the clusters. Clusters 
of countries are highlighted by ellipses.
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The correlation coefficient between component 1 and component 2 is equal to 0.5430, while the 
correlation coefficients between components 1 and 3 and 2 and 3 are equal to -0.3187 and -0.2713, 
respectively. Requiring two components with always 7 clusters for objects the correlation 
coefficient reduces to 0.3581, confirming that when there is some correlation between factors, as for 
components 1 and 2, it is possible to reduce it by reducing the number of clusters of variables.
This time, the first component explains 40% of total variance and it is equal to the previous first 
component plus Gross Domestic Product, while the second component (explaining 18%) is the 
second and the third component (unless GDP) of the previous case.
The classification remains almost the same so as the graphical representation and therefore is not 
reported. Of course by increasing the number of clusters for the countries considerably, the 
explained variance also increases; e.g., for P=30 and P=40 the explained variance is 0.6566, 0.6662, 
respectively; while for P=103 (corresponding to the case of partitioning only variables) the 
explained variance is 0.6836. However, in such cases the interpretability of the clusters becomes a 
more serious task. 
     

6. Conclusions
In this paper a new methodology for partitioning simultaneously both objects around a set of 
centroids and variables along a set of components of maximum variance is presented. Since 
clustering is required for objects, the between cluster variance of the component scores is 
maximized. The new methodology is named Clustering and Disjoint Principal Component Analysis 
(CDPCA).
CDPCA is particularly appropriate when the researcher has to reduce both objects and variables for 
interpretability reasons; for this purpose, principal component analysis followed by a clustering 
methodology is frequently applied. This tandem analysis can be shown to produce ambiguous
results, because PCA finds components with maximum variance, while only between variance has 
to be explained for the following partitioning methodology, such as k-means.  In other terms the 
components of the PCA can explain variance that masks the clustering structure in the data (Vichi 
& Kiers, 2001). Two alternative techniques have been proposed in the literature to simultaneously 
classify objects and obtain a dimensionality reduction of variables. Factorial k-means (Vichi & 
Kiers, 2001), by minimizing the within cluster deviance in the reduced space, is particularly useful 
when clustering of objects is the major objective of analysis. However, in Factorial k-means the 
dimensionality reduction may not be guaranteed to explain the largest variance. On the other hand, 
reduced k- means by maximizing the between deviance of the reduced space is useful when 
dimensions explaining maximal variance are needed. However,  in reduced k-means clustering with 
minimal variance may not be guaranteed. Both techniques do not classify variables and components 
may be explained by the same variables, thus inducing possible complications in the interpretation  
of components. CDPCA, as reduced k-means, maximizes the between deviance of the reduced 
space because it includes the classification of variables where each class is specified by a 
component. Hence, it is relevant to find components of maximal variance to obtain stable classes of 
the partition of variables. In synthesis, with CDPCA a double advantage is obtained: first, to 
identify a classification of variables and a classification of objects; second, to obtain a 
dimensionality reduction of the data matrix via a reduced set of centroids for objects and a reduced 
set of components (linear combinations) for variables. 
Another important advantage of CDPCA is the easy interpretability of the components since each 
one is characterized by a disjoint set of variables. Therefore, with CDPCA it is not possible to have 
one observed variable characterizing two different components as it frequently happens for PCA. It 
follows that for CDPCA it is not necessary to use a rotation method to improve the interpretability 
of results.
Components of CDPCA are generally not orthogonal. However, for the authors this has not to be 
considered a problem because if two components of CDPCA are highly correlated this means that 
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only one of the two is needed, and simply it is necessary to reduce the number of clusters for 
variables in order to allow the merge of the two components.
In the case all observed variables are highly correlated CDPCA should find one component only 
and therefore there is no classification for variables.   
In the case the classification of variables only is required (i.e., P=I) the CDPCA can be seen as an 
alternative method to the Sparse Principal Component Analysis (Zou, Hastie and Tibshirani, 2006) 
that uses the lasso (elastic net) to produce modified principal components with sparse loadings. 
However, differently from this last technique, CDPCA produces a more simplified interpretation of 
the components by specifying a partition of variables so that, as mention above, these can explain a 
single component only.
CDPCA maximizes the between cluster deviance of the reduced space, but unconditionally to the 
within variance. Thus, it would be interesting to find the optimal solution of CDPCA for a fixed 
within cluster deviance or as a convex combination of the between and within cluster deviances as 
in Vichi, Rocci and Kiers (2007); however, this will be subject of another paper.
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